

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	48MHz
Connectivity	EBI/EMI, I²C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	68
Program Memory Size	128KB (64K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	3930 × 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 15x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f87j11-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Din Norra	Pin Number	Pin	Buffer	Deceriction
	64-TQFP	Туре	Туре	Description
				PORTF is a bidirectional I/O port.
RF1/AN6/C2OUT RF1 AN6 C2OUT	17	I/O I O	ST Analog —	Digital I/O. Analog Input 6. Comparator 2 output.
RF2/PMA5/AN7/C1OUT RF2 PMA5 AN7 C1OUT	16	I/O O I O	ST — Analog —	Digital I/O. Parallel Master Port address. Analog Input 7. Comparator 1 output.
RF3/AN8/C2INB RF3 AN8 C2INB	15	I/O I I	ST Analog Analog	Digital input. Analog Input 8. Comparator 2 Input B.
RF4/AN9/C2INA RF4 AN9 C2INA	14	I/O I I	ST Analog Analog	Digital input. Analog Input 8. Comparator 2 Input A.
RF5/AN10/C1INB/CVREF RF5 AN10 C1INB CVREF	13	I/O I I O	ST Analog Analog Analog	Digital input. Analog Input 10. Comparator 1 Input B. Comparator reference voltage output.
RF6/AN11/C1INA RF6 AN11 C1INA	12	I/O I I	ST Analog Analog	Digital I/O. Analog Input 11. Comparator 1 Input A.
RF7/SS1 RF7 SS1	11	I/O I	ST TTL	Digital I/O. SPI slave select input.
Legend: IIL = ITL cor ST = Schmitt I = Input	npatible input Trigger input w	ith CMC)S levels	CMOS = CMOS compatible input or output Analog = Analog input O = Output

TABLE 1-3: PIC18F6XJ1X PINOUT I/O DESCRIPTIONS (CONTINUED)

- = Input L
- P = Power

 $I^2C = ST$ with I^2C^{TM} or SMB levels

Note 1: Default assignment for ECCP2/P2A when Configuration bit, CCP2MX, is set.

OD

2: Alternate assignment for ECCP2/P2A when Configuration bit, CCP2MX, is cleared.

= Open-Drain (no P diode to VDD)

FIGURE 5-5: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2

FIGURE 5-6: SLOW RISE TIME (MCLR TIED TO VDD, VDD RISE > TPWRT)

