

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	M8C
Core Size	8-Bit
Speed	24MHz
Connectivity	I²C, SPI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	6
Program Memory Size	4KB (4K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.4V ~ 5.25V
Data Converters	A/D 8x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	8-SOIC (0.154", 3.90mm Width)
Supplier Device Package	8-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c21123-24sxi

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Contents

PSoC Core3Digital System3Analog System4Additional System Resources4PSoC Device Characteristics5Getting Started5Application Notes5Development Kits5Training5CYPros Consultants5Solutions Library5Technical Support5Development Tool Selection6Software6Designing with PSoC Designer7Select Components7Configure Components7Organize and Connect7Generate, Verify, and Debug7Pin Information88-Pin Part Pinout816-Pin Part Pinout1024-Pin Part Pinout11Register Reference12Register Conventions12Register Mapping Tables12Electrical Specifications16	PSoC Functional Overview	3
Digital System 3 Analog System 4 Additional System Resources 4 PSoC Device Characteristics 5 Getting Started 5 Application Notes 5 Development Kits 5 Training 5 CYPros Consultants 5 Solutions Library 5 Technical Support 5 Development Tool Selection 6 Software 6 Designing with PSoC Designer 7 Select Components 7 Configure Components 7 Organize and Connect 7 Generate, Verify, and Debug 7 Pin Information 8 8-Pin Part Pinout 8 16-Pin Part Pinout 10 24-Pin Part Pinout 11 Register Reference 12 Register Conventions 12 Register Mapping Tables 12	PSoC Core	3
Analog System 4 Additional System Resources 4 PSoC Device Characteristics 5 Getting Started 5 Application Notes 5 Development Kits 5 Training 5 CYPros Consultants 5 Solutions Library 5 Technical Support 5 Development Tool Selection 6 Software 6 Designing with PSoC Designer 7 Select Components 7 Organize and Connect 7 Generate, Verify, and Debug 7 Pin Information 8 8-Pin Part Pinout 8 16-Pin Part Pinout 10 24-Pin Part Pinout 11 Register Reference 12 Register Conventions 12 Register Mapping Tables 12		
PSoC Device Characteristics 5 Getting Started 5 Application Notes 5 Development Kits 5 Training 5 CYPros Consultants 5 Solutions Library 5 Technical Support 5 Development Tool Selection 6 Software 6 Designing with PSoC Designer 7 Select Components 7 Configure Components 7 Organize and Connect 7 Generate, Verify, and Debug 7 Pin Information 8 8-Pin Part Pinout 8 20-Pin Part Pinout 10 24-Pin Part Pinout 11 Register Reference 12 Register Conventions 12 Register Mapping Tables 12		
Getting Started 5 Application Notes 5 Development Kits 5 Training 5 CYPros Consultants 5 Solutions Library 5 Technical Support 5 Development Tool Selection 6 Software 6 Designing with PSoC Designer 7 Select Components 7 Configure Components 7 Organize and Connect 7 Generate, Verify, and Debug 7 Pin Information 8 8-Pin Part Pinout 8 20-Pin Part Pinout 10 24-Pin Part Pinout 11 Register Reference 12 Register Conventions 12 Register Mapping Tables 12	Additional System Resources	4
Application Notes 5 Development Kits 5 Training 5 CYPros Consultants 5 Solutions Library 5 Technical Support 5 Development Tool Selection 6 Software 6 Designing with PSoC Designer 7 Select Components 7 Configure Components 7 Organize and Connect 7 Generate, Verify, and Debug 7 Pin Information 8 8-Pin Part Pinout 8 16-Pin Part Pinout 10 24-Pin Part Pinout 11 Register Reference 12 Register Conventions 12 Register Mapping Tables 12	PSoC Device Characteristics	5
Development Kits 5 Training 5 CYPros Consultants 5 Solutions Library 5 Technical Support 5 Development Tool Selection 6 Software 6 Designing with PSoC Designer 7 Select Components 7 Configure Components 7 Organize and Connect 7 Generate, Verify, and Debug 7 Pin Information 8 8-Pin Part Pinout 8 16-Pin Part Pinout 10 24-Pin Part Pinout 11 Register Reference 12 Register Conventions 12 Register Mapping Tables 12	Getting Started	5
Training 5 CYPros Consultants 5 Solutions Library 5 Technical Support 5 Development Tool Selection 6 Software 6 Designing with PSoC Designer 7 Select Components 7 Configure Components 7 Organize and Connect 7 Generate, Verify, and Debug 7 Pin Information 8 8-Pin Part Pinout 8 16-Pin Part Pinout 10 24-Pin Part Pinout 11 Register Reference 12 Register Conventions 12 Register Mapping Tables 12	Application Notes	5
CYPros Consultants 5 Solutions Library 5 Technical Support 5 Development Tool Selection 6 Software 6 Designing with PSoC Designer 7 Select Components 7 Configure Components 7 Organize and Connect 7 Generate, Verify, and Debug 7 Pin Information 8 8-Pin Part Pinout 8 20-Pin Part Pinout 10 24-Pin Part Pinout 11 Register Reference 12 Register Conventions 12 Register Mapping Tables 12	Development Kits	5
Solutions Library 5 Technical Support 5 Development Tool Selection 6 Software 6 Designing with PSoC Designer 7 Select Components 7 Configure Components 7 Organize and Connect 7 Generate, Verify, and Debug 7 Pin Information 8 8-Pin Part Pinout 8 16-Pin Part Pinout 10 24-Pin Part Pinout 11 Register Reference 12 Register Conventions 12 Register Mapping Tables 12	Training	5
Technical Support 5 Development Tool Selection 6 Software 6 Designing with PSoC Designer 7 Select Components 7 Configure Components 7 Organize and Connect 7 Generate, Verify, and Debug 7 Pin Information 8 8-Pin Part Pinout 8 16-Pin Part Pinout 10 24-Pin Part Pinout 11 Register Reference 12 Register Conventions 12 Register Mapping Tables 12	CYPros Consultants	5
Development Tool Selection 6 Software 6 Designing with PSoC Designer 7 Select Components 7 Configure Components 7 Organize and Connect 7 Generate, Verify, and Debug 7 Pin Information 8 8-Pin Part Pinout 8 16-Pin Part Pinout 10 24-Pin Part Pinout 11 Register Reference 12 Register Conventions 12 Register Mapping Tables 12	Solutions Library	5
Software 6 Designing with PSoC Designer 7 Select Components 7 Configure Components 7 Organize and Connect 7 Generate, Verify, and Debug 7 Pin Information 8 8-Pin Part Pinout 8 16-Pin Part Pinout 10 24-Pin Part Pinout 11 Register Reference 12 Register Conventions 12 Register Mapping Tables 12	Technical Support	5
Designing with PSoC Designer 7 Select Components 7 Configure Components 7 Organize and Connect 7 Generate, Verify, and Debug 7 Pin Information 8 8-Pin Part Pinout 8 16-Pin Part Pinout 10 24-Pin Part Pinout 11 Register Reference 12 Register Conventions 12 Register Mapping Tables 12	Development Tool Selection	6
Select Components 7 Configure Components 7 Organize and Connect 7 Generate, Verify, and Debug 7 Pin Information 8 8-Pin Part Pinout 8 16-Pin Part Pinout 10 24-Pin Part Pinout 11 Register Reference 12 Register Conventions 12 Register Mapping Tables 12	Software	6
Configure Components7Organize and Connect7Generate, Verify, and Debug7Pin Information88-Pin Part Pinout816-Pin Part Pinout820-Pin Part Pinout1024-Pin Part Pinout11Register Reference12Register Conventions12Register Mapping Tables12	Designing with PSoC Designer	7
Configure Components7Organize and Connect7Generate, Verify, and Debug7Pin Information88-Pin Part Pinout816-Pin Part Pinout820-Pin Part Pinout1024-Pin Part Pinout11Register Reference12Register Conventions12Register Mapping Tables12	Select Components	7
Generate, Verify, and Debug 7 Pin Information 8 8-Pin Part Pinout 8 16-Pin Part Pinout 8 20-Pin Part Pinout 10 24-Pin Part Pinout 11 Register Reference 12 Register Conventions 12 Register Mapping Tables 12		
Pin Information 8 8-Pin Part Pinout 8 16-Pin Part Pinout 8 20-Pin Part Pinout 10 24-Pin Part Pinout 11 Register Reference 12 Register Conventions 12 Register Mapping Tables 12	Organize and Connect	7
Pin Information 8 8-Pin Part Pinout 8 16-Pin Part Pinout 8 20-Pin Part Pinout 10 24-Pin Part Pinout 11 Register Reference 12 Register Conventions 12 Register Mapping Tables 12	Generate, Verify, and Debug	7
16-Pin Part Pinout 8 20-Pin Part Pinout 10 24-Pin Part Pinout 11 Register Reference 12 Register Conventions 12 Register Mapping Tables 12	Pin Information	8
20-Pin Part Pinout 10 24-Pin Part Pinout 11 Register Reference 12 Register Conventions 12 Register Mapping Tables 12	8-Pin Part Pinout	8
24-Pin Part Pinout	16-Pin Part Pinout	8
Register Reference 12 Register Conventions 12 Register Mapping Tables 12	20-Pin Part Pinout	
Register Conventions	24-Pin Part Pinout	11
Register Mapping Tables12	Register Reference	12
	Register Conventions	
	Register Mapping Tables	
	Electrical Specifications	16

