

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

2010112	
Product Status	Active
Core Processor	M8C
Core Size	8-Bit
Speed	24MHz
Connectivity	I²C, SPI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	12
Program Memory Size	4KB (4K x 8)
Program Memory Type	FLASH
EEPROM Size	<u>.</u>
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.4V ~ 5.25V
Data Converters	A/D 8x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	16-SOIC (0.154", 3.90mm Width)
Supplier Device Package	16-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c21223-24sxit

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Contents

PSoC Core3Digital System3Analog System4Additional System Resources4PSoC Device Characteristics5Getting Started5Application Notes5Development Kits5Training5CYPros Consultants5Solutions Library5Technical Support5Development Tool Selection6Software6Designing with PSoC Designer7Select Components7Configure Components7Organize and Connect7Generate, Verify, and Debug7Pin Information88-Pin Part Pinout816-Pin Part Pinout1024-Pin Part Pinout11Register Reference12Register Conventions12Register Mapping Tables12Electrical Specifications16	PSoC Functional Overview	3
Digital System 3 Analog System 4 Additional System Resources 4 PSoC Device Characteristics 5 Getting Started 5 Application Notes 5 Development Kits 5 Training 5 CYPros Consultants 5 Solutions Library 5 Technical Support 5 Development Tool Selection 6 Software 6 Designing with PSoC Designer 7 Select Components 7 Organize and Connect 7 Generate, Verify, and Debug 7 Pin Information 8 8-Pin Part Pinout 8 16-Pin Part Pinout 10 24-Pin Part Pinout 11 Register Reference 12 Register Conventions 12 Register Mapping Tables 12	PSoC Core	3
Analog System 4 Additional System Resources 4 PSoC Device Characteristics 5 Getting Started 5 Application Notes 5 Development Kits 5 Training 5 CYPros Consultants 5 Solutions Library 5 Technical Support 5 Development Tool Selection 6 Software 6 Designing with PSoC Designer 7 Select Components 7 Organize and Connect 7 Generate, Verify, and Debug 7 Pin Information 8 8-Pin Part Pinout 8 16-Pin Part Pinout 10 24-Pin Part Pinout 11 Register Reference 12 Register Conventions 12 Register Mapping Tables 12		
PSoC Device Characteristics 5 Getting Started 5 Application Notes 5 Development Kits 5 Training 5 CYPros Consultants 5 Solutions Library 5 Technical Support 5 Development Tool Selection 6 Software 6 Designing with PSoC Designer 7 Select Components 7 Configure Components 7 Organize and Connect 7 Generate, Verify, and Debug 7 Pin Information 8 8-Pin Part Pinout 8 20-Pin Part Pinout 10 24-Pin Part Pinout 11 Register Reference 12 Register Conventions 12 Register Mapping Tables 12		
Getting Started 5 Application Notes 5 Development Kits 5 Training 5 CYPros Consultants 5 Solutions Library 5 Technical Support 5 Development Tool Selection 6 Software 6 Designing with PSoC Designer 7 Select Components 7 Configure Components 7 Organize and Connect 7 Generate, Verify, and Debug 7 Pin Information 8 8-Pin Part Pinout 8 20-Pin Part Pinout 10 24-Pin Part Pinout 11 Register Reference 12 Register Conventions 12 Register Mapping Tables 12	Additional System Resources	4
Application Notes 5 Development Kits 5 Training 5 CYPros Consultants 5 Solutions Library 5 Technical Support 5 Development Tool Selection 6 Software 6 Designing with PSoC Designer 7 Select Components 7 Configure Components 7 Organize and Connect 7 Generate, Verify, and Debug 7 Pin Information 8 8-Pin Part Pinout 8 16-Pin Part Pinout 10 24-Pin Part Pinout 11 Register Reference 12 Register Conventions 12 Register Mapping Tables 12	PSoC Device Characteristics	5
Development Kits 5 Training 5 CYPros Consultants 5 Solutions Library 5 Technical Support 5 Development Tool Selection 6 Software 6 Designing with PSoC Designer 7 Select Components 7 Configure Components 7 Organize and Connect 7 Generate, Verify, and Debug 7 Pin Information 8 8-Pin Part Pinout 8 16-Pin Part Pinout 10 24-Pin Part Pinout 11 Register Reference 12 Register Conventions 12 Register Mapping Tables 12	Getting Started	5
Training 5 CYPros Consultants 5 Solutions Library 5 Technical Support 5 Development Tool Selection 6 Software 6 Designing with PSoC Designer 7 Select Components 7 Configure Components 7 Organize and Connect 7 Generate, Verify, and Debug 7 Pin Information 8 8-Pin Part Pinout 8 20-Pin Part Pinout 10 24-Pin Part Pinout 11 Register Reference 12 Register Conventions 12 Register Mapping Tables 12	Application Notes	5
