

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	48MHz
Connectivity	EBI/EMI, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	68
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	3930 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 15x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f86j11t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.2 Power Supply Pins

2.2.1 DECOUPLING CAPACITORS

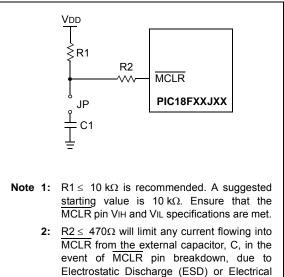
The use of decoupling capacitors on every pair of power supply pins, such as VDD, VSS, AVDD and AVSS, is required.

Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: A 0.1 μ F (100 nF), 10-20V capacitor is recommended. The capacitor should be a low-ESR device, with a resonance frequency in the range of 200 MHz and higher. Ceramic capacitors are recommended.
- Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended to place the capacitors on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is no greater than 0.25 inch (6 mm).
- Handling high-frequency noise: If the board is experiencing high-frequency noise (upward of tens of MHz), add a second ceramic type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of 0.01 μ F to 0.001 μ F. Place this second capacitor next to each primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible (e.g., 0.1 μ F in parallel with 0.001 μ F).
- Maximizing performance: On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum, thereby reducing PCB trace inductance.

2.2.2 TANK CAPACITORS

On boards with power traces running longer than six inches in length, it is suggested to use a tank capacitor for integrated circuits, including microcontrollers, to supply a local power source. The value of the tank capacitor should be determined based on the trace resistance that connects the power supply source to the device, and the maximum current drawn by the device in the application. In other words, select the tank capacitor so that it meets the acceptable voltage sag at the device. Typical values range from 4.7 μ F to 47 μ F.


2.3 Master Clear (MCLR) Pin

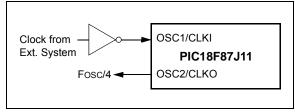
The MCLR pin provides two specific device functions: Device Reset, and Device Programming and Debugging. If programming and debugging are not required in the end application, a direct connection to VDD may be all that is required. The addition of other components, to help increase the application's resistance to spurious Resets from voltage sags, may be beneficial. A typical configuration is shown in Figure 2-1. Other circuit designs may be implemented, depending on the application's requirements.

During programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the $\overline{\text{MCLR}}$ pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R1 and C1 will need to be adjusted based on the application and PCB requirements. For example, it is recommended that the capacitor, C1, be isolated from the $\overline{\text{MCLR}}$ pin during programming and debugging operations by using a jumper (Figure 2-2). The jumper is replaced for normal run-time operations.

Any components associated with the $\overline{\text{MCLR}}$ pin should be placed within 0.25 inch (6 mm) of the pin.

FIGURE 2-2: EXAMPLE OF MCLR PIN CONNECTIONS

Overstress (EOS). Ensure that the MCLR pin


VIH and VIL specifications are met.

3.4.2 EXTERNAL CLOCK INPUT (EC MODES)

The EC and ECPLL Oscillator modes require an external clock source to be connected to the OSC1 pin. There is no oscillator start-up time required after a Power-on Reset or after an exit from Sleep mode.

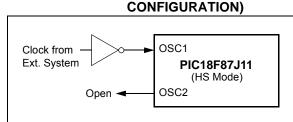
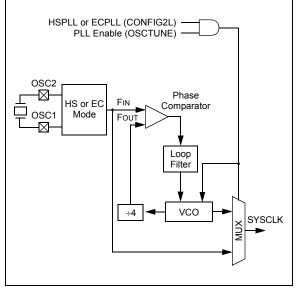

In the EC Oscillator mode, the oscillator frequency, divided by 4, is available on the OSC2 pin. This signal may be used for test purposes or to synchronize other logic. Figure 3-3 shows the pin connections for the EC Oscillator mode.

FIGURE 3-3: EXTERNAL CLOCK INPUT OPERATION (EC CONFIGURATION)

An external clock source may also be connected to the OSC1 pin in the HS mode, as shown in Figure 3-4. In this configuration, the divide-by-4 output on OSC2 is not available. Current consumption in this configuration will be somewhat higher than EC mode, as the internal oscillator's feedback circuitry will be enabled (in EC mode, the feedback circuit is disabled).

FIGURE 3-4: EXTERNAL CLOCK INPUT OPERATION (HS OSC

3.4.3 PLL FREQUENCY MULTIPLIER


A Phase Locked Loop (PLL) circuit is provided as an option for users who want to use a lower frequency oscillator circuit, or to clock the device up to its highest rated frequency from a crystal oscillator. This may be useful for customers who are concerned with the External Memory Interface (EMI) due to high-frequency crystals, or users who require higher clock speeds from an internal oscillator.

3.4.3.1 HSPLL and ECPLL Modes

The HSPLL and ECPLL modes provide the ability to selectively run the device at 4 times the external oscillating source to produce frequencies up to 40 MHz.

The PLL is enabled by programming the FOSC<2:0> Configuration bits to either '111' (for ECPLL) or '101' (for HSPLL). In addition, the PLLEN bit (OSCTUNE<6>) must also be set. Clearing PLLEN disables the PLL, regardless of the chosen oscillator configuration. It also allows additional flexibility for controlling the application's clock speed in software.

3.4.3.2 PLL and INTOSC

The PLL is also available to the internal oscillator block when the internal oscillator block is configured as the primary clock source. In this configuration, the PLL is enabled in software and generates a clock output of up to 32 MHz. The operation of INTOSC with the PLL is described in **Section 3.5.2 "INTPLL Modes**".