				,
Register	Applicable Devices	Power-on Reset, Brown-out Reset	MCLR Resets, WDT Reset, RESET Instruction, Stack Resets, CM Resets	Wake-up via WDT or Interrupt
ADRESH	PIC18F6XJ1X PIC18F8XJ1X	(xxxx xxxx	uuuu uuuu	uuuu uuuu
ADRESL	PIC18F6XJ1X PIC18F8XJ1>	xxxx xxxx	uuuu uuuu	uuuu uuuu
ADCON0	PIC18F6XJ1X PIC18F8XJ1>	(0000 0000	0000 0000	uuuu uuuu
ADCON1	PIC18F6XJ1X PIC18F8XJ1>	(0000 0000	0000 0000	uuuu uuuu
ANCON0	PIC18F6XJ1X PIC18F8XJ1>	K 00-0 0000	uu-u uuuu	uu-u uuuu
ANCON1	PIC18F6XJ1X PIC18F8XJ1>	K 0000 0000	uuuu uuuu	սսսս սսսս
WDTCON	PIC18F6XJ1X PIC18F8XJ1>	(0x-00	0x-u0	ux-uu
ECCP1AS	PIC18F6XJ1X PIC18F8XJ1>	K 0000 0000	0000 0000	սսսս սսսս
ECCP1DEL	PIC18F6XJ1X PIC18F8XJ1>	K 0000 0000	0000 0000	սսսս սսսս
CCPR1H	PIC18F6XJ1X PIC18F8XJ1>	xxxx xxxx	սսսս սսսս	սսսս սսսս
CCPR1L	PIC18F6XJ1X PIC18F8XJ1>	xxxx xxxx	uuuu uuuu	սսսս սսսս
CCP1CON	PIC18F6XJ1X PIC18F8XJ1>	K 0000 0000	0000 0000	uuuu uuuu
ECCP2AS	PIC18F6XJ1X PIC18F8XJ1>	0000 0000	0000 0000	uuuu uuuu
ECCP2DEL	PIC18F6XJ1X PIC18F8XJ1>	K 0000 0000	0000 0000	uuuu uuuu
CCPR2H	PIC18F6XJ1X PIC18F8XJ1>	xxxx xxxx	uuuu uuuu	uuuu uuuu
CCPR2L	PIC18F6XJ1X PIC18F8XJ1>	xxxx xxxx	uuuu uuuu	uuuu uuuu
CCP2CON	PIC18F6XJ1X PIC18F8XJ1>	K 0000 0000	0000 0000	uuuu uuuu
ECCP3AS	PIC18F6XJ1X PIC18F8XJ1>	(0000 0000	0000 0000	uuuu uuuu
ECCP3DEL	PIC18F6XJ1X PIC18F8XJ1>	K 0000 0000	0000 0000	uuuu uuuu
CCPR3H	PIC18F6XJ1X PIC18F8XJ1>	xxxx xxxx	uuuu uuuu	uuuu uuuu
CCPR3L	PIC18F6XJ1X PIC18F8XJ1>	xxxx xxxx	uuuu uuuu	uuuu uuuu
CCP3CON	PIC18F6XJ1X PIC18F8XJ1>	(0000 0000	0000 0000	uuuu uuuu
SPBRG1	PIC18F6XJ1X PIC18F8XJ1>	(0000 0000	0000 0000	uuuu uuuu
RCREG1	PIC18F6XJ1X PIC18F8XJ1>	(0000 0000	0000 0000	uuuu uuuu
TXREG1	PIC18F6XJ1X PIC18F8XJ1>	xxxx xxxx	սսսս սսսս	սսսս սսսս
TXSTA1	PIC18F6XJ1X PIC18F8XJ1>	0000 0010	0000 0010	uuuu uuuu
RCSTA1	PIC18F6XJ1X PIC18F8XJ1>	(0000 000x	0000 000x	uuuu uuuu
SPBRG2	PIC18F6XJ1X PIC18F8XJ1>	(0000 0000	0000 0000	uuuu uuuu
RCREG2	PIC18F6XJ1X PIC18F8XJ1>	(0000 0000	0000 0000	սսսս սսսս
TXREG2	PIC18F6XJ1X PIC18F8XJ1>	(0000 0000	0000 0000	սսսս սսսս
TXSTA2	PIC18F6XJ1X PIC18F8XJ1>	0000 0010	0000 0010	uuuu uuuu
EECON2	PIC18F6XJ1X PIC18F8XJ1>	(
EECON1	PIC18F6XJ1X PIC18F8XJ1>	<pre>00 x00-</pre>	00 u00-	00 u00-

TABLE 5-3: INITIALIZATION CONDITIONS FOR ALL REGISTERS⁽⁴⁾ (CONTINUED)

Legend: u = unchanged; x = unknown; - = unimplemented bit, read as '0'; q = value depends on condition. Shaded cells indicate conditions do not apply for the designated device.

Note 1: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.

- 2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).
- 3: One or more bits in the INTCONx or PIRx registers will be effected (to cause wake-up).
- 4: See Table 5-2 for Reset value for specific conditions.