CYPros Consultants 5 Solutions Library 5 Technical Support 5 Development Tool Selection 6 Software 6 Designing with PSoC Designer 7 Select Components 7 Configure Components 7 Organize and Connect 7 Generate, Verify, and Debug 7 Pin Information 8 8-Pin Part Pinout 8 20-Pin Part Pinout 10 24-Pin Part Pinout 11 Register Reference 12 Register Conventions 12 Register Mapping Tables 12	Development Kits	5
Solutions Library 5 Technical Support 5 Development Tool Selection 6 Software 6 Designing with PSoC Designer 7 Select Components 7 Configure Components 7 Organize and Connect 7 Generate, Verify, and Debug 7 Pin Information 8 8-Pin Part Pinout 8 16-Pin Part Pinout 10 24-Pin Part Pinout 11 Register Reference 12 Register Conventions 12 Register Mapping Tables 12	Training	5
Technical Support 5 Development Tool Selection 6 Software 6 Designing with PSoC Designer 7 Select Components 7 Configure Components 7 Organize and Connect 7 Generate, Verify, and Debug 7 Pin Information 8 8-Pin Part Pinout 8 16-Pin Part Pinout 10 24-Pin Part Pinout 11 Register Reference 12 Register Conventions 12 Register Mapping Tables 12	CYPros Consultants	5
Development Tool Selection 6 Software 6 Designing with PSoC Designer 7 Select Components 7 Configure Components 7 Organize and Connect 7 Generate, Verify, and Debug 7 Pin Information 8 8-Pin Part Pinout 8 16-Pin Part Pinout 10 24-Pin Part Pinout 11 Register Reference 12 Register Conventions 12 Register Mapping Tables 12	Solutions Library	5
Software 6 Designing with PSoC Designer 7 Select Components 7 Configure Components 7 Organize and Connect 7 Generate, Verify, and Debug 7 Pin Information 8 8-Pin Part Pinout 8 16-Pin Part Pinout 10 24-Pin Part Pinout 11 Register Reference 12 Register Conventions 12 Register Mapping Tables 12	Technical Support	5
Designing with PSoC Designer 7 Select Components 7 Configure Components 7 Organize and Connect 7 Generate, Verify, and Debug 7 Pin Information 8 8-Pin Part Pinout 8 16-Pin Part Pinout 10 24-Pin Part Pinout 11 Register Reference 12 Register Conventions 12 Register Mapping Tables 12	Development Tool Selection	6
Select Components 7 Configure Components 7 Organize and Connect 7 Generate, Verify, and Debug 7 Pin Information 8 8-Pin Part Pinout 8 16-Pin Part Pinout 10 24-Pin Part Pinout 11 Register Reference 12 Register Conventions 12 Register Mapping Tables 12	Software	6
Configure Components7Organize and Connect7Generate, Verify, and Debug7Pin Information88-Pin Part Pinout816-Pin Part Pinout820-Pin Part Pinout1024-Pin Part Pinout11Register Reference12Register Conventions12Register Mapping Tables12	Designing with PSoC Designer	7
Configure Components7Organize and Connect7Generate, Verify, and Debug7Pin Information88-Pin Part Pinout816-Pin Part Pinout820-Pin Part Pinout1024-Pin Part Pinout11Register Reference12Register Conventions12Register Mapping Tables12	Select Components	7
Generate, Verify, and Debug 7 Pin Information 8 8-Pin Part Pinout 8 16-Pin Part Pinout 8 20-Pin Part Pinout 10 24-Pin Part Pinout 11 Register Reference 12 Register Conventions 12 Register Mapping Tables 12		
Pin Information 8 8-Pin Part Pinout 8 16-Pin Part Pinout 8 20-Pin Part Pinout 10 24-Pin Part Pinout 11 Register Reference 12 Register Conventions 12 Register Mapping Tables 12	Organize and Connect	7
Pin Information 8 8-Pin Part Pinout 8 16-Pin Part Pinout 8 20-Pin Part Pinout 10 24-Pin Part Pinout 11 Register Reference 12 Register Conventions 12 Register Mapping Tables 12	Generate, Verify, and Debug	7
16-Pin Part Pinout 8 20-Pin Part Pinout 10 24-Pin Part Pinout 11 Register Reference 12 Register Conventions 12 Register Mapping Tables 12	Pin Information	8
20-Pin Part Pinout 10 24-Pin Part Pinout 11 Register Reference 12 Register Conventions 12 Register Mapping Tables 12	8-Pin Part Pinout	8
24-Pin Part Pinout	16-Pin Part Pinout	8
Register Reference 12 Register Conventions 12 Register Mapping Tables 12	20-Pin Part Pinout	
Register Conventions	24-Pin Part Pinout	11
Register Mapping Tables12	Register Reference	12
	Register Conventions	
	Register Mapping Tables	
	Electrical Specifications	16