Absolute Maximum Ratings16
Operating Temperature
DC Electrical Characteristics17
AC Electrical Characteristics23
Packaging Information
Packaging Dimensions
Thermal Impedances
Solder Reflow Specifications
Ordering Information
Ordering Code Definitions
Acronyms
Acronyms Used
Reference Documents
Document Conventions
Units of Measure38
Numeric Conventions
Glossary
Errata43
Part Numbers Affected43
CY8C21123 Qualification Status43
CY8C21123 Errata Summary43
Document History Page44
Sales, Solutions, and Legal Information47
Worldwide Sales and Design Support47
Products
PSoC® Solutions47
Cypress Developer Community47
Technical Support47

Pin Information


This section describes, lists, and illustrates the CY8C21x23 PSoC device pins and pinout configurations. Every port pin (labeled with a "P") is capable of Digital I/O. However, V_{SS}, V_{DD}, SMP, and XRES are not capable of Digital I/O.

8-Pin Part Pinout

Table 2.	Pin Definitions	- CY8C21123 8-Pin SOIC
----------	-----------------	------------------------

Pin	Ту	ре	Pin	Description
No.	Digital	Analog	Name	Description
1	I/O	I	P0[5]	Analog column mux input
2	I/O	I	P0[3]	Analog column mux input
3	I/O		P1[1]	I ² C serial clock (SCL), ISSP-SCLK ^[3]
4	Pov	wer	V _{SS}	Ground connection
5	I/O		P1[0]	I ² C serial data (SDA), ISSP-SDATA ^[3]
6	I/O	I	P0[2]	Analog column mux input
7	I/O	I	P0[4]	Analog column mux input
8	Power \		V_{DD}	Supply voltage
LEOEN		بير ما ا		

Figure 3. CY8C21123 8-Pin SOIC

LEGEND: A = Analog, I = Input, and O = Output.

16-Pin Part Pinout

Table 3. Pin Definitions - CY8C21223 16-Pin SOIC

Pin			Pin	Description
No.	Digital	Analog	Name	Description
1	I/O	I	P0[7]	Analog column mux input
2	I/O	I	P0[5]	Analog column mux input
3	I/O	I	P0[3]	Analog column mux input
4	I/O	I	P0[1]	Analog column mux input
5	Po	wer	SMP	SMP connection to required external components
6	Po	wer	V _{SS}	Ground connection
7	I/O		P1[1]	I ² C SCL, ISSP-SCLK ^[3]
8	Po	wer	V _{SS}	Ground connection
9	I/O		P1[0]	I ² C SDA, ISSP-SDATA ^[3]
10	I/O		P1[2]	
11	I/O		P1[4]	Optional external clock input (EXTCLK)
12	I/O	I	P0[0]	Analog column mux input
13	I/O	I	P0[2]	Analog column mux input
14	I/O	I	P0[4]	Analog column mux input
15	I/O	I	P0[6]	Analog column mux input
16	Po	wer	V _{DD}	Supply voltage
LECEN	$\mathbf{D} \wedge - \wedge \mathbf{pole}$	na I = Input	and $O = O$	la stan a st

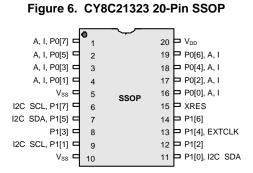
Figure 4. CY8C21223 16-Pin SOIC

A, I, P0[7] = 1 A, I, P0[5] = 2 A, I, P0[3] = 3 A, I, P0[1] = 4 SMP = 5 Vss = 6 I2C SCL, P1[1] = 7 Vss = 8	16 15 14 SOIC 13 12 11 10	 V_{DD} P0[6], A, I P0[4], A, I P0[2], A, I P0[0], A, I P1[4], EXTCLK P1[2] P1[0], I2C SDA
---	--	--

LEGEND A = Analog, I = Input, and O = Output.