TADLE 3-3:	INITIALIZATION CONDIT	TIONS FOR ALL REGISTERS (CONTINUED)							
Register	Applicable Devices	Power-on Reset, Brown-out Reset	MCLR Resets, WDT Reset, RESET Instruction, Stack Resets, CM Resets	Wake-up via WDT or Interrupt					
IPR3	PIC18F6XJ1X PIC18F8XJ1X	1111 1111	1111 1111	uuuu uuuu					
PIR3	PIC18F6XJ1X PIC18F8XJ1X	0000 0000	0000 0000	սսսս սսսս ⁽³⁾					
PIE3	PIC18F6XJ1X PIC18F8XJ1X	0000 0000	0000 0000	uuuu uuuu					
IPR2	PIC18F6XJ1X PIC18F8XJ1X	111- 1111	111- 1111	uuu- uuuu					
PIR2	PIC18F6XJ1X PIC18F8XJ1X	000- 0000	000- 0000	uuu- uuuu ⁽³⁾					
PIE2	PIC18F6XJ1X PIC18F8XJ1X	000- 0000	000- 0000	uuu- uuuu					
IPR1	PIC18F6XJ1X PIC18F8XJ1X	1111 1111	1111 1111	սսսս սսսս					
PIR1	PIC18F6XJ1X PIC18F8XJ1X	0000 0000	0000 0000	սսսս սսսս ⁽³⁾					
PIE1	PIC18F6XJ1X PIC18F8XJ1X	0000 0000	0000 0000	uuuu uuuu					
RCSTA2	PIC18F6XJ1X PIC18F8XJ1X	0000 000x	0000 000x	սսսս սսսս					
OSCTUNE	PIC18F6XJ1X PIC18F8XJ1X	0000 0000	0000 0000	uuuu uuuu					
TRISJ	PIC18F6XJ1X PIC18F8XJ1X	1111 1111	1111 1111	uuuu uuuu					
TRISH	PIC18F6XJ1X PIC18F8XJ1X	1111 1111	1111 1111	uuuu uuuu					
TRISG	PIC18F6XJ1X PIC18F8XJ1X	1 1111	1 1111	u uuuu					
TRISF	PIC18F6XJ1X PIC18F8XJ1X	1111 111-	1111 111-	uuuu uuu-					
TRISE	PIC18F6XJ1X PIC18F8XJ1X	1111 1111	1111 1111	uuuu uuuu					
TRISD	PIC18F6XJ1X PIC18F8XJ1X	1111 1111	1111 1111	uuuu uuuu					
TRISC	PIC18F6XJ1X PIC18F8XJ1X	1111 1111	1111 1111	uuuu uuuu					
TRISB	PIC18F6XJ1X PIC18F8XJ1X	1111 1111	1111 1111	uuuu uuuu					
TRISA	PIC18F6XJ1X PIC18F8XJ1X	1111 1111	1111 1111	uuuu uuuu					
LATJ	PIC18F6XJ1X PIC18F8XJ1X	XXXX XXXX	uuuu uuuu	uuuu uuuu					
LATH	PIC18F6XJ1X PIC18F8XJ1X	xxxx xxxx	uuuu uuuu	uuuu uuuu					
LATG	PIC18F6XJ1X PIC18F8XJ1X	x xxxx	u uuuu	u uuuu					
LATF	PIC18F6XJ1X PIC18F8XJ1X	xxxx xxx-	uuuu uuu-	uuuu uuu-					
LATE	PIC18F6XJ1X PIC18F8XJ1X	XXXX XXXX	uuuu uuuu	uuuu uuuu					
LATD	PIC18F6XJ1X PIC18F8XJ1X	XXXX XXXX	uuuu uuuu	uuuu uuuu					
LATC	PIC18F6XJ1X PIC18F8XJ1X	xxxx xxxx	սսսս սսսս	uuuu uuuu					
LATB	PIC18F6XJ1X PIC18F8XJ1X	xxxx xxxx	uuuu uuuu	uuuu uuuu					
LATA	PIC18F6XJ1X PIC18F8XJ1X	XXXX XXXX	uuuu uuuu	uuuu uuuu					

TABLE 5-3: INITIALIZATION CONDITIONS FOR ALL REGISTERS⁽⁴⁾ (CONTINUED)

Legend: u = unchanged; x = unknown; - = unimplemented bit, read as '0'; q = value depends on condition. Shaded cells indicate conditions do not apply for the designated device.

Note 1: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.

2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).

3: One or more bits in the INTCONx or PIRx registers will be effected (to cause wake-up).

4: See Table 5-2 for Reset value for specific conditions.

FIGURE 6-7: DATA MEMORY MAP FOR PIC18F87J11 FAMILY DEVICES

7.2.2 TABLE LATCH REGISTER (TABLAT)

The Table Latch (TABLAT) is an 8-bit register mapped into the SFR space. The Table Latch register is used to hold 8-bit data during data transfers between program memory and data RAM.

7.2.3 TABLE POINTER REGISTER (TBLPTR)

The Table Pointer (TBLPTR) register addresses a byte within the program memory. The TBLPTR is comprised of three SFR registers: Table Pointer Upper Byte, Table Pointer High Byte and Table Pointer Low Byte (TBLPTRU:TBLPTRH:TBLPTRL). These three registers join to form a 22-bit wide pointer. The low-order 21 bits allow the device to address up to 2 Mbytes of program memory space. The 22nd bit allows access to the device ID, the user ID and the Configuration bits.

The Table Pointer register, TBLPTR, is used by the TBLRD and TBLWT instructions. These instructions can update the TBLPTR in one of four ways based on the table operation. These operations are shown in Table 7-1. These operations on the TBLPTR only affect the low-order 21 bits.

7.2.4 TABLE POINTER BOUNDARIES

TBLPTR is used in reads, writes and erases of the Flash program memory.

When a TBLRD is executed, all 22 bits of the TBLPTR determine which byte is read from program memory into TABLAT.

When a TBLWT is executed, the seven LSbs of the Table Pointer register (TBLPTR<6:0>) determine which of the 64 program memory holding registers is written to. When the timed write to program memory begins (via the WR bit), the 12 MSbs of the TBLPTR (TBLPTR<21:10>) determine which program memory block of 1024 bytes is written to. For more detail, see Section 7.5 "Writing to Flash Program Memory".

