

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	48MHz
Connectivity	EBI/EMI, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	68
Program Memory Size	128KB (64K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	3930 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 15x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f87j11t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
INTSRC	PLLEN	TUN5	TUN4	TUN3	TUN2	TUN1	TUN0				
bit 7						•	bit 0				
Legend:											
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown				
bit 7 INTSRC: Internal Oscillator Low-Frequency Source Select bit											
1 = 31.25 kHz device clock derived from 8 MHz INTOSC source (divide-by-256 enabled)											
	0 = 31 kHz d	evice clock der	ived from INT	RC 31 kHz osci	llator	-	-				
bit 6	PLLEN: Freq	uency Multiplie	r PLL Enable	bit							
	1 = PLL is er	abled									
	0 = PLL is dis	sabled									
bit 5-0	TUN<5:0>: Fa	ast RC Oscillat	or (INTOSC) F	Frequency Tunir	ng bits						
	011111 = Ma	ximum frequer	ICV		-						
	•	•									
	•	•									
	000001										
	000000 = Ce	nter frequency.	Fast RC Osc	illator is running	at the calibrat	ed frequency.					
	111111										
	•	•									
	•	•									
	100000 = Mi i	nimum frequen	су								

REGISTER 3-2: OSCTUNE: OSCILLATOR TUNING REGISTER

3.3 Clock Sources and Oscillator Switching

Essentially, PIC18F87J11 family devices have three independent clock sources:

- Primary oscillators
- · Secondary oscillators
- · Internal oscillator

The **primary oscillators** can be thought of as the main device oscillators. These are any external oscillators connected to the OSC1 and OSC2 pins, and include the External Crystal and Resonator modes, and the External Clock modes. If selected by the FOSC<2:0> Configuration bits, the internal oscillator block (either the 31 kHz INTRC or the 8 MHz INTOSC source) may be considered a primary oscillator. The particular mode is defined by the FOSCx Configuration bits. The details of these modes are covered in Section 3.4 "External Oscillator Modes".

The **secondary oscillators** are external clock sources that are not connected to the OSC1 or OSC2 pins. These sources may continue to operate even after the controller is placed in a power-managed mode. PIC18F87J11 family devices offer the Timer1 oscillator as a secondary oscillator source. This oscillator, in all power-managed modes, is often the time base for functions, such as a Real-Time Clock (RTC). The Timer1 oscillator is discussed in greater detail in Section 14.0 "Timer1 Module".

In addition to being a primary clock source in some circumstances, the **internal oscillator** is available as a power-managed mode clock source. The INTRC source is also used as the clock source for several special features, such as the WDT and Fail-Safe Clock Monitor. The internal oscillator block is discussed in more detail in Section 3.5 "Internal Oscillator Block".

The PIC18F87J11 family includes features that allow the device clock source to be switched from the main oscillator, chosen by device configuration, to one of the alternate clock sources. When an alternate clock source is enabled, various power-managed operating modes are available.

TABLE 5-3: INITIALIZATION CONDIT			IONS FOR ALL RE	GISTERS (CONTIN		
Register	Applicable Devices		Power-on Reset, Brown-out Reset	MCLR Resets, WDT Reset, RESET Instruction, Stack Resets, CM Resets	Wake-up via WDT or Interrupt	
INDF2	PIC18F6XJ1X PIC18F8>	XJ1X	N/A	N/A	N/A	
POSTINC2	PIC18F6XJ1X PIC18F8>	XJ1X	N/A	N/A	N/A	
POSTDEC2	PIC18F6XJ1X PIC18F8>	XJ1X	N/A	N/A	N/A	
PREINC2	PIC18F6XJ1X PIC18F8>	XJ1X	N/A	N/A	N/A	
PLUSW2	PIC18F6XJ1X PIC18F8>	XJ1X	N/A	N/A	N/A	
FSR2H	PIC18F6XJ1X PIC18F8>	XJ1X	xxxx	0000	uuuu	
FSR2L	PIC18F6XJ1X PIC18F8>	XJ1X	XXXX XXXX	uuuu uuuu	սսսս սսսս	
STATUS	PIC18F6XJ1X PIC18F8>	XJ1X	x xxxx	u uuuu	u uuuu	
TMR0H	PIC18F6XJ1X PIC18F8>	XJ1X	0000 0000	0000 0000	սսսս սսսս	
TMR0L	PIC18F6XJ1X PIC18F8>	XJ1X	XXXX XXXX	uuuu uuuu	սսսս սսսս	
T0CON	PIC18F6XJ1X PIC18F8>	XJ1X	1111 1111	1111 1111	սսսս սսսս	
OSCCON	PIC18F6XJ1X PIC18F8>	XJ1X	0110 q100	0110 q100	0110 q10u	
REFOCON	PIC18F6XJ1X PIC18F8>	XJ1X	0-00 0000	u-uu uuuu	u-uu uuuu	
CM1CON	PIC18F6XJ1X PIC18F8>	XJ1X	0001 1111	0001 1111	uuuu uuuu	
CM2CON	PIC18F6XJ1X PIC18F8>	XJ1X	0001 1111	0001 1111	սսսս սսսս	
RCON ⁽⁴⁾	PIC18F6XJ1X PIC18F8>	XJ1X	0-11 1100	0-qq qquu	u-qq qquu	
TMR1H	PIC18F6XJ1X PIC18F8>	XJ1X	XXXX XXXX	uuuu uuuu	uuuu uuuu	
ODCON1	PIC18F6XJ1X PIC18F8>	XJ1X	0 0000	u uuuu	u uuuu	
TMR1L	PIC18F6XJ1X PIC18F8>	XJ1X	XXXX XXXX	uuuu uuuu	uuuu uuuu	
ODCON2	PIC18F6XJ1X PIC18F8>	XJ1X	00	uu	uu	
T1CON	PIC18F6XJ1X PIC18F8>	XJ1X	0000 0000	u0uu uuuu	uuuu uuuu	
ODCON3	PIC18F6XJ1X PIC18F8>	XJ1X	00	uu	uu	
TMR2	PIC18F6XJ1X PIC18F8>	XJ1X	0000 0000	0000 0000	uuuu uuuu	
PADCFG1	PIC18F6XJ1X PIC18F8>	XJ1X	0	u	u	
PR2	PIC18F6XJ1X PIC18F8>	XJ1X	1111 1111	1111 1111	1111 1111	
MEMCON	PIC18F6XJ1X PIC18F8>	XJ1X	0-0000	0-0000	u-uuuu	
T2CON	PIC18F6XJ1X PIC18F8>	XJ1X	-000 0000	-000 0000	-uuu uuuu	
SSP1BUF	PIC18F6XJ1X PIC18F8>	XJ1X	xxxx xxxx	սսսս սսսս	սսսս սսսս	
SSP1ADD	PIC18F6XJ1X PIC18F8>	XJ1X	0000 0000	0000 0000	uuuu uuuu	
SSP1MSK	PIC18F6XJ1X PIC18F8>	XJ1X	1111 1111	uuuu uuuu	սսսս սսսս	
SSP1STAT	PIC18F6XJ1X PIC18F8>	XJ1X	0000 0000	0000 0000	uuuu uuuu	
SSP1CON1	PIC18F6XJ1X PIC18F8>	XJ1X	0000 0000	0000 0000	սսսս սսսս	
SSP1CON2	PIC18F6XJ1X PIC18F8>	XJ1X	0000 0000	0000 0000	uuuu uuuu	