Note

3. These are the ISSP pins, which are not high Z at POR (power on reset). See the PSoC Technical Reference Manual for details.



CY8C21123/CY8C21223/CY8C21323

20-Pin Part Pinout

Table 5. Pin Definitions - CY8C21323 20-Pin SSOP

Pin Type		Pin	Description				
No.	Digital	Analog	Name	Description			
1	I/O	I	P0[7]	Analog column mux input			
2	I/O	I	P0[5]	Analog column mux input			
3	I/O	I	P0[3]	Analog column mux input			
4	I/O	I	P0[1]	Analog column mux input			
5	Po	wer	V _{SS}	Ground connection ^[6]			
6	I/O		P1[7]	I ² C SCL			
7	I/O		P1[5]	I ² C SDA			
8	I/O		P1[3]				
9	I/O		P1[1]	I ² C SCL, ISSP-SCLK ^[7]			
10	Po	Power		Ground connection ^[6]			
11	I/O		P1[0]	I ² C SDA, ISSP-SDATA ^[7]			
12	I/O		P1[2]				
13	I/O		P1[4]	Optional EXTCLK input			
14	I/O		P1[6]				
15	Inp	out	XRES	Active high external reset with internal pull-down			
16	I/O	I	P0[0]	Analog column mux input			
17	I/O	I	P0[2]	Analog column mux input			
18	I/O	I	P0[4]	Analog column mux input			
19	I/O	I	P0[6]	Analog column mux input			
20	Po	wer	V _{DD}	Supply voltage			
LEGENI	A = Analog	, I = Input, an	d O = Outpu	ıt.			

Notes

All V_{SS} pins should be brought out to one common GND plane.
 These are the ISSP pins, which are not high Z at POR (power on reset). See the PSoC Technical Reference Manual for details.

Table 8. Register Map Bank 0 Table: User Space (continued)

Name	Addr (0,Hex)	Access	Name	Addr (0,Hex)	Access	Name	Addr (0,Hex)	Access	Name	Addr (0,Hex)	Access
	30			70		RDIORI	B0	RW		F0	
	31			71		RDI0SYN	B1	RW		F1	
	32		ACE00CR1	72	RW	RDI0IS	B2	RW		F2	
	33		ACE00CR2	73	RW	RDI0LT0	B3	RW		F3	
	34			74		RDI0LT1	B4	RW		F4	
	35			75		RDI0RO0	B5	RW		F5	
	36		ACE01CR1	76	RW	RDI0RO1	B6	RW		F6	
	37		ACE01CR2	77	RW		B7		CPU_F	F7	RL
	38			78			B8			F8	
	39			79			B9			F9	
	3A			7A			BA			FA	
	3B			7B			BB			FB	
	3C			7C			BC			FC	
	3D			7D			BD			FD	
	3E			7E			BE		CPU_SCR1	FE	#
	3F			7F			BF		CPU_SCR0	FF	#

Blank fields are Reserved and must not be accessed.

Access is bit specific.

Table 9. Register Map Bank 1 Table: Configuration Space

Name	Addr (1,Hex)	Access	Name	Addr (1,Hex)	Access	Name	Addr (1,Hex)	Access	Name	Addr (1,Hex)	Access
PRT0DM0	00	RW		40		ASE10CR0	80	RW		C0	
PRT0DM1	01	RW		41			81			C1	
PRT0IC0	02	RW		42			82			C2	
PRT0IC1	03	RW		43			83			C3	
PRT1DM0	04	RW		44		ASE11CR0	84	RW		C4	
PRT1DM1	05	RW		45			85			C5	
PRT1IC0	06	RW		46			86			C6	
PRT1IC1	07	RW		47			87			C7	
	08			48			88			C8	
	09			49			89			C9	
	0A			4A			8A			CA	
	0B			4B			8B			СВ	
	0C			4C			8C			CC	
	0D			4D			8D			CD	
	0E			4E			8E			CE	
	0F			4F			8F			CF	
	10			50			90		GDI_O_IN	D0	RW
	11			51			91		GDI_E_IN	D1	RW
	12			52			92		GDI_O_OU	D2	RW
	13			53			93		GDI_E_OU	D3	RW
	14			54			94			D4	
	15			55			95			D5	
	16			56			96			D6	
	17			57			97			D7	
	18			58			98			D8	
	19			59			99			D9	
	1A			5A			9A			DA	
	1B			5B			9B			DB	

DC Amplifier Specifications

The following tables list the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C \leq T_A \leq 85 °C, 3.0 V to 3.6 V and –40 °C \leq T_A \leq 85 °C, or 2.4 V to 3.0 V and –40 °C \leq T_A \leq 85 °C, respectively. Typical parameters apply to 5 V, 3.3 V, or 2.7 V at 25 °C and are for design guidance only.

Table 15. 5-V DC Amplifier Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
V _{OSOA}	Input offset voltage (absolute value)	-	2.5	15	mV	
TCV _{OSOA}	Average input offset voltage drift	-	10	-	μV/°C	
I _{EBOA}	Input leakage current (port 0 analog pins)	-	200	-	pА	Gross tested to 1 µA
C _{INOA}	Input capacitance (port 0 analog pins)	-	4.5	9.5	pF	Package and pin dependent. Temp = 25 °C
V _{CMOA}	Common mode voltage range	0.0	-	V _{DD} – 1	V	
G _{OLOA}	Open loop gain	80	-	-	dB	
I _{SOA}	Amplifier supply current	_	10	30	μA	

Table 16. 3.3-V DC Amplifier Specifications

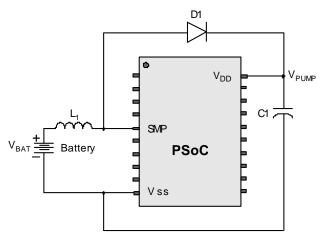

Symbol	Description	Min	Тур	Max	Units	Notes
V _{OSOA}	Input offset voltage (absolute value)	-	2.5	15	mV	
TCV _{OSOA}	Average input offset voltage drift	-	10	-	µV/°C	
I _{EBOA}	Input leakage current (port 0 analog pins)	-	200	-	pА	Gross tested to 1 µA
C _{INOA}	Input capacitance (port 0 analog pins)	-	4.5	9.5	pF	Package and pin dependent. Temp = 25 °C
V _{CMOA}	Common mode voltage range	0	-	V _{DD} – 1	V	
G _{OLOA}	Open loop gain	80	-	-	dB	
I _{SOA}	Amplifier supply current	-	10	30	μA	