Absolute Maximum Ratings16
Operating Temperature
DC Electrical Characteristics17
AC Electrical Characteristics23
Packaging Information
Packaging Dimensions
Thermal Impedances
Solder Reflow Specifications
Ordering Information
Ordering Code Definitions
Acronyms
Acronyms Used
Reference Documents
Document Conventions
Units of Measure38
Numeric Conventions
Glossary
Errata43
Part Numbers Affected43
CY8C21123 Qualification Status43
CY8C21123 Errata Summary43
Document History Page44
Sales, Solutions, and Legal Information47
Worldwide Sales and Design Support47
Products
PSoC® Solutions47
Cypress Developer Community47
Technical Support47

PSoC Functional Overview

The PSoC family consists of many programmable system-on-chip controller devices. These devices are designed to replace multiple traditional MCU-based system components with a low cost single-chip programmable component. A PSoC device includes configurable blocks of analog and digital logic, and programmable interconnect. This architecture allows you to create customized peripheral configurations, to match the requirements of each individual application. Additionally, a fast CPU, Flash program memory, SRAM data memory, and configurable I/O are included in a range of convenient pinouts.

The PSoC architecture, as shown in Figure 1, consists of four main areas: the Core, the System Resources, the Digital System, and the Analog System. Configurable global bus resources allow the combining of all device resources into a complete custom system. Each PSoC device includes four digital blocks. Depending on the PSoC package, up to two analog comparators and up to 16 GPIO are also included. The GPIO provide access to the global digital and analog interconnects.

PSoC Core

The PSoC Core is a powerful engine that supports a rich instruction set. It encompasses SRAM for data storage, an interrupt controller, sleep and watchdog timers, and internal main oscillator (IMO), and internal low-speed oscillator (ILO). The CPU core, called the M8C, is a powerful processor with speeds up to 24 MHz. The M8C is a four MIPS 8-bit Harvard-architecture microprocessor.

System Resources provide additional capability, such as digital clocks or I^2C functionality for implementing an I^2C master, slave, MultiMaster, an internal voltage reference that provides an absolute value of 1.3 V to a number of PSoC subsystems, an SMP that generates normal operating voltages off a single battery cell, and various system resets supported by the M8C.

The digital system consists of an array of digital PSoC blocks, which can be configured into any number of digital peripherals. The digital blocks can be connected to the GPIO through a series of global bus that can route any signal to any pin. This frees designs from the constraints of a fixed peripheral controller.

The analog system consists of four analog PSoC blocks, supporting comparators and analog-to-digital conversion up to 10 bits of precision.

Digital System

The digital system consists of four digital PSoC blocks. Each block is an 8-bit resource that can be used alone or combined with other blocks to form 8, 16, 24, and 32-bit peripherals, which are called user modules. Digital peripheral configurations include:

- PWMs (8- and 16-bit)
- PWMs with dead band (8- and 16-bit)
- Counters (8- to 32-bit)
- Timers (8- to 32-bit)
- UART 8-bit with selectable parity (up to two)
- SPI master and slave
- I²C slave, master, multi-master (one available as a system resource)
- Cyclical redundancy checker/generator (8-bit)
- IrDA (up to two)
- Pseudo random sequence generators (8- to 32-bit)

The digital blocks can be connected to any GPIO through a series of global bus that can route any signal to any pin. The busses also allow for signal multiplexing and performing logic operations. This configurability frees your designs from the constraints of a fixed peripheral controller.

Digital blocks are provided in rows of four, where the number of blocks varies by PSoC device family. This provides an optimum choice of system resources for your application. Family resources are shown in Table 1 on page 5.

Figure 1. Digital System Block Diagram

Designing with PSoC Designer

The development process for the PSoC device differs from that of a traditional fixed function microprocessor. The configurable analog and digital hardware blocks give the PSoC architecture a unique flexibility that pays dividends in managing specification change during development and by lowering inventory costs. These configurable resources, called PSoC Blocks, have the ability to implement a wide variety of user-selectable functions.

The PSoC development process can be summarized in the following four steps:

- 1. Select User Modules
- 2. Configure User Modules
- 3. Organize and Connect
- 4. Generate, Verify, and Debug

Select Components

PSoC Designer provides a library of pre-built, pre-tested hardware peripheral components called "user modules." User modules make selecting and implementing peripheral devices, both analog and digital, simple.