PIC18F87J11 FAMILY

TABLE 5-3:	INITIALIZATION CONDITIONS FOR ALL REGISTERS ⁽⁴⁾ (CONTINUED)									
Register	Applicable Devices	Power-on Reset, Brown-out Reset	MCLR Resets, WDT Reset, RESET Instruction, Stack Resets, CM Resets	Wake-up via WDT or Interrupt						
IPR3	PIC18F6XJ1X PIC18F8XJ1X	1111 1111	1111 1111	uuuu uuuu						
PIR3	PIC18F6XJ1X PIC18F8XJ1X	0000 0000	0000 0000	uuuu uuuu (3)						
PIE3	PIC18F6XJ1X PIC18F8XJ1X	0000 0000	0000 0000	uuuu uuuu						
IPR2	PIC18F6XJ1X PIC18F8XJ1X	111- 1111	111- 1111	uuu- uuuu						
PIR2	PIC18F6XJ1X PIC18F8XJ1X	000- 0000	000- 0000	uuu- uuuu (³⁾						
PIE2	PIC18F6XJ1X PIC18F8XJ1X	000- 0000	000- 0000	uuu- uuuu						
IPR1	PIC18F6XJ1X PIC18F8XJ1X	1111 1111	1111 1111	uuuu uuuu						
PIR1	PIC18F6XJ1X PIC18F8XJ1X	0000 0000	0000 0000	uuuu uuuu (³⁾						
PIE1	PIC18F6XJ1X PIC18F8XJ1X	0000 0000	0000 0000	uuuu uuuu						
RCSTA2	PIC18F6XJ1X PIC18F8XJ1X	0000 000x	0000 000x	uuuu uuuu						
OSCTUNE	PIC18F6XJ1X PIC18F8XJ1X	0000 0000	0000 0000	uuuu uuuu						
TRISJ	PIC18F6XJ1X PIC18F8XJ1X	1111 1111	1111 1111	սսսս սսսս						
TRISH	PIC18F6XJ1X PIC18F8XJ1X	1111 1111	1111 1111	uuuu uuuu						
TRISG	PIC18F6XJ1X PIC18F8XJ1X	1 1111	1 1111	u uuuu						
TRISF	PIC18F6XJ1X PIC18F8XJ1X	1111 111-	1111 111-	uuuu uuu-						
TRISE	PIC18F6XJ1X PIC18F8XJ1X	1111 1111	1111 1111	uuuu uuuu						
TRISD	PIC18F6XJ1X PIC18F8XJ1X	1111 1111	1111 1111	uuuu uuuu						
TRISC	PIC18F6XJ1X PIC18F8XJ1X	1111 1111	1111 1111	սսսս սսսս						
TRISB	PIC18F6XJ1X PIC18F8XJ1X	1111 1111	1111 1111	սսսս սսսս						
TRISA	PIC18F6XJ1X PIC18F8XJ1X	1111 1111	1111 1111	սսսս սսսս						
LATJ	PIC18F6XJ1X PIC18F8XJ1X	XXXX XXXX	սսսս սսսս	սսսս սսսս						
LATH	PIC18F6XJ1X PIC18F8XJ1X	XXXX XXXX	uuuu uuuu	uuuu uuuu						
LATG	PIC18F6XJ1X PIC18F8XJ1X	x xxxx	u uuuu	u uuuu						
LATF	PIC18F6XJ1X PIC18F8XJ1X	xxxx xxx-	uuuu uuu-	uuuu uuu-						
LATE	PIC18F6XJ1X PIC18F8XJ1X	XXXX XXXX	սսսս սսսս	սսսս սսսս						
LATD	PIC18F6XJ1X PIC18F8XJ1X	xxxx xxxx	uuuu uuuu	uuuu uuuu						
LATC	PIC18F6XJ1X PIC18F8XJ1X	XXXX XXXX	uuuu uuuu	uuuu uuuu						
LATB	PIC18F6XJ1X PIC18F8XJ1X	xxxx xxxx	սսսս սսսս	սսսս սսսս						
LATA	PIC18F6XJ1X PIC18F8XJ1X	xxxx xxxx	uuuu uuuu	uuuu uuuu						

TABLE 5-3: INITIALIZATION CONDITIONS FOR ALL REGISTERS⁽⁴⁾ (CONTINUED)

Legend: u = unchanged; x = unknown; - = unimplemented bit, read as '0'; q = value depends on condition. Shaded cells indicate conditions do not apply for the designated device.

Note 1: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.

2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).

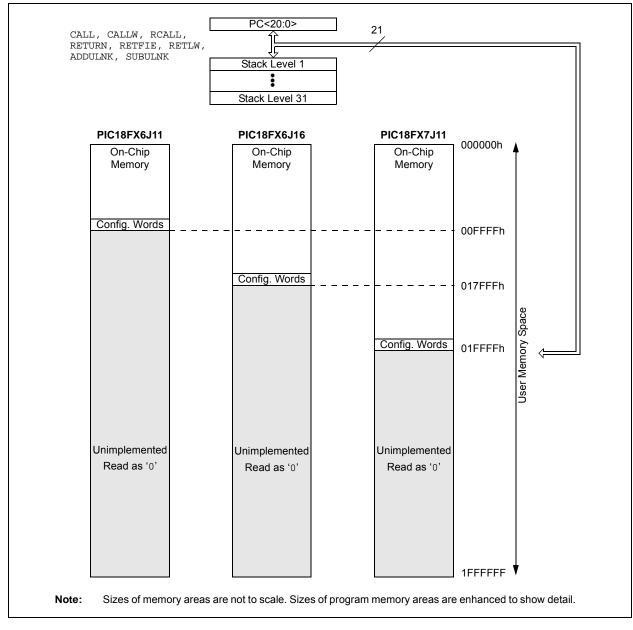
3: One or more bits in the INTCONx or PIRx registers will be effected (to cause wake-up).

4: See Table 5-2 for Reset value for specific conditions.

6.0 MEMORY ORGANIZATION

There are two types of memory in PIC18 Flash microcontroller devices:

- Program Memory
- Data RAM


As Harvard architecture devices, the data and program memories use separate busses; this allows for concurrent access of the two memory spaces.

Additional detailed information on the operation of the Flash program memory is provided in **Section 7.0 "Flash Program Memory"**.