When an erase of program memory is executed, the 12 MSbs of the Table Pointer register point to the 1024-byte block that will be erased. The Least Significant bits are ignored.

Figure 7-3 describes the relevant boundaries of TBLPTR based on Flash program memory operations.

TABLE 7-1.	TABLE POINTER OPERATIONS WITH TRUED AND TRUET INSTRUCTIONS

Example	Operation on Table Pointer
TBLRD* TBLWT*	TBLPTR is not modified
TBLRD*+ TBLWT*+	TBLPTR is incremented after the read/write
TBLRD*- TBLWT*-	TBLPTR is decremented after the read/write
TBLRD+* TBLWT+*	TBLPTR is incremented before the read/write

FIGURE 7-3: TABLE POINTER BOUNDARIES BASED ON OPERATION

8.6.4 16-BIT MODE TIMING

The presentation of control signals on the External Memory Bus is different for the various operating modes. Typical signal timing diagrams are shown in Figure 8-4 and Figure 8-5.

FIGURE 8-5: EXTERNAL MEMORY BUS TIMING FOR SLEEP (EXTENDED MICROCONTROLLER MODE)

Table 11-2 summarizes the output capabilities of the ports. Refer to the "Absolute Maximum Ratings" in Section 28.0 "Electrical Characteristics" for more details.

TABLE 11-2: OUTPUT DRIVE LEVELS

Port	Drive	Description
PORTA	Minimum	Intended for indication.
PORTF		
PORTG		
PORTH ⁽¹⁾		
PORTD	Medium	Sufficient drive levels for
PORTE		external memory interfacing
PORTJ ⁽¹⁾		as well as indication.
PORTB	High	Suitable for direct LED drive
PORTC		levels.

Note 1: These ports are not available on 64-pin devices.

11.1.3 PULL-UP CONFIGURATION

Four of the I/O ports (PORTB, PORTD, PORTE and PORTJ) implement configurable weak pull-ups on all pins. These are internal pull-ups that allow floating digital input signals to be pulled to a consistent level, without the use of external resistors.

The pull-ups are enabled with a single bit for each of the ports: RBPU (INTCON2<7>) for PORTB, and RDPU, REPU and RJPU (PORTG<7:5>) for the other ports.

11.1.4 INTERFACING TO A 5V SYSTEM

Though the VDDMAX of the PIC18F87J11 family is 3.6V, these devices are still capable of interfacing with 5V systems, even if the VIH of the target system is above 3.6V. This is accomplished by adding a pull-up resistor to the port pin (Figure 11-2), clearing the LAT bit for that pin and manipulating the corresponding TRIS bit (Figure 11-1) to either allow the line to be pulled high, or to drive the pin low. Only port pins that are tolerant of voltages up to 5.5V can be used for this type of interface (refer to Section 11.1.1 "Input Pins and Voltage Considerations").

FIGURE 11-2:	+5V SYSTEM HARDWARE
	INTERFACE

EXAMPLE 11-1: COMMUNICATING WITH THE +5V SYSTEM

BCF	LATD, 7		;	set u	рL	AT :	regis	ster	so
			;	chang	ing	TR	IS bi	lt v	vill
			;	drive	li	ne i	low		
BCF	TRISD,	7	;	send	a 0	to	the	5V	system
BSF	TRISD,	7	;	send	a 1	to	the	5V	system