TABLE 5-3: INITIALIZATION CONDITIONS FOR ALL REGISTERS⁽⁴⁾ (CONTINUED)

Legend: u = unchanged; x = unknown; - = unimplemented bit, read as '0'; q = value depends on condition. Shaded cells indicate conditions do not apply for the designated device.

Note 1: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.

- 2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).
- 3: One or more bits in the INTCONx or PIRx registers will be effected (to cause wake-up).
- 4: See Table 5-2 for Reset value for specific conditions.

6.3.4 SPECIAL FUNCTION REGISTERS

The Special Function Registers (SFRs) are registers used by the CPU and peripheral modules for controlling the desired operation of the device. These registers are implemented as static RAM. SFRs start at the top of data memory (FFFh) and extend downward to occupy more than the top half of Bank 15 (F5Ah to FFFh). A list of these registers is given inTable 6-3, Table 6-4 and Table 6-5.

The SFRs can be classified into two sets: those associated with the "core" device functionality (ALU, Resets and interrupts) and those related to the peripheral functions. The Reset and Interrupt registers are described in their respective chapters, while the ALU's STATUS register is described later in this section. Registers related to the operation of the peripheral features are described in the chapter for that peripheral.

The SFRs are typically distributed among the peripherals whose functions they control. Unused SFR locations are unimplemented and read as '0's

Note: Addresses, F5Ah through F5Fh, are not part of the Access Bank. These registers must always be accessed using the Bank Select Register. Addresses, F40h to F59h, are not implemented and are not accessible to the user.

TABLE 6-3: SPECIAL FUNCTION REGISTER MAP FOR PIC18F87J11 FAMILY DEVICES

Address	Name	Address	Name	Address	Name	Address	Name	Address	Name	Address	Name
FFFh	TOSU	FDFh	INDF2 ⁽¹⁾	FBFh	ECCP1AS	F9Fh	IPR1	F7Fh	SPBRGH1	F5Fh	PMDIN2H
FFEh	TOSH	FDEh	POSTINC2 ⁽¹⁾	FBEh	ECCP1DEL	F9Eh	PIR1	F7Eh	BAUDCON1	F5Eh	PMDIN2L
FFDh	TOSL	FDDh	POSTDEC2 ⁽¹⁾	FBDh	CCPR1H	F9Dh	PIE1	F7Dh	SPBRGH2	F5Dh	PMEH
FFCh	STKPTR	FDCh	PREINC2 ⁽¹⁾	FBCh	CCPR1L	F9Ch	RCSTA2	F7Ch	BAUDCON2	F5Ch	PMEL
FFBh	PCLATU	FDBh	PLUSW2 ⁽¹⁾	FBBh	CCP1CON	F9Bh	OSCTUNE	F7Bh	TMR3H	F5Bh	PMSTATH
FFAh	PCLATH	FDAh	FSR2H	FBAh	ECCP2AS	F9Ah	TRISJ ⁽²⁾	F7Ah	TMR3L	F5Ah	PMSTATL
FF9h	PCL	FD9h	FSR2L	FB9h	ECCP2DEL	F99h	TRISH ⁽²⁾	F79h	T3CON	F59h	_
FF8h	TBLPTRU	FD8h	STATUS	FB8h	CCPR2H	F98h	TRISG	F78h	TMR4	F58h	—
FF7h	TBLPTRH	FD7h	TMR0H	FB7h	CCPR2L	F97h	TRISF	F77h	PR4 ⁽³⁾	F57h	_
FF6h	TBLPTRL	FD6h	TMR0L	FB6h	CCP2CON	F96h	TRISE	F76h	T4CON	F56h	—
FF5h	TABLAT	FD5h	T0CON	FB5h	ECCP3AS	F95h	TRISD	F75h	CCPR4H	F55h	_
FF4h	PRODH	FD4h	—	FB4h	ECCP3DEL	F94h	TRISC	F74h	CCPR4L	F54h	_
FF3h	PRODL	FD3h	OSCCON ⁽³⁾	FB3h	CCPR3H	F93h	TRISB	F73h	CCP4CON	F53h	_
FF2h	INTCON	FD2h	CM1CON	FB2h	CCPR3L	F92h	TRISA	F72h	CCPR5H	F52h	_
FF1h	INTCON2	FD1h	CM2CON	FB1h	CCP3CON	F91h	LATJ ⁽²⁾	F71h	CCPR5L	F51h	_
FF0h	INTCON3	FD0h	RCON	FB0h	SPBRG1	F90h	LATH ⁽²⁾	F70h	CCP5CON	F50h	_
FEFh	INDF0 ⁽¹⁾	FCFh	TMR1H ⁽³⁾	FAFh	RCREG1	F8Fh	LATG	F6Fh	SSP2BUF	F4Fh	—
FEEh	POSTINC0 ⁽¹⁾	FCEh	TMR1L ⁽³⁾	FAEh	TXREG1	F8Eh	LATF	F6Eh	SSP2ADD	F4Eh	_
FEDh	POSTDEC0(1)	FCDh	T1CON ⁽³⁾	FADh	TXSTA1	F8Dh	LATE	F6Dh	SSP2STAT	F4Dh	_
FECh	PREINCO ⁽¹⁾	FCCh	TMR2 ⁽³⁾	FACh	RCSTA1	F8Ch	LATD	F6Ch	SSP2CON1	F4Ch	_
FEBh	PLUSW0 ⁽¹⁾	FCBh	PR2 ⁽³⁾	FABh	SPBRG2	F8Bh	LATC	F6Bh	SSP2CON2	F4Bh	_
FEAh	FSR0H	FCAh	T2CON	FAAh	RCREG2	F8Ah	LATB	F6Ah	CMSTAT	F4Ah	_
FE9h	FSR0L	FC9h	SSP1BUF	FA9h	TXREG2	F89h	LATA	F69h	PMADDRH ⁽⁴⁾	F49h	_
FE8h	WREG	FC8h	SSP1ADD	FA8h	TXSTA2	F88h	Portj ⁽²⁾	F68h	PMADDRL ⁽⁴⁾	F48h	_
FE7h	INDF1 ⁽¹⁾	FC7h	SSP1STAT	FA7h	EECON2	F87h	PORTH ⁽²⁾	F67h	PMDIN1H	F47h	_
FE6h	POSTINC1 ⁽¹⁾	FC6h	SSP1CON1	FA6h	EECON1	F86h	PORTG	F66h	PMDIN1L	F46h	_
FE5h	POSTDEC1(1)	FC5h	SSP1CON2	FA5h	IPR3	F85h	PORTF	F65h	PMCONH	F45h	_
FE4h	PREINC1 ⁽¹⁾	FC4h	ADRESH	FA4h	PIR3	F84h	PORTE	F64h	PMCONL	F44h	_
FE3h	PLUSW1 ⁽¹⁾	FC3h	ADRESL	FA3h	PIE3	F83h	PORTD	F63h	PMMODEH	F43h	_
FE2h	FSR1H	FC2h	ADCON0 ⁽³⁾	FA2h	IPR2	F82h	PORTC	F62h	PMMODEL	F42h	—
FE1h	FSR1L	FC1h	ADCON1 ⁽³⁾	FA1h	PIR2	F81h	PORTB	F61h	PMDOUT2H	F41h	—
FE0h	BSR	FC0h	WDTCON	FA0h	PIE2	F80h	PORTA	F60h	PMDOUT2L	F40h	_