Configure Components

Each of the User Modules you select establishes the basic register settings that implement the selected function. They also provide parameters and properties that allow you to tailor their precise configuration to your particular application. For example, a PWM User Module configures one or more

digital PSoC blocks, one for each 8 bits of resolution. The user module parameters permit you to establish the pulse width and duty cycle. Configure the parameters and properties to correspond to your chosen application. Enter values directly or by selecting values from drop-down menus. All the user modules are documented in datasheets that may be viewed directly in PSoC Designer or on the Cypress website. These user module datasheets explain the internal operation of the User Module and provide performance specifications. Each datasheet describes the use of each user module parameter, and other information you may need to successfully implement your design.

Organize and Connect

You build signal chains at the chip level by interconnecting user modules to each other and the I/O pins. You perform the selection, configuration, and routing so that you have complete control over all on-chip resources.

Generate, Verify, and Debug

When you are ready to test the hardware configuration or move on to developing code for the project, you perform the "Generate Configuration Files" step. This causes PSoC Designer to generate source code that automatically configures the device to your specification and provides the software for the system. The generated code provides application programming interfaces (APIs) with high-level functions to control and respond to hardware events at run time and interrupt service routines that you can adapt as needed.

A complete code development environment allows you to develop and customize your applications in C, assembly language, or both.

The last step in the development process takes place inside PSoC Designer's Debugger (access by clicking the Connect icon). PSoC Designer downloads the HEX image to the ICE where it runs at full speed. PSoC Designer debugging capabilities rival those of systems costing many times more. In addition

to traditional single-step, run-to-breakpoint and watch-variable features, the debug interface provides a large trace buffer and allows you to define complex breakpoint events that include monitoring address and data bus values, memory locations and external signals.

Pin	Ту	vpe	Pin	Description				
No.	Digital	Analog	Name	Description				
1	I/O	I	P0[3]	Analog column mux input				
2	I/O	I	P0[1]	Analog column mux input				
3	I/O		P1[7]	I ² C SCL				
4	I/O		P1[5]	I ² C SDA				
5	I/O		P1[3]					
6	I/O		P1[1]	I ² C SCL, ISSP-SCLK ^[5]				
7	Po	wer	V _{SS}	Ground connection				
8	I/O		P1[0]	I ² C SDA, ISSP-SDATA ^[5]				
9	I/O		P1[6]					
10	I/O		P1[4]	EXTCLK				
11	In	put	XRES	Active high external reset with internal pull-down				
12	I/O	I	P0[4]	V _{REF}				
13	Po	wer	V _{DD}	Supply voltage				
14	I/O	I	P0[7]	Analog column mux input				
15	I/O	I	P0[5]	Analog column mux input				
16			NC	No Connection. Pin must be left floating				
LEGEN	A = Analog	g, I = Input, ar	d O = Output	ut				

Table 4. Pin Definitions – CY8C21223 16-Pin QFN with no E-Pad [4]

LEGEND A = Analog, I = Input, and O = Output.

Notes

The center pad on the QFN package must be connected to ground (Vss) for best mechanical, thermal, and electrical performance. If not connected to ground, it must be electrically floated and not connected to any other signal.
 These are the ISSP pins, which are not high Z at POR (power on reset). See the PSoC Technical Reference Manual for details.

24-Pin Part Pinout

Table 6. Pin Definitions – CY8C21323 24-Pin QFN^[8]

Pin	Ту	pe	Pin	Description
No.	Digital	Analog	Name	Description
1	I/O	I	P0[1]	Analog column mux input
2	Po	wer	SMP	SMP connection to required external components
3	Po	wer	V _{SS}	Ground connection ^[9]
4	I/O		P1[7]	I ² C SCL
5	I/O		P1[5]	I ² C SDA
6	I/O		P1[3]	
7	I/O		P1[1]	I ² C SCL, ISSP-SCLK ^[10]
8			NC	No connection. Pin must be left floating
9	Po	wer	V _{SS}	Ground connection ^[9]
10	I/O		P1[0]	I ² C SDA, ISSP-SDATA ^[10]
11	I/O		P1[2]	
12	I/O		P1[4]	Optional (EXTCLK) input
13	I/O		P1[6]	
14	In	put	XRES	Active high external reset with internal pull-down
15			NC	No connection. Pin must be left floating
16	I/O	I	P0[0]	Analog column mux input
17	I/O	I	P0[2]	Analog column mux input
18	I/O	I	P0[4]	Analog column mux input
19	I/O	I	P0[6]	Analog column mux input
20	Po	wer	V _{DD}	Supply voltage
21	Po	wer	V _{SS}	Ground connection ^[9]
22	I/O	I	P0[7]	Analog column mux input
23	I/O	I	P0[5]	Analog column mux input
24	I/O	I	P0[3]	Analog column mux input

LEGEND A = Analog, I = Input, and O = Output.