Pin Name	Function	TRIS Setting	I/O	l/O Type	Description			
RB0/INT0/FLT0	RB0	0	0	DIG	LATB<0> data output.			
		1	Ι	TTL	PORTB<0> data input; weak pull-up when RBPU bit is cleared.			
	INT0	1	Ι	ST	External Interrupt 0 input.			
	FLT0	1	Ι	ST	Enhanced PWM Fault input (ECCP1 module); enabled in software.			
RB1/INT1/	RB1	0	0	DIG	LATB<1> data output.			
PMA4		1	Ι	TTL	PORTB<1> data input; weak pull-up when RBPU bit is cleared.			
	INT1	1	I	ST	External Interrupt 1 input.			
	PMA4	x	0		Parallel Master Port address out.			
RB2/INT2/	RB2	0	0	DIG	LATB<2> data output.			
PMA3		1	Ι	TTL	PORTB<2> data input; weak pull-up when RBPU bit is cleared.			
	INT2	1	I	ST	External Interrupt 2 input.			
	PMA3	х	0		Parallel Master Port address out.			
RB3/INT3/	RB3	0	0	DIG	LATB<3> data output.			
PMA2/ECCP2/		1	I	TTL	PORTB<3> data input; weak pull-up when RBPU bit is cleared.			
PZA	INT3	1	I	ST	External Interrupt 3 input.			
	PMA2	х	0		Parallel Master Port address out.			
	ECCP2 ⁽¹⁾	0	0	DIG	ECCP2 compare output and CCP2 PWM output; takes priority over port data.			
		1	I	ST	ECCP2 capture input.			
	P2A ⁽¹⁾	0	0	DIG	ECCP2 Enhanced PWM output, Channel A. May be configured for tri-sta during Enhanced PWM shutdown events. Takes priority over port data.			
RB4/KBI0/	RB4	0	0	DIG	LATB<4> data output.			
PMA1		1	I	TTL	PORTB<4> data input; weak pull-up when RBPU bit is cleared.			
	KBI0		Ι	TTL	Interrupt-on-pin change.			
	PMA1	х	0		Parallel Master Port address out.			
RB5/KBI1/	RB5	0	0	DIG	LATB<5> data output.			
PMA0		1	Ι	TTL	PORTB<5> data input; weak pull-up when RBPU bit is cleared.			
	KBI1		Ι	TTL	Interrupt-on-pin change.			
	PMA0	х	0		Parallel Master Port address out.			
RB6/KBI2/PGC	RB6	0	0	DIG	LATB<6> data output.			
		1	I	TTL	PORTB<6> data input; weak pull-up when RBPU bit is cleared.			
	KBI2	1	I	TTL	Interrupt-on-pin change.			
	PGC	х	Ι	ST	Serial execution (ICSP [™]) clock input for ICSP and ICD operation. ⁽²⁾			
RB7/KBI3/PGD	RB7	0	0	DIG	LATB<7> data output.			
		1	Ι	TTL	PORTB<7> data input; weak pull-up when RBPU bit is cleared.			
	KBI3	1	Ι	TTL	Interrupt-on-pin change.			
	PGD	x	0	DIG	Serial execution data output for ICSP and ICD operation. ⁽²⁾			
		х	Ι	ST	Serial execution data input for ICSP and ICD operation. ⁽²⁾			

TABLE 11-6: PORTB FUNCTIONS

Legend: O = Output, I = Input, DIG = Digital Output, ST = Schmitt Buffer Input, TTL = TTL Buffer Input,

x = Don't care (TRIS bit does not affect port direction or is overridden for this option).

Note 1: Alternate assignment for ECCP2/P2A when the CCP2MX Configuration bit is cleared (Extended Microcontroller mode, 80-pin devices only); the default assignment is RC1.

2: All other pin functions are disabled when ICSP™ or ICD is enabled.

Pin Name	Function	TRIS Setting	I/O	I/O Type	Description
RJ0/ALE	RJ0	0	0	DIG	LATJ<0> data output.
		1	I	ST	PORTJ<0> data input.
	ALE	х	0	DIG	External Memory Interface address latch enable control output; takes priority over digital I/O.
RJ1/OE	RJ1	0	0	DIG	LATJ<1> data output.
		1	I	ST	PORTJ<1> data input.
	OE	х	0	DIG	External Memory Interface output enable control output; takes priority over digital I/O.
RJ2/WRL	RJ2	0	0	DIG	LATJ<2> data output.
		1	I	ST	PORTJ<2> data input.
	WRL	х	0	DIG	External Memory Bus write low byte control; takes priority over digital I/O.
RJ3/WRH	RJ3	0	0	DIG	LATJ<3> data output.
		1	I	ST	PORTJ<3> data input.
	WRH	х	0	DIG	External Memory Interface write high byte control output; takes priority over digital I/O.
RJ4/BA0	RJ4	0	0	DIG	LATJ<4> data output.
		1	I	ST	PORTJ<4> data input.
	BA0	x	0	DIG	External Memory Interface Byte Address 0 control output; takes priority over digital I/O.
RJ5/CE	RJ5	0	0	DIG	LATJ<5> data output.
		1	I	ST	PORTJ<5> data input.
	CE	х	0	DIG	External Memory Interface chip enable control output; takes priority over digital I/O.
RJ6/LB	RJ6	0	0	DIG	LATJ<6> data output.
		1	I	ST	PORTJ<6> data input.
	LB	x	0	DIG	External Memory Interface lower byte enable control output; takes priority over digital I/O.
RJ7/UB	RJ7	0	0	DIG	LATJ<7> data output.
		1	I	ST	PORTJ<7> data input.
	UB	х	0	DIG	External Memory Interface upper byte enable control output; takes priority over digital I/O.

TABLE 11-20: PORTJ FUNCTIONS

Legend: O = Output, I = Input, DIG = Digital Output, ST = Schmitt Buffer Input,

x = Don't care (TRIS bit does not affect port direction or is overridden for this option).