Note 1: This is not a physical register.

2: This register is not available on 64-pin devices.

3: This register shares the same address with another register (see Table 6-4 for alternate register).

4: The PMADDRH/L and PMDOUT1H/L register pairs share the same address. PMADDR is used in Master modes and PMDOUT1 is used in Slave modes.

5: Addresses, F40 to F59, are not implemented and are not accessible to the user.

8.0 EXTERNAL MEMORY BUS

Note: The External Memory Bus (EMB) is not implemented on 64-pin devices.

The External Memory Bus allows the device to access external memory devices (such as Flash, EPROM, SRAM, etc.) as program or data memory. It supports both 8 and 16-Bit Data Width modes and three address widths of up to 20 bits. The bus is implemented with 28 pins, multiplexed across four I/O ports. Three ports (PORTD, PORTE and PORTH) are multiplexed with the address/data bus for a total of 20 available lines, while PORTJ is multiplexed with the bus control signals.

A list of the pins and their functions is provided in Table 8-1.

TABLE 8-1:	PIC18F87J11 FAMILY EXTERNAL BUS – I/O PORT FUNCTIONS

Name	Port	Bit	External Memory Bus Function
RD0/AD0	PORTD	0	Address Bit 0 or Data Bit 0
RD1/AD1	PORTD	1	Address Bit 1 or Data Bit 1
RD2/AD2	PORTD	2	Address Bit 2 or Data Bit 2
RD3/AD3	PORTD	3	Address Bit 3 or Data Bit 3
RD4/AD4	PORTD	4	Address Bit 4 or Data Bit 4
RD5/AD5	PORTD	5	Address Bit 5 or Data Bit 5
RD6/AD6	PORTD	6	Address Bit 6 or Data Bit 6
RD7/AD7	PORTD	7	Address Bit 7 or Data Bit 7
RE0/AD8	PORTE	0	Address Bit 8 or Data Bit 8
RE1/AD9	PORTE	1	Address Bit 9 or Data Bit 9
RE2/AD10	PORTE	2	Address Bit 10 or Data Bit 10
RE3/AD11	PORTE	3	Address Bit 11 or Data Bit 11
RE4/AD12	PORTE	4	Address Bit 12 or Data Bit 12
RE5/AD13	PORTE	5	Address Bit 13 or Data Bit 13
RE6/AD14	PORTE	6	Address Bit 14 or Data Bit 14
RE7/AD15	PORTE	7	Address Bit 15 or Data Bit 15
RH0/A16	PORTH	0	Address Bit 16
RH1/A17	PORTH	1	Address Bit 17
RH2/A18	PORTH	2	Address Bit 18
RH3/A19	PORTH	3	Address Bit 19
RJ0/ALE	PORTJ	0	Address Latch Enable (ALE) Control Pin
RJ1/OE	PORTJ	1	Output Enable (OE) Control Pin
RJ2/WRL	PORTJ	2	Write Low (WRL) Control Pin
RJ3/WRH	PORTJ	3	Write High (WRH) Control Pin
RJ4/BA0	PORTJ	4	Byte Address Bit 0 (BA0)
RJ5/CE	PORTJ	5	Chip Enable (CE) Control Pin
RJ6/LB	PORTJ	6	Lower Byte Enable (LB) Control Pin
RJ7/UB	PORTJ	7	Upper Byte Enable (UB) Control Pin

Note: For the sake of clarity, only I/O port and external bus assignments are shown here. One or more additional multiplexed features may be available on some pins.

10.1 INTCON Registers

The INTCON registers are readable and writable registers which contain various enable, priority and flag bits.

Note: Interrupt flag bits are set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the Global Interrupt Enable bit. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt. This feature allows for software polling.