Notes

- 8. The center pad on the QFN package must be connected to ground (V_{SS}) for best mechanical, thermal, and electrical performance. If not connected to ground, it must be electrically floated and not connected to any other signal. 9. All V_{SS} pins should be brought out to one common GND plane.

^{10.} These are the ISSP pins, which are not high Z at POR (power on reset). See the PSoC Technical Reference Manual for details.

Table 8. Register Map Bank 0 Table: User Space (continued)

Name	Addr (0,Hex)	Access	Name	Addr (0,Hex)	Access	Name	Addr (0,Hex)	Access	Name	Addr (0,Hex)	Access
	30			70		RDIORI	B0	RW		F0	
	31			71		RDI0SYN	B1	RW		F1	
	32		ACE00CR1	72	RW	RDI0IS	B2	RW		F2	
	33		ACE00CR2	73	RW	RDI0LT0	B3	RW		F3	
	34			74		RDI0LT1	B4	RW		F4	
	35			75		RDI0RO0	B5	RW		F5	
	36		ACE01CR1	76	RW	RDI0RO1	B6	RW		F6	
	37		ACE01CR2	77	RW		B7		CPU_F	F7	RL
	38			78			B8			F8	
	39			79			B9			F9	
	3A			7A			BA			FA	
	3B			7B			BB			FB	
	3C			7C			BC			FC	
	3D			7D			BD			FD	
	3E			7E			BE		CPU_SCR1	FE	#
	3F			7F			BF		CPU_SCR0	FF	#

Blank fields are Reserved and must not be accessed.

Access is bit specific.

Table 9. Register Map Bank 1 Table: Configuration Space

Name	Addr (1,Hex)	Access	Name	Addr (1,Hex)	Access	Name	Addr (1,Hex)	Access	Name	Addr (1,Hex)	Access
PRT0DM0	00	RW		40		ASE10CR0	80	RW		C0	
PRT0DM1	01	RW		41			81			C1	
PRT0IC0	02	RW		42			82			C2	
PRT0IC1	03	RW		43			83			C3	
PRT1DM0	04	RW		44		ASE11CR0	84	RW		C4	
PRT1DM1	05	RW		45			85			C5	
PRT1IC0	06	RW		46			86			C6	
PRT1IC1	07	RW		47			87			C7	
	08			48			88			C8	
	09			49			89			C9	
	0A			4A			8A			CA	
	0B			4B			8B			СВ	
	0C			4C			8C			CC	
	0D			4D			8D			CD	
	0E			4E			8E			CE	
	0F			4F			8F			CF	
	10			50			90		GDI_O_IN	D0	RW
	11			51			91		GDI_E_IN	D1	RW
	12			52			92		GDI_O_OU	D2	RW
	13			53			93		GDI_E_OU	D3	RW
	14			54			94			D4	
	15			55			95			D5	
	16			56			96			D6	
	17			57			97			D7	
	18			58			98			D8	
	19			59			99			D9	
	1A			5A			9A			DA	
	1B			5B			9B			DB	

Name	Addr (1,Hex)	Access	Name	Addr (1,Hex)	Access	Name	Addr (1,Hex)	Access	Name	Addr (1,Hex)	Access
	1C			5C			9C			DC	
	1D			5D			9D		OSC_GO_EN	DD	RW
	1E			5E			9E		OSC_CR4	DE	RW
	1F			5F			9F		OSC_CR3	DF	RW
DBB00FN	20	RW	CLK_CR0	60	RW		A0		OSC_CR0	E0	RW
DBB00IN	21	RW	CLK_CR1	61	RW		A1		OSC_CR1	E1	RW
DBB00OU	22	RW	ABF_CR0	62	RW		A2		OSC_CR2	E2	RW
	23		AMD_CR0	63	RW		A3		VLT_CR	E3	RW
DBB01FN	24	RW	CMP_GO_EN	64	RW		A4		VLT_CMP	E4	R
DBB01IN	25	RW		65			A5		ADC0_TR	E5	RW
DBB01OU	26	RW	AMD_CR1	66	RW		A6		ADC1_TR	E6	RW
	27		ALT_CR0	67	RW		A7			E7	
DCB02FN	28	RW		68			A8		IMO_TR	E8	W
DCB02IN	29	RW		69			A9		ILO_TR	E9	W
DCB02OU	2A	RW		6A			AA		BDG_TR	EA	RW
-	2B		CLK_CR3	6B	RW		AB		ECO_TR	EB	W
DCB03FN	2C	RW	TMP_DR0	6C	RW		AC			EC	
DCB03IN	2D	RW	TMP_DR1	6D	RW		AD			ED	
DCB03OU	2E	RW	TMP_DR2	6E	RW		AE			EE	
	2F		TMP_DR3	6F	RW		AF			EF	
	30			70		RDIORI	B0	RW		F0	
	31			71		RDI0SYN	B1	RW		F1	
	32		ACE00CR1	72	RW	RDI0IS	B2	RW		F2	
	33		ACE00CR2	73	RW	RDI0LT0	B3	RW		F3	
	34			74		RDI0LT1	B4	RW		F4	
	35			75		RDI0RO0	B5	RW		F5	
	36		ACE01CR1	76	RW	RDI0RO1	B6	RW		F6	
	37		ACE01CR2	77	RW		B7		CPU_F	F7	RL
	38			78			B8			F8	
	39			79			B9			F9	
	ЗA		Ī	7A			BA		FLS_PR1	FA	RW
	3B		Ī	7B			BB			FB	
	3C		Ī	7C			BC			FC	
	3D		Ī	7D			BD			FD	
	3E		Ī	7E			BE		CPU_SCR1	FE	#
	3F		l	7F			BF		CPU_SCR0	FF	#