Table 17. 2.7V DC Amplifier Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
V _{OSOA}	Input offset voltage (absolute value)	-	2.5	15	mV	
TCV _{OSOA}	Average input offset voltage drift	-	10	-	µV/°C	
I _{EBOA}	Input leakage current (port 0 analog pins)	-	200	-	pА	Gross tested to 1 µA
C _{INOA}	Input capacitance (port 0 analog pins)	-	4.5	9.5	pF	Package and pin dependent. Temp = 25 °C
V _{CMOA}	Common mode voltage range	0	-	V _{DD} – 1	V	
G _{OLOA}	Open loop gain	80	-	-	dB	
I _{SOA}	Amplifier supply current	-	10	30	μA	

Figure 12. Basic Switch Mode Pump Circuit

DC POR and LVD Specifications

Table 19 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C \leq T_A \leq 85 °C, 3.0 V to 3.6 V and -40 °C \leq T_A \leq 85 °C, or 2.4 V to 3.0 V and -40 °C \leq T_A \leq 85 °C, respectively. Typical parameters apply to 5 V, 3.3 V, or 2.7 V at 25 °C and are for design guidance only.

Table 19.	DC POR	and LVD	Specifications
-----------	--------	---------	-----------------------

Symbol	Description	Min	Тур	Max	Units	Notes
V _{PPOR0}	V _{DD} value for PPOR trip PORLEV[1:0] = 00b	_	2.36	2.40	V	V _{DD} must be greater than or equal to 2.5 V during startup, reset from the
V _{PPOR1} V _{PPOR2}	PORLEV[1:0] = 01b PORLEV[1:0] = 10b	-	2.82 4.55	2.95 4.70	V V	XRES pin, or reset from watchdog.
V _{LVD0} V _{LVD1} V _{LVD2} V _{LVD3} V _{LVD4} V _{LVD5} V _{LVD6} V _{LVD7}	V _{DD} value for LVD trip VM[2:0] = 000b VM[2:0] = 001b VM[2:0] = 010b VM[2:0] = 011b VM[2:0] = 100b VM[2:0] = 101b VM[2:0] = 110b VM[2:0] = 111b	2.40 2.85 2.95 3.06 4.37 4.50 4.62 4.71	2.45 2.92 3.02 3.13 4.48 4.64 4.73 4.81	2.51 ^[12] 2.99 ^[13] 3.09 3.20 4.55 4.75 4.83 4.95	V V V V V V V V	
Vpumpo Vpump1 Vpump2 Vpump3 Vpump4 Vpump5 Vpump6 Vpump7	V _{DD} value for PUMP trip VM[2:0] = 000b VM[2:0] = 001b VM[2:0] = 010b VM[2:0] = 011b VM[2:0] = 100b VM[2:0] = 101b VM[2:0] = 110b VM[2:0] = 111b	2.45 2.96 3.03 3.18 4.54 4.62 4.71 4.89	2.55 3.02 3.10 3.25 4.64 4.73 4.82 5.00	2.62 ^[14] 3.09 3.16 3.32 ^[15] 4.74 4.83 4.92 5.12	V V V V V V V	

Notes

- 12. Always greater than 50 mV above V_{PPOR} (PORLEV = 00) for falling supply. 13. Always greater than 50 mV above V_{PPOR} (PORLEV = 01) for falling supply. 14. Always greater than 50 mV above V_{LVD0}. 15. Always greater than 50 mV above V_{LVD0}.

DC Programming Specifications

Table 20 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and $-40 \degree C \le T_A \le 85 \degree C$, 3.0 V to 3.6 V and $-40 \degree C \le T_A \le 85 \degree C$, or 2.4 V to 3.0 V and $-40 \degree C \le T_A \le 85 \degree C$, respectively. Typical parameters apply to 5 V, 3.3 V, or 2.7 V at $25 \degree C$ and are for design guidance only.

Table 20. DC Programming Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
V _{DDP}	V _{DD} for programming and erase	4.5	5.0	5.5	V	This specification applies to the functional requirements of external programmer tools
V _{DDLV}	Low V _{DD} for verify	2.4	2.5	2.6	V	This specification applies to the functional requirements of external programmer tools
V _{DDHV}	High V _{DD} for verify	5.1	5.2	5.3	V	This specification applies to the functional requirements of external programmer tools
V _{DDIWRITE}	Supply voltage for flash write operations	2.70	_	5.25	V	This specification applies to this device when it is executing internal flash writes
I _{DDP}	Supply current during programming or verify	-	5	25	mA	
V _{ILP}	Input low voltage during programming or verify	-	-	0.8	V	
V _{IHP}	Input high voltage during programming or verify	2.2	-	-	V	
I _{ILP}	Input current when applying V _{ILP} to P1[0] or P1[1] during programming or verify	-	-	0.2	mA	Driving internal pull-down resistor
I _{IHP}	Input current when applying V _{IHP} to P1[0] or P1[1] during programming or verify	-	-	1.5	mA	Driving internal pull-down resistor
V _{OLV}	Output low voltage during programming or verify	-	-	V _{SS} + 0.75	V	
V _{OHV}	Output high voltage during programming or verify	V _{DD} – 1.0	-	V _{DD}	V	
Flash _{ENPB}	Flash endurance (per block)	50,000 ^[16]	_	-	-	Erase/write cycles per block
Flash _{ENT}	Flash endurance (total) ^[17]	1,800,000	-	-	-	Erase/write cycles
Flash _{DR}	Flash data retention	10	-	-	Years	

DC I²C Specifications

Table 20 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C $\leq T_A \leq 85$ °C, 3.0 V to 3.6 V and -40 °C $\leq T_A \leq 85$ °C, or 2.4 V to 3.0 V and -40 °C $\leq T_A \leq 85$ °C, respectively. Typical parameters apply to 5 V, 3.3 V, or 2.7 V at 25 °C and are for design guidance only.