TARI E 11-21.	SUMMARY OF REGISTERS ASSOCIATED WITH POR	тι
IADLL II-ZI.	JUNIMANT OF REGISTERS ASSOCIATED WITH FOR	10

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page:
PORTJ ⁽¹⁾	RJ7	RJ6	RJ5	RJ4	RJ3	RJ2	RJ1	RJ0	65
LATJ ⁽¹⁾	LATJ7	LATJ6	LATJ5	LATJ4	LATJ3	LATJ2	LATJ1	LATJ0	64
TRISJ ⁽¹⁾	TRISJ7	TRISJ6	TRISJ5	TRISJ4	TRISJ3	TRISJ2	TRISJ1	TRISJ0	64
PORTG	RDPU	REPU	RJPU ⁽¹⁾	RG4	RG3	RG2	RG1	RG0	65

Legend: Shaded cells are not used by PORTJ.

Note 1: Unimplemented on 64-pin devices, read as '0'.

FIGURE 12-23: READ TIMING, 16-BIT MULTIPLEXED DATA, PARTIALLY MULTIPLEXED ADDRESS

FIGURE 12-24: WRITE TIMING, 16-BIT MULTIPLEXED DATA, PARTIALLY MULTIPLEXED ADDRESS

	Q1 Q2 Q3 Q4	Q1 Q	2 Q3	Q4	Q1	Q2 Q3	Q4	Q1	Q2 Q3	Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4
PMCS2				1 1 1	1 1 1		<u>.</u>			1 1	<u> </u>	- -
PMCS1				•		; ;	1				(ı ı
PMD<7:0> -		Addr	ess<7:	0>	X	LSB		X	MSB		1 }	1
PMA<13:8>				, ,		1					(! !
PMWR		1			1 1		(·		1 1	ı
PMRD				۱ ۱	1 1	ı ;	ı 1	<u> </u>			, , ,	1 1
PMBE					λ	1						, , ,
PMALL				<u> </u>	1 1	, , ,	1 1	 			1 1	ı I
PMPIF		, I , I		1	1 1	1	1 1	· ·		1	I I	
BUSY					, , ,	1 i		\		1	1	י ו ו

20.3.6 MASTER MODE

The master can initiate the data transfer at any time because it controls the SCKx. The master determines when the slave (Processor 1, Figure 20-2) is to broadcast data by the software protocol.

In Master mode, the data is transmitted/received as soon as the SSPxBUF register is written to. If the SPI is only going to receive, the SDOx output could be disabled (programmed as an input). The SSPxSR register will continue to shift in the signal present on the SDIx pin at the programmed clock rate. As each byte is received, it will be loaded into the SSPxBUF register as if a normal received byte (interrupts and status bits appropriately set). This could be useful in receiver applications as a "Line Activity Monitor" mode.

The clock polarity is selected by appropriately programming the CKP bit (SSPxCON1<4>). This then, would give waveforms for SPI communication as

shown in Figure 20-3, Figure 20-5 and Figure 20-6, where the MSB is transmitted first. In Master mode, the SPI clock rate (bit rate) is user programmable to be one of the following:

- Fosc/4 (or Tcy)
- Fosc/16 (or 4 Tcy)
- Fosc/64 (or 16 Tcy)
- Timer2 output/2

This allows a maximum data rate (at 40 MHz) of 10.00 Mbps.

Figure 20-3 shows the waveforms for Master mode. When the CKE bit is set, the SDOx data is valid before there is a clock edge on SCKx. The change of the input sample is shown based on the state of the SMP bit. The time when the SSPxBUF is loaded with the received data is shown.

FIGURE 20-3: SPI MODE WAVEFORM (MASTER MODE)

3RG Value	XXXXh X	0000h		001Ch
RXx Pin		Edge #1 - Edge #	Edge #2Edge #3Edge #4 it 2Bit 3Bit 4Bit 5Bit 6Bit 7	– Edge #5 Stop Bit
3RG Clock		www.www.	www.ww	ערובונינדערוואנארערערערערערערערערערערערערערערערערערער
ABDEN bit	Set by User			Auto-Cleared
RCxIF bit (Interrupt)				
Read RCREGx				÷
SPBRGx	'	XXXXh		1Ch
SPBRGHx		XXXXh		00h

FIGURE 21-2: BRG OVERFLOW SEQUENCE

REGISTER 25-7: DEVID1: DEVICE ID REGISTER 1 FOR PIC18F87J11 FAMILY DEVICES

R	R	R	R	R	R	R	R
DEV2	DEV1	DEV0	REV4	REV3	REV2	REV1	REV0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-5	DEV<2:0>: Device ID bits
	See Register 25-8 for a complete listing.
bit 4-0	REV<4:0>: Revision ID bits
	These bits are used to indicate the device revision.