REGISTER 10-1: INTCON: INTERRUPT CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x				
GIE/GIE	H PEIE/GIEL	TMR0IE	INTOIE	RBIE	TMR0IF	INTOIF	RBIF ⁽¹⁾				
bit 7					-		bit 0				
Legend:											
R = Reada	able bit	W = Writable I	oit	U = Unimpler	mented bit, reac	l as '0'					
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown				
bit 7	GIE/GIEH: GI <u>When IPEN =</u> 1 = Enables a	obal Interrupt E <u>0:</u> III unmasked int	nable bit								
 1 = Enables all unmasked interrupts 0 = Disables all interrupts When IPEN = 1: 1 = Enables all high-priority interrupts 0 = Disables all interrupts 											
bit 6	PEIE/GIEL: P	eripheral Interr	upt Enable bit								
	When IPEN = 0: 1 = Enables all unmasked peripheral interrupts 0 = Disables all peripheral interrupts										
	1 = Enables a 0 = Disables a	II low-priority po Il low-priority p all low-priority p	eripheral inter eripheral inter	rupts (if GIEH = rrupts	= 1)						
bit 5	TMROIE: TMF	R0 Overflow Inte	errupt Enable	bit							
	1 = Enables tl 0 = Disables t	he TMR0 overfl he TMR0 overf	ow interrupt low interrupt								
bit 4	INTOIE: INTO	External Interru	upt Enable bit								
	1 = Enables tl 0 = Disables t	he INT0 externation in the INT0 externation in the INT0 externation in the INT0 externation in the INT0 externation is the INT0 externation in the INT0 externation is the INT	al interrupt al interrupt								
bit 3	RBIE: RB Por	rt Change Interi	rupt Enable bi	t							
	1 = Enables tl 0 = Disables t	he RB port cha he RB port cha	nge interrupt nge interrupt								
bit 2	TMROIF: TMF	R0 Overflow Inte	errupt Flag bit								
	1 = TMR0 reg 0 = TMR0 reg	jister has overfl jister did not ov	owed (must b erflow	e cleared in sof	ftware)						
bit 1	INTOIF: INTO	External Interru	ıpt Flag bit								
	1 = The INT0 0 = The INT0	external interru external interru	pt occurred (r	nust be cleared ur	l in software)						
bit 0	RBIF: RB Por	t Change Interi	upt Flag bit ⁽¹⁾								
	1 = At least or 0 = None of th	ne of the RB<7 ne RB<7:4> pin	4> pins chang s have chang	ged state (must ed state	be cleared in s	oftware)					
Note 1:	A mismatch condit	tion will continue	to set this bit	Reading PORT	B and then wa	itina one additio	onal instruction				

cycle, will end the mismatch condition and allow the bit to be cleared.

Pin Name	Function	TRIS Setting	I/O	I/O Type	Description
RD0/AD0/	RD0	0	0	DIG	LATD<0> data output.
PMD0		1	I	ST	PORTD<0> data input.
	AD0 ⁽²⁾	x	0	DIG	External Memory Interface, Address/Data Bit 0 output. ⁽¹⁾
		x	I	TTL	External Memory Interface, Data Bit 0 input. ⁽¹⁾
	PMD0 ⁽³⁾	х	0	DIG	Parallel Master Port data out.
		x	Ι	TTL	Parallel Master Port data input.
RD1/AD1/	RD1	0	0	DIG	LATD<1> data output.
PMD1	1 I ST PORTD<1> data input.				PORTD<1> data input.
	x	0	DIG	External Memory Interface, Address/Data bit 1 output. ⁽¹⁾	
				TTL	External Memory Interface, Data Bit 1 input. ⁽¹⁾
	PMD1 ⁽³⁾	x	0	DIG	Parallel Master Port data out.
	x	I	TTL	Parallel Master Port data input.	
RD2/AD2/	RD2	0	0	DIG	LATD<2> data output.
PMD2		1	I	ST	PORTD<2> data input.
	AD2 ⁽²⁾	x	0	DIG	External Memory Interface, Address/Data Bit 2 output. ⁽¹⁾
		х	I	TTL	External Memory Interface, Data Bit 2 input. ⁽¹⁾
	PMD2 ⁽³⁾	х	0	DIG	Parallel Master Port data out.
		х	I	TTL	Parallel Master Port data input.
RD3/AD3/ RD3		0	0	DIG	LATD<3> data output.
PMD3		1	I	ST	PORTD<3> data input.
	AD3 ⁽²⁾	х	0	DIG	External Memory Interface, Address/Data Bit 3 output. ⁽¹⁾
		x	I	TTL	External Memory Interface, Data Bit 3 input. ⁽¹⁾
	PMD3 ⁽³⁾	х	0	DIG	Parallel Master Port data out.
		x	I	TTL	Parallel Master Port data input.
RD4/AD4/	RD4	0	0	DIG	LATD<4> data output.
PMD4/SDO2		1	I	ST	PORTD<4> data input.
	AD4 ⁽²⁾	х	0	DIG	External Memory Interface, Address/Data Bit 4 output. ⁽¹⁾
		х	I	TTL	External Memory Interface, Data Bit 4 input. ⁽¹⁾
	PMD4 ⁽³⁾	х	0	DIG	Parallel Master Port data out.
		х	I	TTL	Parallel Master Port data input.
	SDO2	0	0	DIG	SPI data output (MSSP2 module); takes priority over port data.
RD5/AD5/	RD5	0	0	DIG	LATD<5> data output.
PMD5/SDI2/		1	I	ST	PORTD<5> data input.
SDA2	AD5 ⁽²⁾	x	0	DIG	External Memory Interface, Address/Data Bit 5 output. ⁽¹⁾
		х	I	TTL	External Memory Interface, Data Bit 5 input. ⁽¹⁾
	PMD5 ⁽³⁾	x	0	DIG	Parallel Master Port data out.
		x	I	TTL	Parallel Master Port data input.
	SDI2	1	Ι	ST	SPI data input (MSSP2 module).
	SDA2	1	0	DIG	I ² C [™] data output (MSSP2 module); takes priority over port data.
		1	Ι	ST	I ² C data input (MSSP2 module); input type depends on module setting.

TABLE 11-10: PORTD FUNCTIONS

Legend: O = Output, I = Input, DIG = Digital Output, ST = Schmitt Buffer Input, TTL = TTL Buffer Input,

x = Don't care (TRIS bit does not affect port direction or is overridden for this option).

Note 1: External Memory Interface I/O takes priority over all other digital and PMP I/O.

- 2: These bits are available on 80-pin devices only.
- **3:** Default configuration for PMP (PMPMX Configuration bit = 1).