6.1 Program Memory Organization

PIC18 microcontrollers implement a 21-bit Program Counter (PC) which is capable of addressing a 2-Mbyte program memory space. Accessing a location between the upper boundary of the physically implemented memory and the 2-Mbyte address will return all '0's (a NOP instruction).

The entire PIC18F87J11 family of devices offers three different on-chip Flash program memory sizes, from 64 Kbytes (up to 16,384 single-word instructions) to 128 Kbytes (65,536 single-word instructions). The program memory maps for individual family members are shown in Figure 6-3.

FIGURE 6-1: MEMORY MAPS FOR PIC18F87J11 FAMILY DEVICES

6.1.6.2 Return Stack Pointer (STKPTR)

The STKPTR register (Register 6-2) contains the Stack Pointer value, the STKFUL (Stack Full) status bit and the STKUNF (Stack Underflow) status bits. The value of the Stack Pointer can be 0 through 31. The Stack Pointer increments before values are pushed onto the stack and decrements after values are popped off the stack. On Reset, the Stack Pointer value will be zero. The user may read and write the Stack Pointer value. This feature can be used by a Real-Time Operating System (RTOS) for return stack maintenance.

After the PC is pushed onto the stack 31 times (without popping any values off the stack), the STKFUL bit is set. The STKFUL bit is cleared by software or by a POR.

The action that takes place when the stack becomes full depends on the state of the STVREN (Stack Overflow Reset Enable) Configuration bit. (Refer to **Section 25.1 "Configuration Bits**" for a description of the device Configuration bits.) If STVREN is set (default), the 31st push will push the (PC + 2) value onto the stack, set the STKFUL bit and reset the device. The STKFUL bit will remain set and the Stack Pointer will be set to zero.

If STVREN is cleared, the STKFUL bit will be set on the 31st push and the Stack Pointer will increment to 31. Any additional pushes will not overwrite the 31st push and the STKPTR will remain at 31.

When the stack has been popped enough times to unload the stack, the next pop will return a value of zero to the PC and set the STKUNF bit, while the Stack Pointer remains at zero. The STKUNF bit will remain set until cleared by software or until a POR occurs.

Note:	Returning a value of zero to the PC on an								
	underflow has the effect of vectoring the								
	program to the Reset vector, where the								
	stack conditions can be verified and								
	appropriate actions can be taken. This is								
	not the same as a Reset, as the contents								
	of the SFRs are not affected.								

6.1.6.3 PUSH and POP Instructions

Since the Top-of-Stack is readable and writable, the ability to push values onto the stack and pull values off the stack, without disturbing normal program execution, is a desirable feature. The PIC18 instruction set includes two instructions, PUSH and POP, that permit the TOS to be manipulated under software control. TOSU, TOSH and TOSL can be modified to place data or a return address on the stack.

The PUSH instruction places the current PC value onto the stack. This increments the Stack Pointer and loads the current PC value onto the stack.

The POP instruction discards the current TOS by decrementing the Stack Pointer. The previous value pushed onto the stack then becomes the TOS value.

REGISTER 6-2: STKPTR: STACK POINTER REGISTER

R/C-0	R/C-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
STKFUL ⁽¹⁾	STKUNF ⁽¹⁾		SP4	SP3	SP2	SP1	SP0
bit 7	•				•		bit 0
Legend: C = Clearable Only bit							
R = Readable	bit	W = Writable	bit	U = Unimplem	nented bit, rea	d as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknown	
			(1)				

bit 7	STKFUL: Stack Full Flag bit ⁽¹⁾
	1 = Stack became full or overflowed
	0 = Stack has not become full or overflowed
bit 6	STKUNF: Stack Underflow Flag bit ⁽¹⁾
	 Stack underflow occurred
	0 = Stack underflow did not occur
bit 5	Unimplemented: Read as '0'
bit 4-0	SP<4:0>: Stack Pointer Location bits

Note 1: Bit 7 and bit 6 are cleared by user software or by a POR.

6.4 Data Addressing Modes

Note:	The execution of some instructions in the
	core PIC18 instruction set are changed
	when the PIC18 extended instruction set is
	enabled. See Section 6.6 "Data Memory
	and the Extended Instruction Set" for
	more information.

While the program memory can be addressed in only one way, through the Program Counter, information in the data memory space can be addressed in several ways. For most instructions, the addressing mode is fixed. Other instructions may use up to three modes, depending on which operands are used and whether or not the extended instruction set is enabled.

The addressing modes are:

- Inherent
- Literal
- Direct
- Indirect

An additional addressing mode, Indexed Literal Offset, is available when the extended instruction set is enabled (XINST Configuration bit = 1). Its operation is discussed in greater detail in **Section 6.6.1 "Indexed Addressing with Literal Offset**".

6.4.1 INHERENT AND LITERAL ADDRESSING

Many PIC18 control instructions do not need any argument at all; they either perform an operation that globally affects the device, or they operate implicitly on one register. This addressing mode is known as Inherent Addressing; examples include SLEEP, RESET and DAW.

Other instructions work in a similar way, but require an additional explicit argument in the opcode. This is known as Literal Addressing mode, because they require some literal value as an argument. Examples include ADDLW and MOVLW, which respectively, add or move a literal value to the W register. Other examples include CALL and GOTO, which include a 20-bit program memory address.

6.4.2 DIRECT ADDRESSING

Direct Addressing specifies all or part of the source and/or destination address of the operation within the opcode itself. The options are specified by the arguments accompanying the instruction.

In the core PIC18 instruction set, bit-oriented and byte-oriented instructions use some version of Direct Addressing by default. All of these instructions include some 8-bit Literal Address as their Least Significant Byte. This address specifies either a register address in one of the banks of data RAM (Section 6.3.3 "General

Purpose Register File"), or a location in the Access Bank (Section 6.3.2 "Access Bank") as the data source for the instruction.