Table 9. Register Map Bank 1 Table: Configuration Space (continued)

Blank fields are Reserved and must not be accessed.

Access is bit specific.

Electrical Specifications

This section presents the DC and AC electrical specifications of the CY8C21x23 PSoC device. For up to date electrical specifications, check if you have the latest datasheet by visiting the web at http://www.cypress.com.

Specifications are valid for –40 $^{\circ}C \leq T_A \leq 85 \ ^{\circ}C$ and $T_J \leq 100 \ ^{\circ}C,$ except where noted.

Refer to Table 24 on page 25 for the electrical specifications on the IMO using SLIMO mode.

Absolute Maximum Ratings

Exceeding maximum ratings may shorten the useful life of the device. User guidelines are not tested.

Symbol	Description	Min	Тур	Max	Units	Notes
Τ _{STG}	Storage temperature	-55	_	+100	°C	Higher storage temperatures reduce data retention time. Recommended storage temperature is +25 °C \pm 25 °C. Extended duration storage temperatures higher than 65 °C degrade reliability.
T _{BAKETEMP}	Bake temperature	-	125	See package label	°C	
t _{BAKETIME}	Bake time	See package label	_	72	Hours	
T _A	Ambient temperature with power applied	-40	-	+85	°C	
V _{DD}	Supply voltage on V_{DD} relative to V_{SS}	-0.5	-	+6.0	V	
V _{IO}	DC input voltage	V _{SS} – 0.5	-	V _{DD} + 0.5	V	
V _{IOZ}	DC voltage applied to tristate	V _{SS} – 0.5	-	V _{DD} + 0.5	V	
I _{MIO}	Maximum current into any port pin	-25	-	+50	mA	
ESD	Electro static discharge voltage	2000	-	-	V	Human body model ESD
LU	Latch-up current	-	_	200	mA	

Table 10. Absolute Maximum Ratings

DC Amplifier Specifications

The following tables list the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C \leq T_A \leq 85 °C, 3.0 V to 3.6 V and –40 °C \leq T_A \leq 85 °C, or 2.4 V to 3.0 V and –40 °C \leq T_A \leq 85 °C, respectively. Typical parameters apply to 5 V, 3.3 V, or 2.7 V at 25 °C and are for design guidance only.

Table 15. 5-V DC Amplifier Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
V _{OSOA}	Input offset voltage (absolute value)	-	2.5	15	mV	
TCV _{OSOA}	Average input offset voltage drift	-	10	-	μV/°C	
I _{EBOA}	Input leakage current (port 0 analog pins)	-	200	-	pА	Gross tested to 1 µA
C _{INOA}	Input capacitance (port 0 analog pins)	-	4.5	9.5	pF	Package and pin dependent. Temp = 25 °C
V _{CMOA}	Common mode voltage range	0.0	-	V _{DD} – 1	V	
G _{OLOA}	Open loop gain	80	-	-	dB	
I _{SOA}	Amplifier supply current	_	10	30	μA	

Table 16. 3.3-V DC Amplifier Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
V _{OSOA}	Input offset voltage (absolute value)	-	2.5	15	mV	
TCV _{OSOA}	Average input offset voltage drift	-	10	-	µV/°C	
I _{EBOA}	Input leakage current (port 0 analog pins)	-	200	-	pА	Gross tested to 1 µA
C _{INOA}	Input capacitance (port 0 analog pins)	-	4.5	9.5	pF	Package and pin dependent. Temp = 25 °C
V _{CMOA}	Common mode voltage range	0	-	V _{DD} – 1	V	
G _{OLOA}	Open loop gain	80	-	-	dB	
I _{SOA}	Amplifier supply current	-	10	30	μA	