FIGURE 12-25: READ TIMING, 16-BIT MULTIPLEXED DATA, FULLY MULTIPLEXED 16-BIT ADDRESS

FIGURE 12-26: WRITE TIMING, 16-BIT MULTIPLEXED DATA, FULLY MULTIPLEXED 16-BIT ADDRESS

	Q1 Q2 Q3 Q4	Q1	Q2 Q3	Q4	Q1	Q2 (Q3 Q4	Q1	Q2 Q3	Q4	Q1	Q2 Q3	Q4	Q1 Q2 Q3	Q4 Q1 Q2 Q3 C
PMCS2		1		<u> </u>		1 1 1	 	I I	1 1 1		1 1 1	1 1 1	 	Ĭ	1 1
PMCS1	ſ			· ·			-	1	1 1	;	1	1		<u> </u>	1
PMD<7:0>	(Ad	dress<7:	0>	Ad	dress<	<15:8>		LSB	1	X	MSB		<u>}</u>	
PMWR		י ו		· ·		ı 1	1		ſ	1				ļ 1	I
PMRD				· ·		 		1	1 1 1	1 1	1 1	1 1 1		1 1 1	
PMBE		1				I I	:		ı 	-		1	1	Υ	I
PMALL						I I	<u>.</u>	1	1	 	1 1	1 1		1	1
PMALH				· ·			<u>_</u>				י י י	1 1 1		, , ,	
PMPIF	i	1		· ·		ı I	1		1 1		1	1		1	
BUSY		, , ,				 			1 1 1	: :	<u> </u>	1 1 1	1	1 1 1	1 1 1

16.0 TIMER3 MODULE

The Timer3 timer/counter module incorporates these features:

- Software selectable operation as a 16-bit timer or counter
- Readable and writable 8-bit registers (TMR3H and TMR3L)
- Selectable clock source (internal or external) with device clock or Timer1 oscillator internal options
- Interrupt-on-overflow
- · Module Reset on ECCPx Special Event Trigger

A simplified block diagram of the Timer3 module is shown in Figure 16-1. A block diagram of the module's operation in Read/Write mode is shown in Figure 16-2.

The Timer3 module is controlled through the T3CON register (Register 16-1). It also selects the clock source options for the CCP and ECCP modules; see Section 18.1.1 "CCP Modules and Timer Resources" for more information.

REGISTER 16-1: T3CON: TIMER3 CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
RD16	T3CCP2	T3CKPS1	T3CKPS0	T3CCP1	T3SYNC	TMR3CS	TMR3ON
bit 7							bit 0

Legend:											
R = Readable	e bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'							
-n = Value at	POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown							
bit 7	RD16: 16-Bit Read/Write Mode Enable bit										
	1 = Enables r	egister read/write of Timer3 ir	n one 16-bit operation								
	0 = Enables r	egister read/write of Timer3 ir	n two 8-bit operations								
bit 6,3	T3CCP<2:1>	: Timer3 and Timer1 to ECCF	Px/CCPx Enable bits								
	11 = Immer3	and Timer4 are the clock sour	ces for all ECCPx/CCPx mod								
	Timer1 a	and Timer2 are the clock soul	ces for ECCP3, CCP4 and C ces for ECCP1 and ECCP2	0FJ,							
	01 = Timer3 a	and Timer4 are the clock sour	ces for ECCP2, ECCP3, CCF	P4 and CCP5;							
	Timer1 a	and Timer2 are the clock sour	ces for ECCP1								
		and Timer2 are the clock soul	ces for all ECCPX/CCPX mod	luies							
DIT 5-4	13CKP5<1:0	>: Timera input Clock Presca	ie Seiect dits								
	11 = 1.6 Pres	cale value									
	01 = 1:2 Pres	cale value									
	00 = 1:1 Pres	cale value									
bit 2	T3SYNC: Tim	ner3 External Clock Input Syn	chronization Control bit								
	(Not usable if	the device clock comes from	Timer1/Timer3.)								
	$\frac{\text{VVnen TMR30}}{1 = \text{Does not}}$	<u>5 = 1:</u> synchronize external clock in	out								
	0 = Synchron	izes external clock input	put								
	When TMR30	<u>CS = 0:</u>									
	This bit is igno	ored. Timer3 uses the interna	I clock when TMR3CS = 0.								
bit 1	TMR3CS: Tin	ner3 Clock Source Select bit									
	1 = External falling ed	clock input from Timer1 oscill	ator or T13CKI (on the rising of	edge after the first							
	0 = Internal c	clock (Fosc/4)									
bit 0	TMR3ON: Tin	ner3 On bit									
	1 = Enables T	Timer3									
	0 = Stops Tim	ier3									

16.1 Timer3 Operation

Timer3 can operate in one of three modes:

- Timer
- Synchronous Counter
- Asynchronous Counter

The operating mode is determined by the clock select bit, TMR3CS (T3CON<1>). When TMR3CS is cleared (= 0), Timer3 increments on every internal instruction cycle (Fosc/4). When the bit is set, Timer3 increments on every rising edge of the Timer1 external clock input or the Timer1 oscillator, if enabled.

As with Timer1, the RC1/T1OSI and RC0/T1OSO/T13CKI pins become inputs when the Timer1 oscillator is enabled. This means the values of TRISC<1:0> are ignored and the pins are read as '0'.

FIGURE 16-2: TIMER3 BLOCK DIAGRAM (16-BIT READ/WRITE MODE)

19.4.2 PWM DUTY CYCLE

The PWM duty cycle is specified by writing to the CCPR1L register and to the CCP1CON<5:4> bits. Up to 10-bit resolution is available. The CCPR1L contains the eight MSbs and the CCP1CON<5:4> contains the two LSbs. This 10-bit value is represented by CCPR1L:CCP1CON<5:4>. The PWM duty cycle is calculated by the following equation:

EQUATION 19-2:

PWM Duty Cycle = (CCPR1L:CCP1CON<5:4>) • TOSC • (TMR2 Prescale Value)

CCPR1L and CCP1CON<5:4> can be written to at any time but the duty cycle value is not copied into CCPR1H until a match between PR2 and TMR2 occurs (i.e., the period is complete). In PWM mode, CCPR1H is a read-only register.

The CCPR1H register and a 2-bit internal latch are used to double-buffer the PWM duty cycle. This double-buffering is essential for glitchless PWM operation. When the CCPR1H and 2-bit latch match TMR2, concatenated with an internal 2-bit Q clock or two bits of the TMR2 prescaler, the ECCP1 pin is cleared. The maximum PWM resolution (bits) for a given PWM frequency is given by Equation 19-3.

EQUATION 19-3:

Note: If the PWM duty cycle value is longer than the PWM period, the ECCP1 pin will not be cleared.

19.4.3 PWM OUTPUT CONFIGURATIONS

The P1M1:P1M0 bits in the CCP1CON register allow one of four configurations:

- Single Output
- Half-Bridge Output
- Full-Bridge Output, Forward mode
- · Full-Bridge Output, Reverse mode

The Single Output mode is the standard PWM mode discussed in **Section 19.4 "Enhanced PWM Mode"**. The Half-Bridge and Full-Bridge Output modes are covered in detail in the sections that follow.

The general relationship of the outputs in all configurations is summarized in Figure 19-2.