The Access RAM bit 'a' determines how the address is interpreted. When 'a' is '1', the contents of the BSR (Section 6.3.1 "Bank Select Register") are used with the address to determine the complete 12-bit address of the register. When 'a' is '0', the address is interpreted as being a register in the Access Bank. Addressing that uses the Access RAM is sometimes also known as Direct Forced Addressing mode.

A few instructions, such as MOVFF, include the entire 12-bit address (either source or destination) in their opcodes. In these cases, the BSR is ignored entirely.

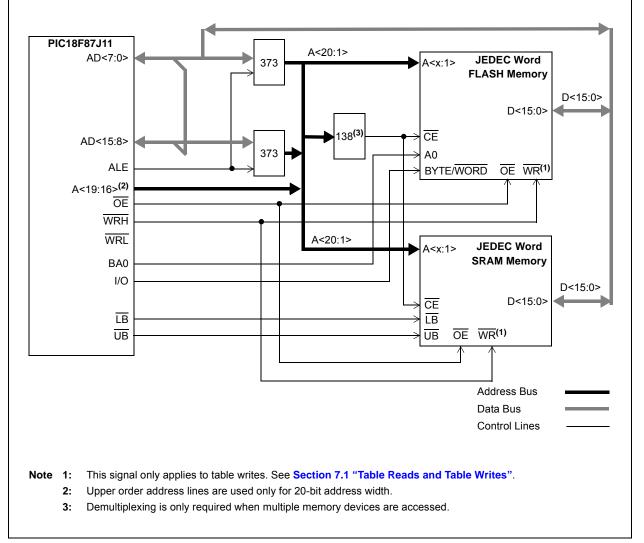
The destination of the operation's results is determined by the destination bit 'd'. When 'd' is '1', the results are stored back in the source register, overwriting its original contents. When 'd' is '0', the results are stored in the W register. Instructions without the 'd' argument have a destination that is implicit in the instruction; their destination is either the target register being operated on or the W register.

6.4.3 INDIRECT ADDRESSING

Indirect Addressing allows the user to access a location in data memory without giving a fixed address in the instruction. This is done by using File Select Registers (FSRs) as pointers to the locations to be read or written to. Since the FSRs are themselves located in RAM as Special Function Registers, they can also be directly manipulated under program control. This makes FSRs very useful in implementing data structures such as tables and arrays in data memory.

The registers for Indirect Addressing are also implemented with Indirect File Operands (INDFs) that permit automatic manipulation of the pointer value with auto-incrementing, auto-decrementing or offsetting with another value. This allows for efficient code using loops, such as the example of clearing an entire RAM bank in Example 6-5. It also enables users to perform Indexed Addressing and other Stack Pointer operations for program memory in data memory.

EXAMPLE 6-5: HOW TO CLEAR RAM (BANK 1) USING INDIRECT ADDRESSING


	LFSR	FSR0, 100h	;	
NEXT	CLRF	POSTINC0	;	Clear INDF
			;	register then
			;	inc pointer
	BTFSS	FSROH, 1	;	All done with
			;	Bank1?
	BRA	NEXT	;	NO, clear next
CONTIN	UE		;	YES, continue

8.6.3 16-BIT BYTE SELECT MODE

Figure 8-3 shows an example of 16-Bit Byte Select mode. This mode allows table write operations to word-wide external memories with byte selection capability. This generally includes both word-wide Flash and SRAM devices.

During a TBLWT cycle, the TABLAT data is presented on the upper and lower byte of the AD<15:0> bus. The WRH signal is strobed for each write cycle; the WRL pin is not used. The BA0 or UB/LB signals are used to select the byte to be written, based on the Least Significant bit of the TBLPTR register. Flash and SRAM devices use different control signal combinations to implement Byte Select mode. JEDEC standard Flash memories require that a controller I/O port pin be connected to the memory's BYTE/WORD pin to provide the select signal. They also use the BA0 signal from the controller as a byte address. JEDEC standard static RAM memories, on the other hand, use the UB or LB signals to select the byte.

Pin Name	Function	TRIS Setting	I/O	I/O Type	Description				
RB0/INT0/FLT0	RB0	0	0	DIG	LATB<0> data output.				
		1	I	TTL	PORTB<0> data input; weak pull-up when RBPU bit is cleared.				
	INT0	1	I	ST	External Interrupt 0 input.				
	FLT0	1	I	ST	Enhanced PWM Fault input (ECCP1 module); enabled in software.				
RB1/INT1/	RB1	0	0	DIG	LATB<1> data output.				
PMA4		1	I	TTL	PORTB<1> data input; weak pull-up when RBPU bit is cleared.				
	INT1	1	Ι	ST	External Interrupt 1 input.				
	PMA4	х	0	—	Parallel Master Port address out.				
RB2/INT2/	RB2	0	0	DIG	IG LATB<2> data output.				
PMA3		1	I	TTL	PORTB<2> data input; weak pull-up when RBPU bit is cleared.				
	INT2	1	I	ST	External Interrupt 2 input.				
	PMA3	х	0		Parallel Master Port address out.				
RB3/INT3/	RB3	0	0	DIG	IG LATB<3> data output.				
PMA2/ECCP2/		1	I	TTL	PORTB<3> data input; weak pull-up when RBPU bit is cleared.				
P2A	INT3	1	I	ST	External Interrupt 3 input.				
	PMA2	x	0		Parallel Master Port address out.				
	ECCP2 ⁽¹⁾	0	0	DIG	ECCP2 compare output and CCP2 PWM output; takes priority over port data.				
		1	I	ST	ECCP2 capture input.				
	P2A ⁽¹⁾	0	0	DIG	ECCP2 Enhanced PWM output, Channel A. May be configured for tri-state during Enhanced PWM shutdown events. Takes priority over port data.				
RB4/KBI0/	RB4	0	0	DIG	LATB<4> data output.				
PMA1		1	I	TTL	PORTB<4> data input; weak pull-up when RBPU bit is cleared.				
	KBI0		Ι	TTL	Interrupt-on-pin change.				
	PMA1	х	0	—	Parallel Master Port address out.				
RB5/KBI1/	RB5	0	0	DIG	LATB<5> data output.				
PMA0		1	I	TTL	PORTB<5> data input; weak pull-up when RBPU bit is cleared.				
	KBI1		Ι	TTL	Interrupt-on-pin change.				
	PMA0	х	0	_	Parallel Master Port address out.				
RB6/KBI2/PGC	RB6	0	0	DIG	LATB<6> data output.				
		1	I	TTL	PORTB<6> data input; weak pull-up when RBPU bit is cleared.				
	KBI2	1	I	TTL	Interrupt-on-pin change.				
	PGC	x	I	ST	Serial execution (ICSP™) clock input for ICSP and ICD operation. ⁽²⁾				
RB7/KBI3/PGD	RB7	0	0	DIG	LATB<7> data output.				
		1	I	TTL	PORTB<7> data input; weak pull-up when RBPU bit is cleared.				
	KBI3	1	Ι	TTL	Interrupt-on-pin change.				
	PGD	x	0	DIG	Serial execution data output for ICSP and ICD operation. ⁽²⁾				
		х	I	ST	Serial execution data input for ICSP and ICD operation. ⁽²⁾				