Table 17. 2.7V DC Amplifier Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
V _{OSOA}	Input offset voltage (absolute value)	-	2.5	15	mV	
TCV _{OSOA}	Average input offset voltage drift	-	10	-	µV/°C	
I _{EBOA}	Input leakage current (port 0 analog pins)	-	200	-	pА	Gross tested to 1 µA
C _{INOA}	Input capacitance (port 0 analog pins)	-	4.5	9.5	pF	Package and pin dependent. Temp = 25 °C
V _{CMOA}	Common mode voltage range	0	-	V _{DD} – 1	V	
G _{OLOA}	Open loop gain	80	-	-	dB	
I _{SOA}	Amplifier supply current	-	10	30	μA	

Table 23. 2.7-V AC Chip-Level Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
F _{IMO12}	IMO frequency for 12 MHz	11.5	12	12.7 ^[24,25]	MHz	Trimmed for 2.7 V operation using factory trim values. See Figure 11 on page 16. SLIMO mode = 1.
F _{IMO6}	IMO frequency for 6 MHz	5.5	6	6.5 ^[24,25]	MHz	Trimmed for 2.7 V operation using factory trim values. See Figure 11 on page 16. SLIMO mode = 1.
F _{CPU1}	CPU frequency (2.7 V nominal)	0.093	3	3.15 ^[24]	MHz	24 MHz only for SLIMO mode = 0.
F _{BLK27}	Digital PSoC block frequency (2.7 V nominal)	Digital PSoC block frequency (2.7 V nominal) 0 1		12.5 ^[24,25]	MHz	Refer to the section AC Digital Block Specifications on page 26.
F _{32K1}	ILO frequency	8	32	96	kHz	
F _{32K_U}	ILO untrimmed frequency	5	-	100	kHz	After a reset and before the M8C starts to run, the ILO is not trimmed. See the system resets section of the PSoC Technical Reference Manual for details on this timing.
t _{XRST}	External reset pulse width	10	-	-	μs	
DC _{ILO}	ILO duty cycle	20	50	80	%	
F _{MAX}	Maximum frequency of signal on row input or row output	-	_	12.3	MHz	
SR _{POWER_UP}	Power supply slew rate	_	-	250	V/ms	V _{DD} slew rate during power-up.
^t POWERUP	Time from end of POR to CPU executing code	_	16	100	ms	Power-up from 0 V. See the system resets section of the PSoC Technical Reference Manual.
t _{jit_IMO}	12-MHz IMO cycle-to-cycle jitter (RMS) ^[26]	-	400	1000	ps	
	12-MHz IMO long term N cycle-to-cycle jitter (RMS) ^[26]	-	600	1300	ps	N = 32
	12-MHz IMO period jitter (RMS) ^[26]	-	100	500	ps	

Notes

24. 2.4 V < V_{DD} < 3.0 V.
 25. Refer to the application note Adjusting PSoC Microcontroller Trims for Dual Voltage-Range Operation – AN2012 for more information on maximum frequency for user modules.

26. Refer to the application note, Understanding Datasheet Jitter Specifications for Cypress Timing Products - AN5054 for more information on jitter specifications.

Table 29. 2.7-V AC Digital Block Specifications

Function	Description	Min	Тур	Max	Units	Notes
All functions	Block input clock frequency	-	-	12.7	MHz	2.4 V < V _{DD} < 3.0 V.
Timer	Capture pulse width	100 ^[28]	-	-	ns	
	Input clock frequency, with or without capture	-	-	12.7	MHz	
Counter	Enable input pulse width	100	-	-	ns	
	Input clock frequency, no enable input	-	-	12.7	MHz	
	Input clock frequency, enable input	-	-	12.7	MHz	
Dead band	Kill pulse width:				•	
	Asynchronous restart mode	20	-	-	ns	
	Synchronous restart mode	100	-	_	ns	
	Disable mode Input clock frequency		-	-	ns	
			-	12.7	MHz	
CRCPRS (PRS mode)	Input clock frequency	-	-	12.7	MHz	
CRCPRS (CRC mode)	Input clock frequency		Ι	12.7	MHz	
SPIM	Input clock frequency	-	-	6.35	MHz	The SPI serial clock (SCLK) frequency is equal to the input clock frequency divided by 2.
SPIS	Input clock (SCLK) frequency	-	-	4.1	MHz	
	Width of SS_ Negated between transmissions	100	-	-	ns	
Transmitter	Input clock frequency	-	-	12.7	MHz	The baud rate is equal to the input clock frequency divided by 8.
Receiver	Input clock frequency	-	-	12.7	MHz	The baud rate is equal to the input clock frequency divided by 8.