Table 21. DC I²C Specifications^[18]

Symbol	Description	Min	Тур	Мах	Units	Notes
V _{ILI2C}	Input low level	-	-	0.3 × V _{DD}	V	$2.4~V \leq V_{DD} \leq 3.6~V$
		-	-	$0.25 \times V_{DD}$	V	$4.75~V \leq V_{DD} \leq 5.25~V$
V _{IHI2C}	Input high level	$0.7 \times V_{DD}$	-	-	V	$2.4~V \le V_{DD} \le 5.25~V$

Notes

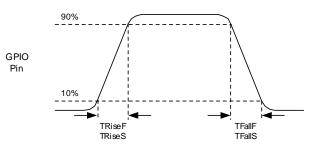
16. The 50,000 cycle flash endurance per block is guaranteed if the flash is operating within one voltage range. Voltage ranges are 2.4 V to 3.0 V, 3.0 V to 3.6 V, and 4.75 V to 5.25 V.

17. A maximum of 36 x 50,000 block endurance cycles is allowed. This may be balanced between operations on 36 x 1 blocks of 50,000 maximum cycles each, 36 x 2 blocks of 25,000 maximum cycles each, or 36 x 4 blocks of 12,500 maximum cycles each (and so forth to limit the total number of cycles to 36 x 50,000 and that no single block ever sees more than 50,000 cycles). For the full industrial range, you must employ a temperature sensor user module (FlashTemp) and feed the result to the temperature argument before writing. Refer to the application note, Design Aids — Reading and Writing PSoC[©] Flash – AN2015 for more information on Flash APIs.

18. All GPIO meet the DC GPIO VIL and VIH specifications mentioned in section DC GPIO Specifications on page 18. The I²C GPIO pins also meet the mentioned specs.

AC General Purpose I/O Specifications

Table 24 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C \leq T_A \leq 85 °C, 3.0 V to 3.6 V and -40 °C \leq T_A \leq 85 °C, or 2.4 V to 3.0 V and -40 °C \leq T_A \leq 85 °C, respectively. Typical parameters apply to 5 V, 3.3 V, or 2.7 V at 25 °C and are for design guidance only.


Table 24. 5-V and 3.3-V AC GPIO Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
F _{GPIO}	GPIO operating frequency	0	-	12	MHz	Normal strong mode
tRiseF	Rise time, normal strong mode, Cload = 50 pF	3	-	18	ns	V _{DD} = 4.5 V to 5.25 V, 10% to 90%
tFallF	Fall time, normal strong mode, Cload = 50 pF	2	-	18	ns	V _{DD} = 4.5 V to 5.25 V, 10% to 90%
tRiseS	Rise time, slow strong mode, Cload = 50 pF	10	27	-	ns	V _{DD} = 3 V to 5.25 V, 10% to 90%
tFallS	Fall time, slow strong mode, Cload = 50 pF	10	22	-	ns	V _{DD} = 3 V to 5.25 V, 10% to 90%

Table 25. 2.7-V AC GPIO Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
F _{GPIO}	GPIO operating frequency	0	-	3	MHz	Normal strong mode
tRiseF	Rise time, normal strong mode, Cload = 50 pF	6	-	50	ns	V _{DD} = 2.4 V to 3.0 V, 10% to 90%
tFallF	Fall time, normal strong mode, Cload = 50 pF	6	-	50	ns	V _{DD} = 2.4 V to 3.0 V, 10% to 90%
tRiseS	Rise time, slow strong mode, Cload = 50 pF	18	40	120	ns	V _{DD} = 2.4 V to 3.0 V, 10% to 90%
tFallS	Fall time, slow strong mode, Cload = 50 pF	18	40	120	ns	V _{DD} = 2.4 V to 3.0 V, 10% to 90%

Figure 13. GPIO Timing Diagram

AC Amplifier Specifications

The following tables list the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C \leq T_A \leq 85 °C, 3.0 V to 3.6 V and –40 °C \leq T_A \leq 85 °C, or 2.4 V to 3.0 V and –40 °C \leq T_A \leq 85 °C, respectively. Typical parameters apply to 5 V, 3.3 V, or 2.7 V at 25 °C and are for design guidance only.

Settling times, slew rates, and gain bandwidth are based on the analog continuous time PSoC block.

Table 26. 5-V and 3.3-V AC Amplifier Specifications

Symbol	Description	Min	Тур	Max	Units
t _{COMP1}	Comparator mode response time, 50 mVpp signal centered on Ref	-	-	100	ns
t _{COMP2}	Comparator mode response time, 2.5 V input, 0.5 V overdrive	-	_	300	ns

Table 27.	2.7-V	AC Amplifier	Specifications
-----------	-------	---------------------	----------------

Symbol	Description	Min	Тур	Max	Units
t _{COMP1}	Comparator mode response time, 50 mVpp signal centered on Ref	-	-	600	ns
t _{COMP2}	Comparator mode response time, 1.5 V input, 0.5 V overdrive	-	-	300	ns

Table 29. 2.7-V AC Digital Block Specifications

Function	Description	Min	Тур	Max	Units	Notes
All functions	Block input clock frequency	-	-	12.7	MHz	2.4 V < V _{DD} < 3.0 V.
Timer	Capture pulse width	100 ^[28]	-	-	ns	
	Input clock frequency, with or without capture	-	-	12.7	MHz	
Counter	Enable input pulse width	100	-	-	ns	
	Input clock frequency, no enable input	-	-	12.7	MHz	
	Input clock frequency, enable input	-	-	12.7	MHz	
Dead band	Kill pulse width:				•	
	Asynchronous restart mode	20	-	-	ns	
	Synchronous restart mode	100	-	_	ns	
	Disable mode	100	-	-	ns	
	Input clock frequency	-	-	12.7	MHz	
CRCPRS (PRS mode)	Input clock frequency	-	-	12.7	MHz	
CRCPRS (CRC mode)	Input clock frequency	-	Ι	12.7	MHz	
SPIM	Input clock frequency	-	-	6.35	MHz	The SPI serial clock (SCLK) frequency is equal to the input clock frequency divided by 2.
SPIS	Input clock (SCLK) frequency	-	-	4.1	MHz	
	Width of SS_ Negated between transmissions	100	-	-	ns	
Transmitter	Input clock frequency	-	-	12.7	MHz	The baud rate is equal to the input clock frequency divided by 8.
Receiver	Input clock frequency	-	-	12.7	MHz	The baud rate is equal to the input clock frequency divided by 8.

AC External Clock Specifications

The following tables list the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C \leq T_A \leq 85 °C, or 3.0 V to 3.6 V and –40 °C \leq T_A \leq 85 °C, respectively. Typical parameters apply to 5 V, 3.3 V, or 2.7 V at 25 °C and are for design guidance only.