TABLE 11-6: PORTB FUNCTIONS

Legend: O = Output, I = Input, DIG = Digital Output, ST = Schmitt Buffer Input, TTL = TTL Buffer Input,

x = Don't care (TRIS bit does not affect port direction or is overridden for this option).

Note 1: Alternate assignment for ECCP2/P2A when the CCP2MX Configuration bit is cleared (Extended Microcontroller mode, 80-pin devices only); the default assignment is RC1.

2: All other pin functions are disabled when ICSP™ or ICD is enabled.

19.2 Capture and Compare Modes

Except for the operation of the Special Event Trigger discussed below, the Capture and Compare modes of the ECCP module are identical in operation to that of CCP4. These are discussed in detail in Section 18.2 "Capture Mode" and Section 18.3 "Compare Mode".

19.2.1 SPECIAL EVENT TRIGGER

ECCP1 and ECCP2 incorporate an internal hardware trigger that is generated in Compare mode on a match between the CCPRx register pair and the selected timer. This can be used in turn to initiate an action. This mode is selected by setting CCPxCON<3:0> to '1011'.

The Special Event Trigger output of either ECCP1 or ECCP2 resets the TMR1 or TMR3 register pair, depending on which timer resource is currently selected. This allows the CCPRx register pair to effectively be a 16-bit programmable period register for Timer1 or Timer3. In addition, the ECCP2 Special Event Trigger will also start an A/D conversion if the A/D module is enabled.

Special Event Triggers are not implemented for ECCP3, CCP4 or CCP5. Selecting the Special Event Trigger mode for these modules has the same effect as selecting the Compare with Software Interrupt mode (CCPxM<3:0> = 1010).

Note: The Special Event Trigger from ECCP2 will not set the Timer1 or Timer3 interrupt flag bits.

19.3 Standard PWM Mode

When configured in Single Output mode, the ECCP module functions identically to the standard CCP module in PWM mode, as described in **Section 18.4** "**PWM Mode**". This is also sometimes referred to as "Compatible CCP" mode as in Tables 19-1 through 19-3.

Note: When setting up single output PWM operations, users are free to use either of the processes described in Section 18.4.3 "Setup for PWM Operation" or Section 19.4.9 "Setup for PWM Operation". The latter is more generic but will work for either single or multi-output PWM.

EXAMPLE 21-1: CALCULATING BAUD RATE ERROR

For a device with FOSC of 16	For a device with FOSC of 16 MHz, desired baud rate of 9600, Asynchronous mode, and 8-bit BRG:						
Desired Baud Rate	=	Fosc/(64 ([SPBRGHx:SPBRGx] + 1))					
Solving for SPBRGHx:	SPB	RGx:					
Х	=	((FOSC/Desired Baud Rate)/64) – 1					
	=	((16000000/9600)/64) – 1					
	=	[25.042] = 25					
Calculated Baud Rate	=	16000000/(64 (25 + 1))					
	=	9615					
Error	=	(Calculated Baud Rate - Desired Baud Rate)/Desired Baud Rate					
	=	(9615 - 9600)/9600 = 0.16%					

TABLE 21-2: REGISTERS ASSOCIATED WITH BAUD RATE GENERATOR

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page:
TXSTAx	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	63
RCSTAx	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	63
BAUDCONx	ABDOVF RCIDL RXDTP TXCKP BRG16 — WUE ABDEN								
SPBRGHx EUSARTx Baud Rate Generator Register High Byte									65
SPBRGx	EUSARTx	Baud Rate	Generator I	Register Lo	w Byte				65

Legend: — = unimplemented, read as '0'. Shaded cells are not used by the BRG.

R/WO-1	R/WO-1	R/WO-1	U-0	U-0	U-0	U-0	R/WO-1				
DEBUG	XINST	STVREN	_	_	_	_	WDTEN				
bit 7	bi										
Legend:											
R = Readable	e bit	WO = Write-C	nce bit	U = Unimplem	nented bit, read	l as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own				
bit 7	DEBUG: Bac	kground Debug	lger Enable bit								
	•			and RB7 are c	• •		I/O pins				
	•			and RB7 are d	edicated to In-0	Circuit Debug					
bit 6	XINST: Exten	ded Instruction	Set Enable bit	t							
				Addressing mod		4	,				
				Addressing mod	le are disabled	(Legacy mode)				
bit 5	STVREN: Sta	ck Overflow/Ur	derflow Reset	Enable bit							
		stack overflow/									
	0 = Reset on stack overflow/underflow is disabled										
bit 4-1	Unimplemented: Read as '0'										
bit 0	WDTEN: Wat	chdog Timer E	nable bit								
	1 = WDT is er	nabled									
	0 = WDT is disabled (control is placed on the SWDTEN bit)										

REGISTER 25-1: CONFIG1L: CONFIGURATION REGISTER 1 LOW (BYTE ADDRESS 300000h)