REGISTER 25-8: DEVID2: DEVICE ID REGISTER 2 FOR PIC18F87J11 FAMILY DEVICES

R	R	R	R	R	R	R	R
DEV10	DEV9	DEV8	DEV7	DEV6	DEV5	DEV4	DEV3
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 **DEV<10:3>:** Device ID bits:

DEV<10:3> (DEVID2<7:0>)	DEV<2:0> (DEVID1<7:5>)	Device
0100 0100	010	PIC18F66J11
0100 0100	011	PIC18F66J16
0100 0100	100	PIC18F67J11
0100 0100	111	PIC18F86J11
0100 0101	000	PIC18F86J16
0100 0101	001	PIC18F87J11

R/W-0	R-x	U-0	R/W-0	U-0	U-0	U-0	U-0
REGSLP	LVDSTAT	—	ADSHR	—	—	—	SWDTEN ⁽¹⁾
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	Iown
bit 7	REGSLP: Vol	Itage Regulator	Low-Power O	peration Enable	e bit		
	1 = On-chip re	egulator enters	low-power ope	eration when de	evice enters Sle	eep mode	
	0 = On-chip re	egulator is activ	e, even in Slee	ep mode			
bit 6	LVDSTAT: LV	D Status bit					
	1 = VDDCORE	> 2.45V					
	0 = VDDCORE	< 2.45V					
bit 5	Unimplemen	ted: Read as '0)'				
bit 4	ADSHR: Sha	red Address SF	R Select bit				
	For details of	bit operation, s	ee Register 6-	3.			
bit 3-1	Unimplemen	ted: Read as 'o)'				
bit 0	SWDTEN: So	oftware Controll	ed Watchdog ⊺	Timer Enable bi	it ⁽¹⁾		
	1 = Watchdog	g Timer is on					
	0 = Watchdog	g Timer is off					

REGISTER 25-9: WDTCON: WATCHDOG TIMER CONTROL REGISTER

Note 1: This bit has no effect if the Configuration bit, WDTEN, is enabled.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page:
RCON	IPEN	—	CM	RI	TO	PD	POR	BOR	62
WDTCON	REGSLP	LVDSTAT	_	ADSHR	_	—		SWDTEN	63

TABLE 25-3: SUMMARY OF WATCHDOG TIMER REGISTERS

Legend: — = unimplemented, read as '0'. Shaded cells are not used by the Watchdog Timer.

RET	URN	Return fro	Return from Subroutine						
Synta	ax:	RETURN	{s}						
Oper	ands:	$s \in [0,1]$	s ∈ [0,1]						
$\begin{array}{llllllllllllllllllllllllllllllllllll$									
Statu	is Affected:	None							
Enco	oding:	0000	0000	0001	001s				
		popped and is loaded in 's'= 1, the c registers W loaded into registers W 's' = 0, no c occurs.	d the top of to the Prog contents of S, STATUS their corre C, STATUS update of th	the stat gram Co the sha SS and E spondin and BSI nese reg	ck (TOS) unter. If dow 3SRS are g R. If isters				
Word	ls:	1							
Cycle	es:	2							
QC	ycle Activity:								
	Q1	Q2	Q3		Q4				
	Decode	No operation	Process Data	s P fro	OP PC m stack				
	No operation	No operation	No operatio	n op	No peration				
Exan	nple:	RETURN							

After Instruction: PC = TOS

RLCF $f \in 0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$	{,d {,a}}							
$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$								
~ _ [J, i]								
$(f < n >) \rightarrow dest < n + 1 >,$ $(f < 7 >) \rightarrow C,$ $(C) \rightarrow dest < 0 >$								
C, N, Z								
0011	01da	ffff	ffff					
The contents of register 'f' are rotated one bit to the left through the Carry flag. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is stored back in register 'f'.								
If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank.								
If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 26.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.								
С	- r	egister f						
1								
1								
Q2	Q	3	Q4					
Read register 'f'	Proce Dat	ess a d	Write to estination					
RLCF	REC	G, O, O						
tion = 1110 = 0	0110							
n = 1110 = 1100 = 1	0110 1100							
	$(f<7>) \rightarrow C$ $(C) \rightarrow dest$ C, N, Z 0011 The conter one bit to til If 'd' is '0', f is '1', the ref 'f'. If 'a' is '0', f is '1', the ref 'f'. If 'a' is '0', f GPR bank. If 'a' is '0' a set is enab in Indexed mode where Section 26 Bit-Oriente Literal Offs Bit-Oriente Literal Offs Read register 'f' RLCF tion = 1110 = 0 n = 11100 = 1	$\begin{array}{c} (f<7>) \rightarrow C, \\ (C) \rightarrow dest<0>\\ C, N, Z \\ \hline 0011 01da \\ \hline 01da$						