 TABLE 19-4:
 EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 40 MHz

PWM Frequency	2.44 kHz	9.77 kHz	39.06 kHz	156.25 kHz	312.50 kHz	416.67 kHz
Timer Prescaler (1, 4, 16)	16	4	1	1	1	1
PR2 Value	FFh	FFh	FFh	3Fh	1Fh	17h
Maximum Resolution (bits)	10	10	10	8	7	6.58

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-1	R/W-0
CSRC	; ТХ9	TXEN ⁽¹⁾	SYNC	SENDB	BRGH	TRMT	TX9D
bit 7				·			bit 0
Legend:							
R = Read	able bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'	
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unki	nown
bit 7		<pre>< Source Select</pre>	hit				
	Asynchronou Don't care.	is mode:	Dit				
	<u>Synchronous</u> 1 = Master m 0 = Slave mo	<u>s mode:</u> node (clock gen ode (clock from	erated internal external sourc	ly from BRG) e)			
bit 6	TX9: 9-Bit Tr	ansmit Enable I	bit				
	1 = Selects 9 0 = Selects 8)-bit transmissic 3-bit transmissic	n n				
bit 5	TXEN: Trans	smit Enable bit ⁽¹)				
	1 = Transmit 0 = Transmit	t is enabled t is disabled					
bit 4	SYNC: EUS/	ARTx Mode Sel	ect bit				
	1 = Synchror 0 = Asynchro	nous mode pnous mode					
bit 3	SENDB: Ser	nd Break Chara	cter bit				
	Asynchronou 1 = Sends Sy 0 = Sync Bre <u>Synchronous</u> Don't care.	<u>us mode:</u> ync Break on th eak transmissior <u>s mode:</u>	e next transmi ı has complete	ssion (cleared l d	oy hardware up	on completion)
bit 2	BRGH: High	Baud Rate Sel	ect bit				
	<u>Asynchronou</u> 1 = High spe 0 = Low spee	<u>is mode:</u> ed ed					
	<u>Synchronous</u> Unused in th	<u>s mode:</u> is mode.					
bit 1	TRMT: Trans	mit Shift Regist	er Status bit				
	1 = TSR is e 0 = TSR is fu	mpty Ill					
bit 0	TX9D: 9th bi	t of Transmit Da	Ita				
	This can be a	an address/data	bit or a parity	bit.			
Note 1:	SREN/CREN ove	errides TXEN in	Sync mode.				

REGISTER 21-1: TXSTAX: EUSARTX TRANSMIT STATUS AND CONTROL REGISTER

EXAMPLE 21-1: CALCULATING BAUD RATE ERROR

For a device with FOSC of 16 MHz, desired baud rate of 9600, Asynchronous mode, and 8-bit BRG:						
Desired Baud Rate	=	Fosc/(64 ([SPBRGHx:SPBRGx] + 1))				
Solving for SPBRGHx:SPBRGx:						
Х	=	((FOSC/Desired Baud Rate)/64) – 1				
	=	((16000000/9600)/64) - 1				
	=	[25.042] = 25				
Calculated Baud Rate	=	1600000/(64 (25 + 1))				
	=	9615				
Error	=	(Calculated Baud Rate - Desired Baud Rate)/Desired Baud Rate				
	=	(9615 - 9600)/9600 = 0.16%				

TABLE 21-2: REGISTERS ASSOCIATED WITH BAUD RATE GENERATOR

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page:
TXSTAx	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	63
RCSTAx	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	63
BAUDCONx	ABDOVF RCIDL RXDTP TXCKP BRG16 — WUE ABDEN								
SPBRGHx	EUSARTx Baud Rate Generator Register High Byte								
SPBRGx	EUSARTx Baud Rate Generator Register Low Byte								

Legend: — = unimplemented, read as '0'. Shaded cells are not used by the BRG.

TABLE 26-2: PIC18F87J11 FAMILY INSTRUCTION SE

Mnemonic,	Description	Qualas	16-Bit Instruction Word				Status	Natas
Operands	Description	Cycles	MSb			LSb	Affected	Notes
BYTE-ORIENTED	OPERATIONS							
ADDWF f, d, a	Add WREG and f	1	0010	01da	ffff	ffff	C, DC, Z, OV, N	1, 2
ADDWFC f, d, a	Add WREG and Carry bit to f	1	0010	00da	ffff	ffff	C, DC, Z, OV, N	1, 2
ANDWF f, d, a	AND WREG with f	1	0001	01da	ffff	ffff	Z, N	1,2
CLRF f, a	Clear f	1	0110	101a	ffff	ffff	Z	2
COMF f, d, a	Complement f	1	0001	11da	ffff	ffff	Z, N	1, 2
CPFSEQ f, a	Compare f with WREG, Skip =	1 (2 or 3)	0110	001a	ffff	ffff	None	4
CPFSGT f, a	Compare f with WREG, Skip >	1 (2 or 3)	0110	010a	ffff	ffff	None	4
CPFSLT f, a	Compare f with WREG, Skip <	1 (2 or 3)	0110	000a	ffff	ffff	None	1, 2
DECF f, d, a	Decrement f	1	0000	01da	ffff	ffff	C, DC, Z, OV, N	1, 2, 3, 4
DECFSZ f, d, a	Decrement f, Skip if 0	1 (2 or 3)	0010	11da	ffff	ffff	None	1, 2, 3, 4
DCFSNZ f, d, a	Decrement f, Skip if Not 0	1 (2 or 3)	0100	11da	ffff	ffff	None	1, 2
INCF f, d, a	Increment f	1	0010	10da	ffff	ffff	C, DC, Z, OV, N	1, 2, 3, 4
INCFSZ f, d, a	Increment f, Skip if 0	1 (2 or 3)	0011	11da	ffff	ffff	None	4
INFSNZ f, d, a	Increment f, Skip if Not 0	1 (2 or 3)	0100	10da	ffff	ffff	None	1, 2
IORWF f, d, a	Inclusive OR WREG with f	1	0001	00da	ffff	ffff	Z, N	1, 2
MOVF f, d, a	Move f	1	0101	00da	ffff	ffff	Z, N	1
MOVFF f _s , f _d	Move f _s (source) to 1st word	2	1100	ffff	ffff	ffff	None	
	f _d (destination) 2nd word		1111	ffff	ffff	ffff		
MOVWF f, a	Move WREG to f	1	0110	111a	ffff	ffff	None	
MULWF f, a	Multiply WREG with f	1	0000	001a	ffff	ffff	None	1, 2
NEGF f, a	Negate f	1	0110	110a	ffff	ffff	C, DC, Z, OV, N	
RLCF f, d, a	Rotate Left f through Carry	1	0011	01da	ffff	ffff	C, Z, N	1, 2
RLNCF f, d, a	Rotate Left f (No Carry)	1	0100	01da	ffff	ffff	Z, N	
RRCF f, d, a	Rotate Right f through Carry	1	0011	00da	ffff	ffff	C, Z, N	
RRNCF f, d, a	Rotate Right f (No Carry)	1	0100	00da	ffff	ffff	Z, N	
SETF f, a	Set f	1	0110	100a	ffff	ffff	None	1, 2
SUBFWB f, d, a	Subtract f from WREG with	1	0101	01da	ffff	ffff	C, DC, Z, OV, N	
	Borrow							
SUBWF f, d, a	Subtract WREG from f	1	0101	11da	ffff	ffff	C, DC, Z, OV, N	1, 2
SUBWFB f, d, a	Subtract WREG from f with	1	0101	10da	ffff	ffff	C, DC, Z, OV, N	
. ,	Borrow							
SWAPF f, d, a	Swap Nibbles in f	1	0011	10da	ffff	ffff	None	4
TSTFSZ f, a	Test f, Skip if 0	1 (2 or 3)	0110	011a	ffff	ffff	None	1, 2
XORWF f, d, a	Exclusive OR WREG with f	1` ′	0001	10da	ffff	ffff	Z, N	

Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned.

3: If the Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

4: Some instructions are two-word instructions. The second word of these instructions will be executed as a NOP unless the first word of the instruction retrieves the information embedded in these 16 bits. This ensures that all program memory locations have a valid instruction.

GOT	0	Unconditio	Unconditional Branch						
Synta	ax:	GOTO k	GOTO k						
Oper	ands:	$0 \le k \le 104$	8575						
Oper	ation:	$k \rightarrow PC<20$	0:1>						
Statu	s Affected:	None							
Enco 1st w 2nd v	oding: vord (k<7:0>) word(k<19:8>)	1110 1111	1111 k ₁₉ kkk	k ₇ kk kkki	:k k	kkkk ₀ kkkk ₈			
Desc	ription:	GOTO allow anywhere v range. The PC<20:1>. instruction.	GOTO allows an unconditional branch anywhere within entire 2-Mbyte memory range. The 20-bit value 'k' is loaded into PC<20:1>. GOTO is always a two-cycle instruction.						
Word	ls:	2	2						
Cycle	es:	2	2						
QC	ycle Activity:								
	Q1	Q2	Q3		Q4	Q4			
	Decode	Read literal 'k'<7:0>,	No operat	ion	Reac 'k'<1 Write	l literal 19:8>, e to PC			
No operation		No operation	No operat	ion	No on operation				
Example: GOTO THERE After Instruction PC = Address (THERE)									

INCF	Increment f								
Syntax:	INCF f{,	INCF f {,d {,a}}							
Operands:	$0 \le f \le 255$								
	d ∈ [0,1] a ∈ [0,1]								
Operation.	$(f) + 1 \rightarrow d$	est							
Status Affected:	C. DC. N.	OV. Z							
Encoding:	0010	10da	ffff	ffff					
Description:	The conter incremente placed in V placed bac	The contents of register 'f' are incremented. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed back in register 'f'.							
	If 'a' is '0', f If 'a' is '1', f GPR bank.	If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank.							
	If 'a' is '0' a set is enab in Indexed mode when Section 26 Bit-Oriente Literal Off	If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 26.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details							
Words:	1								
Cycles:	1								
Q Cycle Activity:									
Q1	Q2	Q3		Q4					
Decode	Read register 'f'	Proce Data	ss \ a de	Write to estination					
Example:	INCF	CNT,	1, 0						
Before Instruct CNT Z DC After Instructio CNT Z C DC	tion = FFh = 0 = ? = ? on = 00h = 1 = 1 = 1								

LFSF	र	Load FSR	Load FSR						
Synta	ax:	LFSR f, k	LFSR f, k						
Oper	ands:	$\begin{array}{l} 0 \leq f \leq 2 \\ 0 \leq k \leq 409 \end{array}$	$\begin{array}{l} 0 \leq f \leq 2 \\ 0 \leq k \leq 4095 \end{array}$						
Oper	ation:	$k\toFSRf$							
Statu	s Affected:	None							
Enco	ding:	1110 1111	1110 0000	00f k ₇ k	f kk	k ₁₁ kkk kkkk			
Desc	ription:	The 12-bit file select r	The 12-bit literal 'k' is loaded into the ile select register pointed to by 'f'.						
Word	ls:	2							
Cycle	es:	2	2						
QC	ycle Activity:								
	Q1	Q2	Q3		Q4				
	Decode	Read literal 'k' MSB	Process Data		Write literal 'k' MSB to FSRfH				
	Decode	Read literal	Proce	SS	Wri	te literal			
		ʻk' LSB	Data	1	'k' to	o FSRfL			
Example: LFSR 2, 3ABh After Instruction FSR2H = 03h FSR2I = ABb									

MOVF	Move f									
Syntax:	MOVF f	MOVF f {,d {,a}}								
Operands:	0 ≤ f ≤ 255 d ∈ [0,1] a ∈ [0,1]	$0 \le f \le 255$ d $\in [0,1]$ a $\in [0,1]$								
Operation:	$f \to dest$									
Status Affected:	N, Z	N, Z								
Encoding:	0101	00da	ffff	ffff						
Description:	The contents of register 'f' are moved to a destination dependent upon the status of 'd'. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed back in register 'f'. Location 'f' can be anywhere in the									
	If 'a' is '0', the Access Bank is selected If 'a' is '1', the BSR is used to select the GPR bank.									
If 'a' is '0' and the extended instruction set is enabled, this instruction operat in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 26.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Medea" for data its										
Words:	1									
Cycles:	1									
Q Cycle Activity:										
Q1	Q2	Q3	3	Q4						
Decode	Read register 'f'	Proce Data	ess a	Write W						
Example: MOVF REG, 0, 0										
Before Instruction REG = 22h W = FFh										
After Instruction REG = 22h W = 22h										

26.2.3 BYTE-ORIENTED AND BIT-ORIENTED INSTRUCTIONS IN INDEXED LITERAL OFFSET MODE

Note:	Enabling the PIC18 instruction set exten-							
	sion may cause legacy applications to							
	behave erratically or fail entirely.							

In addition to eight new commands in the extended set, enabling the extended instruction set also enables Indexed Literal Offset Addressing (Section 6.6.1 "Indexed Addressing with Literal Offset"). This has a significant impact on the way that many commands of the standard PIC18 instruction set are interpreted.