REGISTER 25-2: CONFIG1H: CONFIGURATION REGISTER 1 HIGH (BYTE ADDRESS 300001h)

U-1	U-1	U-1	U-1	U-0	R/WO-1	U-1	U-1
	—	—	—	—	CP0	—	—
bit 7							bit 0
Legend:							

R = Readable bit	WO = Write-Once bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-3 Unimplemented: Maintain as '11110'

bit 2 **CP0:** Code Protection bit

- 1 = Program memory is not code-protected
- 0 = Program memory is code-protected
- bit 1-0 Unimplemented: Read as '0'

25.3.2 ON-CHIP REGULATOR AND BOR

When the on-chip regulator is enabled, PIC18F87J11 family devices also have a simple brown-out capability. If the voltage supplied to the regulator is inadequate to maintain a regulated level, the regulator Reset circuitry will generate a Brown-out Reset. This event is captured by the BOR flag bit (RCON<0>).

The operation of the Brown-out Reset is described in more detail in Section 5.4 "Brown-out Reset (BOR)" and Section 5.4.1 "Detecting BOR". The brown-out voltage levels are specific in Section 28.1 "DC Characteristics: Supply Voltage PIC18F87J11 Family (Industrial)".

25.3.3 POWER-UP REQUIREMENTS

The on-chip regulator is designed to meet the power-up requirements for the device. If the application does not use the regulator, then strict power-up conditions must be adhered to. While powering up, VDDCORE must never exceed VDD by 0.3 volts.

25.3.4 OPERATION IN SLEEP MODE

When enabled, the on-chip regulator always consumes a small incremental amount of current over IDD. This includes when the device is in Sleep mode, even though the core digital logic does not require power. To provide additional savings in applications where power resources are critical, the regulator can be configured to automatically disable itself whenever the device goes into Sleep mode. This feature is controlled by the REGSLP bit (WDTCON<7>, Register 25-9). Setting this bit disables the regulator in Sleep mode and reduces its current consumption to a minimum. Substantial Sleep mode power savings can be obtained by setting the REGSLP bit, but device wake-up time will increase in order to insure the regulator has enough time to stabilize. The REGSLP bit is automatically cleared by hardware when a Low-Voltage Detect condition occurs.

25.4 Two-Speed Start-up

The Two-Speed Start-up feature helps to minimize the latency period, from oscillator start-up to code execution, by allowing the microcontroller to use the INTRC oscillator as a clock source until the primary clock source is available. It is enabled by setting the IESO Configuration bit.

Two-Speed Start-up should be enabled only if the primary oscillator mode is HS or HSPLL (Crystal-Based) modes. Since the EC and ECPLL modes do not require an Oscillator Start-up Timer delay, Two-Speed Start-up should be disabled.

When enabled, Resets and wake-ups from Sleep mode cause the device to configure itself to run from the internal oscillator block as the clock source, following the time-out of the Power-up Timer after a Power-on Reset is enabled. This allows almost immediate code execution while the primary oscillator starts and the OST is running. Once the OST times out, the device automatically switches to PRI_RUN mode.

In all other power-managed modes, Two-Speed Start-up is not used. The device will be clocked by the currently selected clock source until the primary clock source becomes available. The setting of the IESO bit is ignored.

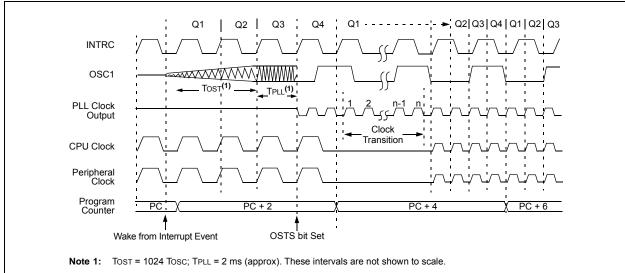


FIGURE 25-3: TIMING TRANSITION FOR TWO-SPEED START-UP (INTRC TO HSPLL)

PIC18F87J11 FAMILY

NEGF	Negate f			
Syntax:	NEGF f	{,a}		
Operands:	$0 \le f \le 255$ $a \in [0,1]$	5		
Operation:	$(\overline{f}) + 1 \rightarrow f$			
Status Affected:	N, OV, C,	DC, Z		
Encoding:	0110	110a	ffff	ffff
Description:	Location 'f' is negated using two's complement. The result is placed in the data memory location 'f'.			
	lf 'a' is '0', If 'a' is '1', GPR bank	the BSR i		
	If 'a' is '0' and the extended instruct set is enabled, this instruction oper in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 26.2.3 "Byte-Oriented an Bit-Oriented Instructions in Inder Literal Offset Mode" for details.			
Words:	1			
Cycles:	1			
Q Cycle Activity:				
Q1	Q2	Q3	3	Q4

Q1	Q2	Q3	Q4
Decode	Read	Process	Write
	register 'f'	Data	register 'f'

Example:	NEGF	REG,	1
----------	------	------	---

Before Instru	ction			
REG	=	0011	1010	[3Ah]
After Instructi	on			
REG	=	1100	0110	[C6h]

NOP		No Operation							
Synta	ax:	NOP	NOP						
Oper	ands:	None							
Oper	ation:	No operati	on						
Statu	s Affected:	None							
Encoding:		0000	0000	000	0	0000			
		1111	XXXX	XXX	x	xxxx			
Desc	ription:	No operation.							
Word	ls:	1							
Cycle	es:	1							
QC	ycle Activity:								
	Q1	Q2	Q3 Q4			Q4			
	Decode	No	No	No No		No			
		operation	operation operation						

Example:

None.