Table 30. 5-V AC External Clock Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
FOSCEXT	Frequency	0.093	-	24.6	MHz	
-	High period	20.6	_	5300	ns	
-	Low period	20.6	-	-	ns	
-	Power-up IMO to switch	150	-	-	μs	

Table 31. 3.3-V AC External Clock Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
F _{OSCEXT}	Frequency with CPU clock divide by 1	0.093	_	12.3	MHz	Maximum CPU frequency is 12 MHz at 3.3 V. With the CPU clock divider set to 1, the external clock must adhere to the maximum frequency and duty cycle requirements.
Foscext	Frequency with CPU clock divide by 2 or greater	0.186	_	24.6	MHz	If the frequency of the external clock is greater than 12 MHz, the CPU clock divider must be set to 2 or greater. In this case, the CPU clock divider ensures that the fifty percent duty cycle requirement is met.
-	High period with CPU clock divide by 1	41.7	-	5300	ns	
-	Low period with CPU clock divide by 1	41.7	_	-	ns	
-	Power-up IMO to switch	150	_	_	μs	

Table 32. 2.7-V AC External Clock Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
F _{OSCEXT}	Frequency with CPU clock divide by 1	0.093	_	6.06	MHz	Maximum CPU frequency is 3 MHz at 2.7 V. With the CPU clock divider set to 1, the external clock must adhere to the maximum frequency and duty cycle requirements.
Foscext	Frequency with CPU clock divide by 2 or greater	0.186	_	12.12	MHz	If the frequency of the external clock is greater than 3 MHz, the CPU clock divider must be set to 2 or greater. In this case, the CPU clock divider ensures that the fifty percent duty cycle requirement is met.
-	High period with CPU clock divide by 1	83.4	-	5300	ns	
-	Low period with CPU clock divide by 1	83.4	_	-	ns	
-	Power-up IMO to switch	150	-	-	μs	

Figure 16. 16-Pin (150-Mil) SOIC

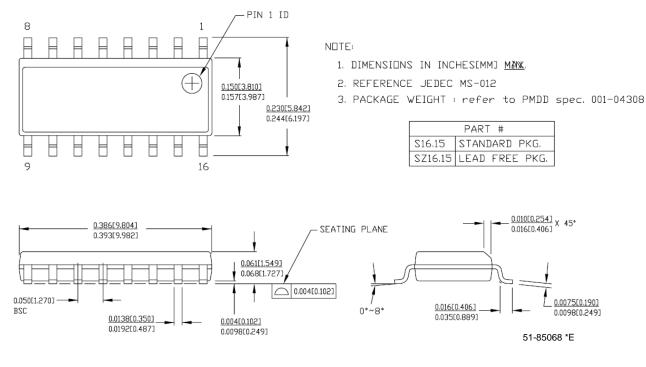
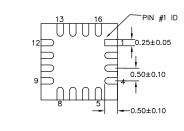



Figure 17. 16-Pin QFN with no E-Pad

0.05 MAX

-0.60 MAX

NOTES

1. REFERENCE JEDEC # MO-220 2. ALL DIMENSIONS ARE IN MILLIMETERS

TOP VIEW

-3.00±0.10-

PIN 1 DOT

12

9

8

3.00±0.10

16

Ð

5

1

001-09116 *J

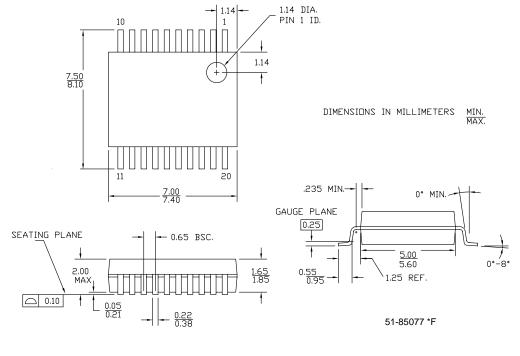
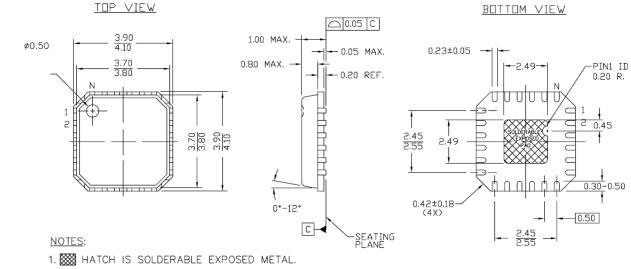
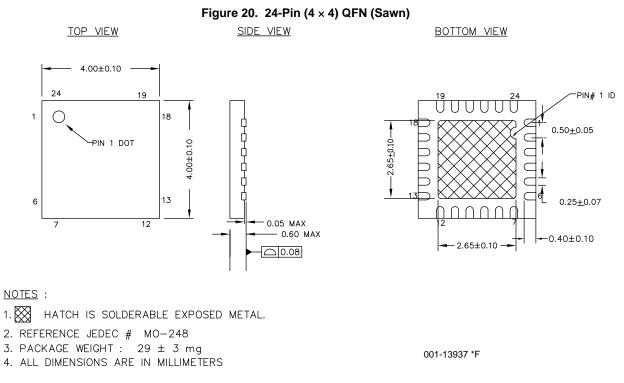



Figure 18. 20-pin SSOP (210 Mils) O20.21 Package Outline, 51-85077

Figure 19. 24-Pin (4 \times 4) QFN (Punched)

SIDE VIEW



- 2. REFERENCE JEDEC#: MO-220
- 3. PACKAGE WEIGHT: REFER TO PMDD SPEC.
- 4. ALL DIMENSIONS ARE IN MM [MIN/MAX]
- 5. PACKAGE CODE

PART #	DESCRIPTION
LF24A	STANDARD
LY24A	LEAD FREE

51-85203 *D

Important Note For information on the preferred dimensions for mounting QFN packages, refer the application note, Application Notes for Surface Mount Assembly of Amkor's MicroLeadFrame (MLF) Packages available at http://www.amkor.com. Note that pinned vias for thermal conduction are not required for the low power 24, 32, and 48-pin QFN PSoC devices.

Thermal Impedances

Table 36. Thermal Impedances per Package

Package	Typical θ_{JA} ^[31]
8-pin SOIC	186 °C/W
16-pin SOIC	125 °C/W
16-pin QFN	46 °C/W
20-pin SSOP	117 °C/W
24-pin QFN ^[32]	40 °C/W

Solder Reflow Specifications

Table 37 shows the solder reflow temperature limits that must not be exceeded.