FIGURE 28-1: PIC18F87J11 FAMILY VOLTAGE-FREQUENCY GRAPH, REGULATOR ENABLED (INDUSTRIAL)

FIGURE 28-2: PIC18F87J11 FAMILY VOLTAGE-FREQUENCY GRAPH, REGULATOR DISABLED (INDUSTRIAL)⁽⁾

28.2 DC Characteristics: Power-Down and Supply Current PIC18F87J11 Family (Industrial) (Continued)

PIC18F8 (Indu	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial								
Param No.	Device	Тур	Max	Units	Conditions				
	Supply Current (IDD) Cont. ^(2,3)	2,3)							
	All devices	0.17	0.35	mA	-40°C		Fosc = 1 MHz (PRI_RUN mode, EC oscillator)		
		0.18	0.35	mA	+25°C	VDD = 2.0V, VDDCORE = 2.0V(4)			
		0.20	0.42	mA	+85°C	VDDOORE 2.0V			
	All devices	0.29	0.52	mA	-40°C				
		0.31	0.52	mA	+25°C	VDD = 2.5V, VDDCORE = 2.5V(4)			
		0.34	0.61	mA	+85°C	VBBOOKE 2.0V			
	All devices	0.59	1.1	mA	-40°C				
		0.44	0.85	mA	+25°C	VDD = 3.3V ⁽⁵⁾			
		0.42	0.85	mA	+85°C				
	All devices	0.70	1.25	mA	-40°C		Fosc = 4 MHz (PRI_RUN mode, EC oscillator)		
		0.75	1.25	mA	+25°C	VDD = 2.0V, $VDDCORF = 2.0V^{(4)}$			
		0.79	1.36	mA	+85°C	VBBOOKE 2.0V			
	All devices	1.10	1.7	mA	-40°C				
		1.10	1.7	mA	+25°C	VDD = 2.5V, VDDCOBE = 2.5V(4)			
		1.12	1.82	mA	+85°C	VBBOOKE 2.0V			
	All devices	1.55	1.95	mA	-40°C				
		1.47	1.89	mA	+25°C	VDD = 3.3V ⁽⁵⁾			
		1.54	1.92	mA	+85°C				
	All devices	9.9	14.8	mA	-40°C		Fosc = 48 MHz (PRI_RUN mode, EC oscillator)		
		9.5	14.8	mA	+25°C	VDD = 2.5V, VDDCORF = 2.5V(4)			
		10.1	15.2	mA	+85°C				
	All devices	13.3	23.2	mA	-40°C				
		12.2	22.7	mA	+25°C	VDD = 3.3V ⁽⁵⁾	,		
		12.1	22.7	mA	+85°C				

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in a high-impedance state and tied to VDD or VSS, and all features that add delta current are disabled (such as WDT, Timer1 oscillator, BOR, etc.).

2: The supply current is mainly a function of the operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;

 $\overline{\text{MCLR}}$ = VDD; WDT is enabled/disabled as specified.

- **3:** Standard, low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.
- 4: Voltage regulator is disabled (ENVREG = 0, tied to Vss).
- 5: Voltage regulator is enabled (ENVREG = 1, tied to VDD, REGSLP = 1).

29.2 Package Details

The following sections give the technical details of the packages.

64-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS				
Dimen	sion Limits	MIN	NOM	MAX		
Number of Leads	Ν	64				
Lead Pitch	е	0.50 BSC				
Overall Height	А	_		1.20		
Molded Package Thickness	A2	0.95	1.00	1.05		
Standoff	A1	0.05	-	0.15		
Foot Length	L	0.45	0.60	0.75		
Footprint	L1	1.00 REF				
Foot Angle	¢	0°	3.5°	7°		
Overall Width	E	12.00 BSC				
Overall Length	D	12.00 BSC				
Molded Package Width	E1	10.00 BSC				
Molded Package Length	D1	10.00 BSC				
Lead Thickness	С	0.09	-	0.20		
Lead Width	b	0.17	0.22	0.27		
Mold Draft Angle Top	α	11°	12°	13°		
Mold Draft Angle Bottom	β	11°	12°	13°		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

- 2. Chamfers at corners are optional; size may vary.
- 3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-085B

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2007-2012, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-62076-346-9

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEEL0Q® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and mulfacture of development systems is ISO 9001:2000 certified.