28.2 DC Characteristics: Power-Down and Supply Current PIC18F87J11 Family (Industrial) (Continued)

PIC18F87J11 Family (Industrial)		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial							
Param No.	Device	Тур	Max	Units	Conditions				
	Supply Current (IDD) Cont. ^(2,3)								
	All devices	18	35	μA	-40°C				
		19	35	μA	+25°C	$VDD = 2.0V,$ $VDDCORE = 2.0V^{(4)}$			
		28	49	μA	+85°C	VDDOORE 2.0V			
	All devices	20	45	μA	-40°C		Fosc = 32 kHz ⁽³⁾		
		21	45	μA	+25°C	VDD = 2.5V, VDDCORE = 2.5V ⁽⁴⁾	(SEC_RUN mode, Timer1 as clock)		
		32	61	μA	+85°C				
	All devices	0.06	0.11	mA	-40°C				
		0.07	0.11	mA	+25°C	VDD = 3.3V ⁽⁵⁾			
		0.09	0.15	mA	+85°C				
	All devices	14	28	μA	-40°C				
		15	28	μA	+25°C	VDD = 2.0V, $VDDCORE = 2.0V^{(4)}$			
		24	43	μA	+85°C	VDDOORE 2.0V			
	All devices	15	31	μA	-40°C		Fosc = 32 kHz ⁽³⁾		
		16	31	μA	+25°C	VDD = 2.5V, $VDDCORE = 2.5V^{(4)}$	(SEC_IDLE mode,		
		27	50	μA	+85°C		Timer1 as clock)		
	All devices	0.05	0.10	mA	-40°C				
		0.06	0.10	mA	+25°C	VDD = 3.3V ⁽⁵⁾			
		0.08	0.14	mA	+85°C				

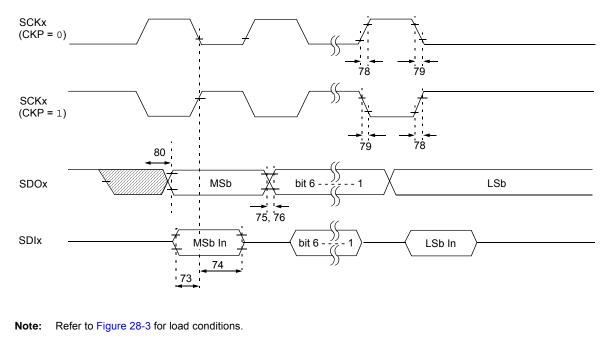
Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in a high-impedance state and tied to VDD or Vss, and all features that add delta current are disabled (such as WDT, Timer1 oscillator, BOR, etc.).

2: The supply current is mainly a function of the operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;

MCLR = VDD; WDT is enabled/disabled as specified.


3: Standard, low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.

4: Voltage regulator is disabled (ENVREG = 0, tied to Vss).

5: Voltage regulator is enabled (ENVREG = 1, tied to VDD, REGSLP = 1).

PIC18F87J11 FAMILY

TABLE 28-20:	EXAMPLE SPI MODE REQUIREMENTS (MASTER MODE, CKE = 0)
--------------	--

Param No.	Symbol	Characteristic	Min	Max	Units	Conditions
73	TDIV2SCH, TDIV2SCL	Setup Time of SDIx Data Input to SCKx Edge	100		ns	
75	TDOR	SDOx Data Output Rise Time	—	25	ns	
76	TdoF	SDOx Data Output Fall Time	—	25	ns	
78	TscR	SCKx Output Rise Time	—	25	ns	
79	TscF	SCKx Output Fall Time	—	25	ns	
80	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	50	ns	

Param. No.	Symbol	Charac	teristic	Min	Max	Units	Conditions	
100	Тнідн	HIGH Clock High Time 100 kHz mod		2(Tosc)(BRG + 1)	_	ms		
			400 kHz mode	2(Tosc)(BRG + 1)	_	ms		
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_	ms		
101	TLOW	Clock Low Time	100 kHz mode	2(Tosc)(BRG + 1)		ms		
			400 kHz mode	2(Tosc)(BRG + 1)		ms		
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)		ms		
102	TR	SDAx and SCLx	100 kHz mode		1000	ns	CB is specified to be from	
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF	
			1 MHz mode ⁽¹⁾	—	300	ns	Ī	
103	TF	SDAx and SCLx	100 kHz mode	—	300	ns	CB is specified to be from	
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF	
			1 MHz mode ⁽¹⁾	_	100	ns		
90	TSU:STA	Start Condition	100 kHz mode	2(Tosc)(BRG + 1)		ms	Only relevant for Repeated	
		Setup Time	400 kHz mode	2(Tosc)(BRG + 1)	_	ms	Start condition	
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_	ms		
91	THD:STA	Start Condition	100 kHz mode	2(Tosc)(BRG + 1)	_	ms	After this period, the first	
		Hold Time	400 kHz mode	2(Tosc)(BRG + 1)		ms	clock pulse is generated	
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_	ms		
106	THD:DAT	Data Input	100 kHz mode	0	_	ns		
		Hold Time	400 kHz mode	0	0.9	ms		
			1 MHz mode ⁽¹⁾	_		ns		
107	TSU:DAT	Data Input	100 kHz mode	250	_	ns	(Note 2)	
		Setup Time	400 kHz mode	100		ns		
			1 MHz mode ⁽¹⁾		_	ns		
92	Tsu:sto	Stop Condition	100 kHz mode	2(Tosc)(BRG + 1)	_	ms		
		Setup Time	400 kHz mode	2(Tosc)(BRG + 1)	_	ms		
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_	ms		
109	ΤΑΑ	Output Valid	100 kHz mode		3500	ns		
		from Clock	400 kHz mode	_	1000	ns		
			1 MHz mode ⁽¹⁾	_		ns		
110	TBUF	Bus Free Time	100 kHz mode	4.7	—	ms	Time the bus must be free	
			400 kHz mode	1.3	—	ms	before a new transmission	
			1 MHz mode ⁽¹⁾	—	—	ms	can start	
D102	Св	Bus Capacitive Lo	bading	_	400	pF		

TABLE 28-27: MSSPx I²C[™] BUS DATA REQUIREMENTS

Note 1: Maximum pin capacitance = 10 pF for all I^2C^{TM} pins.