Table 37. Solder Reflow Specifications

Package	Maximum Peak Temperature (T _C)	Maximum Time above T_{C} – 5 °C
8-pin SOIC	260 °C	30 seconds
16-pin SOIC	260 °C	30 seconds
16-pin QFN	260 °C	30 seconds
20-pin SSOP	260 °C	30 seconds
24-pin QFN	260 °C	30 seconds

Notes

 ^{31.} T_J = T_A + POWER × θ_{JA}
 32. To achieve the thermal impedance specified for the QFN package, refer to "Application Notes for Surface Mount Assembly of Amkor's MicroLeadFrame (MLF) Packages" available at http://www.amkor.com.

^{33.} Higher temperatures may be required based on the solder melting point. Typical temperatures for solder are 220+/-5 °C with Sn-Pb or 245+/-5 °C with Sn-Ag-Cu paste. Refer to the solder manufacturer specifications.

Glossary (continued)

shift register	A memory storage device that sequentially shifts a word either left or right to output a stream of serial data.
slave device	A device that allows another device to control the timing for data exchanges between two devices. Or when devices are cascaded in width, the slave device is the one that allows another device to control the timing of data exchanges between the cascaded devices and an external interface. The controlling device is called the master device.
SRAM	An acronym for static random access memory. A memory device where you can store and retrieve data at a high rate of speed. The term static is used because, after a value is loaded into an SRAM cell, it remains unchanged until it is explicitly altered or until power is removed from the device.
SROM	An acronym for supervisory read only memory. The SROM holds code that is used to boot the device, calibrate circuitry, and perform Flash operations. The functions of the SROM may be accessed in normal user code, operating from Flash.
stop bit	A signal following a character or block that prepares the receiving device to receive the next character or block.
synchronous	 A signal whose data is not acknowledged or acted upon until the next active edge of a clock signal. A system whose operation is synchronized by a clock signal.
tri-state	A function whose output can adopt three states: 0, 1, and Z (high-impedance). The function does not drive any value in the Z state and, in many respects, may be considered to be disconnected from the rest of the circuit, allowing another output to drive the same net.
UART	A UART or universal asynchronous receiver-transmitter translates between parallel bits of data and serial bits.
user modules	Pre-build, pre-tested hardware/firmware peripheral functions that take care of managing and configuring the lower level Analog and Digital PSoC Blocks. User Modules also provide high level API (Application Programming Interface) for the peripheral function.
user space	The bank 0 space of the register map. The registers in this bank are more likely to be modified during normal program execution and not just during initialization. Registers in bank 1 are most likely to be modified only during the initialization phase of the program.
V _{DD}	A name for a power net meaning "voltage drain." The most positive power supply signal. Usually 5 V or 3.3 V.
V _{SS}	A name for a power net meaning "voltage source." The most negative power supply signal.
watchdog timer	A timer that must be serviced periodically. If it is not serviced, the CPU resets after a specified period of time.

Errata

This section describes the errata for the CY8C21x23 PSoC[®] programmable system-on-chip family. Details include errata trigger conditions, scope of impact, available workarounds, and silicon revision applicability.

Contact your local Cypress Sales Representative if you have questions.

Part Numbers Affected

Part Number	Ordering Information
	CY8C21123-24SXI
	CY8C21123-24SXIT
	CY8C21223-24SXI
	CY8C21223-24SXIT
CY8C21123	CY8C21323-24PVXI
010021123	CY8C21323-24PVXIT
	CY8C21323-24LFXI
	CY8C21323-24LFXIT
	CY8C21323-24LQXI
	CY8C21323-24LQXIT

CY8C21123 Qualification Status

Product Status: Production

CY8C21123 Errata Summary

The following table defines the errata applicability to available CY8C21123 family devices. An "X" indicates that the errata pertains to the selected device.

Note Errata items, in the table below, are hyperlinked. Click on any item entry to jump to its description.

Items	Part Number	Silicon Revision	Fix Status
[1.] Internal Main Oscillator (IMO) Tolerance Deviation at Temperature Extremes	CY8C21123		No silicon fix is planned. Workaround is required.

1. Internal Main Oscillator (IMO) Tolerance Deviation at Temperature Extremes

Problem Definition

Asynchronous Digital Communications Interfaces may fail framing beyond 0 to 70 °C. This problem does not affect end-product usage between 0 and 70 °C.

Parameters Affected

The IMO frequency tolerance. The worst case deviation when operated below 0 °C and above +70 °C and within the upper and lower datasheet temperature range is $\pm 5\%$.

Trigger Condition(S)

The asynchronous Rx/Tx clock source IMO frequency tolerance may deviate beyond the data sheet limit of $\pm 2.5\%$ when operated beyond the temperature range of 0 to ± 70 °C.

Scope of Impact

This problem may affect UART, IrDA, and FSK implementations.

Workaround

Implement a quartz crystal stabilized clock source on at least one end of the asynchronous digital communications interface.

Fix Status

No silicon fix is planned. The workaround mentioned above should be used.