When the extended set is disabled, addresses embedded in opcodes are treated as literal memory locations: either as a location in the Access Bank (a = 0) or in a GPR bank designated by the BSR (a = 1). When the extended instruction set is enabled and a = 0, however, a file register argument of 5Fh or less is interpreted as an offset from the pointer value in FSR2 and not as a literal address. For practical purposes, this means that all instructions that use the Access RAM bit as an argument – that is, all byte-oriented and bit-oriented instructions, or almost half of the core PIC18 instructions – may behave differently when the extended instruction set is enabled.

When the content of FSR2 is 00h, the boundaries of the Access RAM are essentially remapped to their original values. This may be useful in creating backward-compatible code. If this technique is used, it may be necessary to save the value of FSR2 and restore it when moving back and forth between C and assembly routines in order to preserve the Stack Pointer. Users must also keep in mind the syntax requirements of the extended instruction set (see Section 26.2.3.1 "Extended Instruction Syntax with Standard PIC18 Commands").

Although the Indexed Literal Offset mode can be very useful for dynamic stack and pointer manipulation, it can also be very annoying if a simple arithmetic operation is carried out on the wrong register. Users who are accustomed to the PIC18 programming must keep in mind that, when the extended instruction set is enabled, register addresses of 5Fh or less are used for Indexed Literal Offset Addressing.

Representative examples of typical byte-oriented and bit-oriented instructions in the Indexed Literal Offset mode are provided on the following page to show how execution is affected. The operand conditions shown in the examples are applicable to all instructions of these types.

26.2.3.1 Extended Instruction Syntax with Standard PIC18 Commands

When the extended instruction set is enabled, the file register argument 'f' in the standard byte-oriented and bit-oriented commands is replaced with the literal offset value 'k'. As already noted, this occurs only when 'f' is less than or equal to 5Fh. When an offset value is used, it must be indicated by square brackets ("[]"). As with the extended instructions, the use of brackets indicates to the compiler that the value is to be interpreted as an index or an offset. Omitting the brackets, or using a value greater than 5Fh within the brackets, will generate an error in the MPASM Assembler.

If the index argument is properly bracketed for Indexed Literal Offset Addressing, the Access RAM argument is never specified; it will automatically be assumed to be '0'. This is in contrast to standard operation (extended instruction set disabled), when 'a' is set on the basis of the target address. Declaring the Access RAM bit in this mode will also generate an error in the MPASM Assembler.

The destination argument 'd' functions as before.

In the latest versions of the MPASM Assembler, language support for the extended instruction set must be explicitly invoked. This is done with either the command line option, $/_{Y}$, or the PE directive in the source listing.

26.2.4 CONSIDERATIONS WHEN ENABLING THE EXTENDED INSTRUCTION SET

It is important to note that the extensions to the instruction set may not be beneficial to all users. In particular, users who are not writing code that uses a software stack may not benefit from using the extensions to the instruction set.

Additionally, the Indexed Literal Offset Addressing mode may create issues with legacy applications written to the PIC18 assembler. This is because instructions in the legacy code may attempt to address registers in the Access Bank below 5Fh. Since these addresses are interpreted as literal offsets to FSR2 when the instruction set extension is enabled, the application may read or write to the wrong data addresses.

When porting an application to the PIC18F87J11 family, it is very important to consider the type of code. A large, re-entrant application that is written in C and would benefit from efficient compilation will do well when using the instruction set extensions. Legacy applications that heavily use the Access Bank will most likely not benefit from using the extended instruction set.

FIGURE 28-1: PIC18F87J11 FAMILY VOLTAGE-FREQUENCY GRAPH, REGULATOR ENABLED (INDUSTRIAL)

FIGURE 28-2: PIC18F87J11 FAMILY VOLTAGE-FREQUENCY GRAPH, REGULATOR DISABLED (INDUSTRIAL)⁽⁾

28.2 DC Characteristics: Power-Down and Supply Current PIC18F87J11 Family (Industrial) (Continued)

PIC18F87J11 Family (Industrial)		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial								
Param No.	Device	Тур	Max	Units		Conditions				
	Supply Current (IDD) Cont. ^(2,3))								
	All devices	0.10	0.26	mA	-40°C					
		0.07	0.18	mA	+25°C	VDD = 2.0V, VDDCORE = 2.0V(4)				
		0.09	0.22	mA	+85°C	VBBOOKE 2.0V				
	All devices	0.25	0.48	mA	-40°C		Fosc = 1 MHz			
		0.13	0.30	mA	+25°C	VDD = 2.5V, VDDCOBE = 2.5V(4)	(PRI_IDLE mode,			
		0.10	0.26	mA	+85°C		EC oscillator)			
	All devices	0.45	0.68	mA	-40°C					
		0.26	0.45	mA	+25°C	VDD = 3.3V ⁽⁵⁾				
		0.30	0.54	mA	+85°C					
	All devices	0.36	0.60	mA	-40°C		Fosc = 4 MHz			
		0.33	0.56	mA	+25°C	VDD = 2.0V, VDDCORE = 2.0V(4)				
		0.35	0.56	mA	+85°C					
	All devices	0.52	0.81	mA	-40°C					
		0.45	0.70	mA	+25°C	VDD = 2.5V, VDDCOBE = 2.5V(4)	(PRI_IDLE mode,			
		0.46	0.70	mA	+85°C		EC oscillator)			
	All devices	0.80	1.15	mA	-40°C					
		0.66	0.98	mA	+25°C	VDD = 3.3V ⁽⁵⁾				
		0.65	0.98	mA	+85°C					
	All devices	5.2	6.5	mA	-40°C					
		4.9	5.9	mA	+25°C	VDD = 2.5V, VDDCORF = 2.5V(4)				
		3.4	4.5	mA	+85°C		Fosc = 48 MHz			
	All devices	6.2	12.4	mA	-40°C		EC oscillator)			
		5.9	11.5	mA	+25°C	VDD = 3.3V ⁽⁵⁾	,			
		5.8	11.5	mA	+85°C]				

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in a high-impedance state and tied to VDD or Vss, and all features that add delta current are disabled (such as WDT, Timer1 oscillator, BOR, etc.).

2: The supply current is mainly a function of the operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;

MCLR = VDD; WDT is enabled/disabled as specified.

- **3:** Standard, low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.
- 4: Voltage regulator is disabled (ENVREG = 0, tied to Vss).
- 5: Voltage regulator is enabled (ENVREG = 1, tied to VDD, REGSLP = 1).