2: A Fast mode I²C bus device can be used in a Standard mode I²C bus system, but Parameter #107 ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCLx signal. If such a device does stretch the LOW period of the SCLx signal, it must output the next data bit to the SDAx line, Parameter #102 + Parameter #107 = 1000 + 250 = 1250 ns (for 100 kHz mode), before the SCLx line is released.

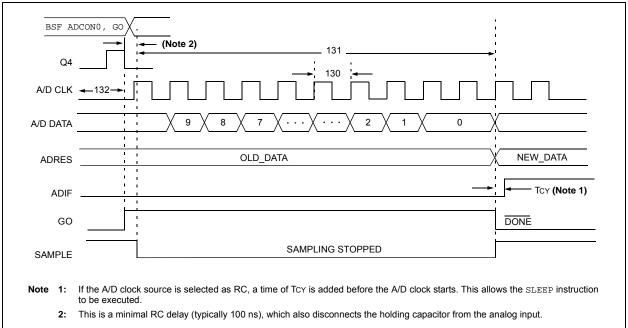
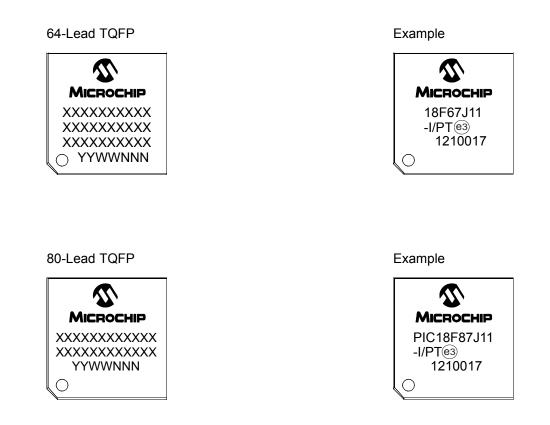
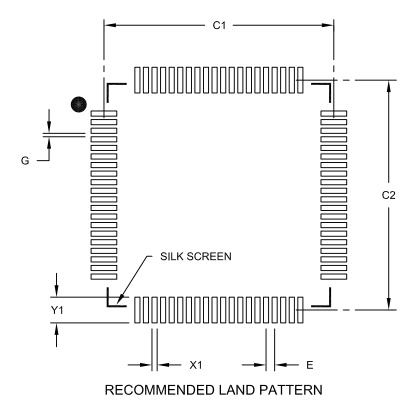

Param No.	Symbol	Characteristic	Min	Тур	Мах	Units	Conditions
A01	NR	Resolution	—	_	10	bit	$\Delta VREF \ge 3.0V$
A03	EIL	Integral Linearity Error	_	_	<±1	LSb	$\Delta VREF \ge 3.0V$
A04	Edl	Differential Linearity Error	—		<±1	LSb	$\Delta \text{VREF} \geq 3.0 \text{V}$
A06	EOFF	Offset Error	—	_	<±3	LSb	$\Delta VREF \ge 3.0V$
A07	Egn	Gain Error	_	_	<±3	LSb	$\Delta \text{VREF} \geq 3.0 \text{V}$
A10	—	Monotonicity	Gu	uarantee	d(1)	-	$VSS \leq VAIN \leq VREF$
A20	$\Delta VREF$	Reference Voltage Range (VREFH – VREFL)	2.0 3			V V	$\begin{array}{l} VDD < 3.0V \\ VDD \geq 3.0V \end{array}$
A21	Vrefh	Reference Voltage High	VSS + Δ VREF	_	Vdd	V	
A22	Vrefl	Reference Voltage Low	Vss - 0.3V		Vdd - 3.0V	V	
A25	VAIN	Analog Input Voltage	VREFL		VREFH	V	
A30	ZAIN	Recommended Impedance of Analog Voltage Source	—	_	2.5	kΩ	
A50	IREF	VREF Input Current ⁽²⁾	—	_	5 150	μΑ μΑ	During VAIN acquisition. During A/D conversion cycle.

 TABLE 28-30:
 A/D CONVERTER CHARACTERISTICS:
 PIC18F87J11 FAMILY (INDUSTRIAL)

Note 1: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.
2: VREFH current is from RA3/AN3/VREF+ pin or VDD, whichever is selected as the VREFH source. VREFL


current is from RA2/AN2/VREF- pin or VSS, whichever is selected as the VREFL source.

29.0 PACKAGING INFORMATION


29.1 Package Marking Information

Legen	d: XXX Y YY WW NNN e3 *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator ((e3)) can be found on the outer packaging for this package.
Note:	be carrie	nt the full Microchip part number cannot be marked on one line, it will d over to the next line, thus limiting the number of available s for customer-specific information.

80-Lead Plastic Thin Quad Flatpack (PT)-12x12x1mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E		0.50 BSC	
Contact Pad Spacing	C1		13.40	
Contact Pad Spacing	C2		13.40	
Contact Pad Width (X80)	X1			0.30
Contact Pad Length (X80)	Y1			1.50
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2092B

PIC18F87J11 FAMILY

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO. Device	X <u>/XX XXX</u> Temperature Package Pattern Range	 Examples: a) PIC18F87J11-I/PT 301 = Industrial temp., TQFP package, QTP pattern #301. b) PIC18F66J16T-I/PT = Tape and reel, Industrial temp., TQFP package.
Device	PIC18F66J11/66J16/67J11 ⁽¹⁾ , PIC18F86J11/86J16/87J11 ⁽¹⁾ , PIC18F66J11/66J16/67J111 ⁽²⁾ , PIC18F86J11/86J16/87J111 ⁽²⁾ ,	
Temperature Range	I = -40° C to $+85^{\circ}$ C (Industrial)	
Package	PT = TQFP (Thin Quad Flatpack)	
Pattern	QTP, SQTP, Code or Special Requirements (blank otherwise)	Note 1: F = Standard Voltage Range 2: T = in tape and reel