Document History Page

Revision	ECN	Orig. of Change	Submission Date	Description of Change
**	133248	NWJ	See ECN	New silicon and document (Revision **).
*A	208900	NWJ	See ECN	Add new part, new package and update all ordering codes to Pb-free.
*В	212081	NWJ	See ECN	Expand and prepare Preliminary version.
*C	227321	CMS Team	See ECN	Update specs., data, format.
*D	235973	SFV	See ECN	Updated Overview and Electrical Spec. chapters, along with 24-pin pinout. Added CMP_GO_EN register (1,64h) to mapping table.
*E	290991	НМТ	See ECN	Update datasheet standards per SFV memo. Fix device table. Add part numbers to pinouts and fine tune. Change 20-pin SSOP to CY8C21323. Add Reflow Temp. table. Update diagrams and specs.
*F	301636	HMT	See ECN	DC Chip-Level Specification changes. Update links to new CY.com Portal.
*G	324073	НМТ	See ECN	Obtained clearer 16 SOIC package. Update Thermal Impedances and Solder Reflow tables. Re-add pinout ISSP notation. Fix ADC type-o. Fix TMP register names. Update Electrical Specifications. Add CY logo. Update CY copyright. Make datasheet Final.
*H	2588457	KET/HMI/ AESA	10/22/2008	New package information on page 9. Converted datasheet to new template. Added 16-Pin OFN package diagram.
*	2618175	OGNE / PYRS	12/09/2008	Added Note in Ordering Information Section. Changed title from PSoC Mixed-Signal Array to PSoC Programmable System-on-Chip. Updated 'Devel opment Tools' and 'Designing with PSoC Designer' sections on pages 5 and 6
*J	2682782	MAXK / AESA	04/03/2009	Corrected 16 COL pinout.
*K	2699713	MAXK	04/29/2009	Minor ECN to correct paragraph style of 16 COL Pinout. No change in content
*L	2762497	JVY	09/11/2009	Updated DC GPIO, AC Chip-Level, and AC Programming Specifications as follows: Modified F_{IMO6} and T_{WRITE} specifications. Replaced T_{RAMP} time) specification with SR_{POWER_UP} (slew rate) specification. Added note [11] to Flash Endurance specification. Added I _{OH} , I _{OL} , DC _{ILO} , F_{32K_U} , $T_{POWERUP}$, $T_{ERASEALL}$, $T_{PROGRAM_HOT}$, and $T_{PROGRAM_COLD}$ specifications
*M	2792630	TTO	10/26/2009	Updated ordering information for CY8C21223-24LGXI to indicate availability of XRES pin.
*N	2901653	NJF	03/30/2010	Changed 16-pin COL to 16-pin QFN in the datasheet. Added Contents. Updated links in Sales, Solutions, and Legal Information Updated Cypress website links. Added T _{BAKETEMP} and T _{BAKETIME} parameters in Absolute Maximum Ratings Updated 5-V and 3.3-V AC Chip-Level Specifications Updated Notes in Packaging Information and package diagrams. Updated Ordering Code Definitions
*0	2928895	YJI	05/06/2010	No technical updates. Included with EROS spec.

Document History Page (continued)

Revision	ECN	Orig. of Change	Submission Date	Description of Change
۴P	3044869	NJF	10/01/2010	Added PSoC Device Characteristics table. Added DC I ² C Specifications table. Added F _{32K U} max limit. Added Tjit_IMO specification, removed existing jitter specifications. Updated Units of Measure, Acronyms, Glossary, and References sections. Updated solder reflow specifications. No specific changes were made to AC Digital Block Specifications table and I ² C Timing Diagram. They were updated for clearer understanding. Updated Figure 13 since the labelling for y-axis was incorrect. Template and styles update.
*Q	3263669	YJI	05/23/2011	Updated 16-pin SOIC and 20-pin SSOP package diagrams. Updated Development Tool Selection and Designing with PSoC Designer sections.
*R	3383787	GIR	09/26/2011	The text "Pin must be left floating" is included under Description of NC pin in Table 6 on page 11. Updated Table 37 on page 35 for improved clarity.
*S	3558729	RJVB	03/22/2012	Updated 16-pin SOIC package.
*T	3598261	LURE / XZNG	04/24/2012	Changed the PWM description string from "8- to 32-bit" to "8- and 16-bit".
*U	3649990	BVI / YLIU	06/19/2012	Updated description of NC pin as "No Connection. Pin must be left floating"
*V	3873870	UVS	01/18/2013	Updated Packaging Information: spec 51-85068 – Changed revision from *D to *E. spec 001-09116 – Changed revision from *F to *G. spec 51-85203 – Changed revision from *C to *D.
*W	3993321	UVS	05/07/2013	Added Errata.
*X	4067216	UVS	07/18/2013	Added Errata footnotes (Note 19). Updated Features: Replaced 2.5% with 5% under "Precision, programmable clocking". Updated Electrical Specifications: Updated AC Electrical Characteristics: Updated AC Chip-Level Specifications: Added Note 19 and referred the same note in F _{IMO24} parameter. Updated minimum and maximum values of F _{IMO24} parameter. Updated AC Digital Block Specifications: Replaced all instances of maximum value "49.2" with "50.4" and "24.6" with "25.2" in Table 28. Updated Packaging Information: spec 51-85066 – Changed revision from *E to *F. spec 001-09116 – Changed revision from *G to *H. Updated to new template.
*Ү	4479648	RJVB	08/20/2014	Updated Errata: Updated CY8C21123 Errata Summary: Updated details in "Fix Status" column in the table. Updated details in "Fix Status" bulleted point below the table.

Document History Page (continued)

	Document Title: CY8C21123/CY8C21223/CY8C21323, PSoC [®] Programmable System-on-Chip™ Document Number: 38-12022					
Revision	ECN	Orig. of Change	Submission Date	Description of Change		
*Z	4623500	DIMA	01/14/2015	Updated Pin Information: Updated 20-Pin Part Pinout: Updated Table 5: Added Note 6 and referred the same note in description of pin 5 and pin 10. Updated 24-Pin Part Pinout: Updated Table 6: Added Note 9 and referred the same note in description of pin 3, pin 9 and pin 21. Updated Packaging Information: spec 51-85066 – Changed revision from *F to *G. spec 51-85077 – Changed revision from *E to *F. Completing Sunset Review.		
AA	5090662	ARVI	01/18/2016	Updated Ordering Information, Ordering Code Definitions, and Errata. Upated figure title in Figure 19. Updated Table 38. Updated Figure 15 (spec 51-85066 *G to *H) in Packaging Information. Added Figure 20 (spec 001-13937 *F) in Packaging Information.		

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

Automotive	cypress.com/go/automotive
Clocks & Buffers	cypress.com/go/clocks
Interface	cypress.com/go/interface
Lighting & Power Control	cypress.com/go/powerpsoc
Memory	cypress.com/go/memory
PSoC	cypress.com/go/psoc
Touch Sensing	cypress.com/go/touch
USB Controllers	cypress.com/go/USB
Wireless/RF	cypress.com/go/wireless

PSoC[®] Solutions

psoc.cypress.com/solutions PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community Community | Forums | Blogs | Video | Training

Technical Support cypress.com/go/support

© Cypress Semiconductor Corporation, 2004-2016. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

Document Number: 38-12022 Rev. AA

Revised January 18, 2016

Page 47 of 47

PSoC Designer is a trademark and PSoC is a registered trademark of Cypress Semiconductor Corporation.

Purchase of I²C components from Cypress or one of its sublicensed Associated Companies conveys a license under the Philips I²C Patent Rights to use these components in an I²C system, provided that the system conforms to the I²C Standard Specification as defined by Philips. As from October 1st, 2006 Philips Semiconductors has a new trade name - NXP Semiconductors. All products and company names mentioned in this document may be the trademarks of their respective holders.