AC Programming Specifications

Table 33 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C \leq T_A \leq 85 °C, or 3.0 V to 3.6 V and -40 °C \leq T_A \leq 85 °C, respectively. Typical parameters apply to 5 V, 3.3 V, or 2.7 V at 25 °C and are for design guidance only.

Table 33. AC Programming Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
t _{RSCLK}	Rise time of SCLK	1	-	20	ns	
t _{FSCLK}	Fall time of SCLK	1	-	20	ns	
t _{SSCLK}	Data set up time to falling edge of SCLK	40	-	-	ns	
t _{HSCLK}	Data hold time from falling edge of SCLK	40	-	-	ns	
F _{SCLK}	Frequency of SCLK	0	-	8	MHz	
t _{ERASEB}	Flash erase time (block)	-	10	-	ms	
t _{WRITE}	Flash block write time	-	80	-	ms	
t _{DSCLK3}	Data out delay from falling edge of SCLK	-	-	50	ns	$3.0 \leq V_{DD} \leq 3.6.$
t _{DSCLK2}	Data out delay from falling edge of SCLK	-	-	70	ns	$2.4 \leq V_{DD} \leq 3.0.$
t _{ERASEALL}	Flash erase time (bulk)	-	20	-	ms	Erase all blocks and protection fields at once.
t _{PROGRAM_HOT}	Flash block erase + flash block write time	-	-	180 ^[30]	ms	$0~^{\circ}C \leq Tj \leq 100~^{\circ}C.$
t _{PROGRAM_COLD}	Flash block erase + flash block write time	—	-	360 ^[30]	ms	$-40~^{\circ}C \leq Tj \leq 0~^{\circ}C.$

AC I²C Specifications

Table 34 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C \leq T_A \leq 85 °C, 3.0 V to 3.6 V and -40 °C \leq T_A \leq 85 °C, or 2.4 V to 3.0 V and -40 °C \leq T_A \leq 85 °C, respectively. Typical parameters apply to 5 V, 3.3 V, or 2.7 V at 25 °C and are for design guidance only.

Table 34. AC Characteristics of the	2 C SDA and SCL Pins for V _{CC} \geq 3.0 V
-------------------------------------	--

Symbol	Description	Standar	d Mode	Fast I	Node	Units
Symbol Description		Min	Max	Min	Max	Units
F _{SCLI2C}	SCL clock frequency	0	100	0	400	kHz
t _{HDSTAI2C}	Hold time (repeated) START condition. After this period, the first clock pulse is generated.	4.0	-	0.6	-	μs
t _{LOWI2C}	Low period of the SCL clock	4.7	-	1.3	-	μs
t _{HIGHI2C}	High period of the SCL clock	4.0	-	0.6	-	μs
t _{SUSTAI2C}	Setup time for a repeated START condition	4.7	-	0.6	-	μs
t _{HDDATI2C}	Data hold time	0	-	0	-	μs
t _{SUDATI2C}	Data setup time	250	-	100 ^[29]	-	ns
t _{SUSTOI2C}	Setup time for STOP condition	4.0	-	0.6	-	μs
t _{BUFI2C}	Bus free time between a STOP and START condition	4.7	-	1.3	-	μs
t _{SPI2C}	Pulse width of spikes are suppressed by the input filter	_	-	0	50	ns

Notes

29. A fast-mode I²C-bus device can be used in a standard-mode I²C-bus system, but the requirement t_{SUDAT} ≥ 250 ns must then be met. This automatically becomes the case if the device does not stretch the LOW period of the SCL signal. If such device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line t_{rmax} + t_{SUDAT} = 1000 + 250 = 1250 ns (according to the standard-mode I²C-bus specification) before the SCL line is released.
 30. For the full industrial range, you must employ a temperature sensor user module (FlashTemp) and feed the result to the temperature argument before writing. Refer to the application note, Design Aids — Reading and Writing PSoC[®] Flash – AN2015 for more information on Flash APIs.

Figure 16. 16-Pin (150-Mil) SOIC

Figure 17. 16-Pin QFN with no E-Pad

0.05 MAX

-0.60 MAX

NOTES

1. REFERENCE JEDEC # MO-220 2. ALL DIMENSIONS ARE IN MILLIMETERS

TOP VIEW

-3.00±0.10-

PIN 1 DOT

12

9

8

3.00±0.10

16

Ð

5

1

001-09116 *J

Important Note For information on the preferred dimensions for mounting QFN packages, refer the application note, Application Notes for Surface Mount Assembly of Amkor's MicroLeadFrame (MLF) Packages available at http://www.amkor.com. Note that pinned vias for thermal conduction are not required for the low power 24, 32, and 48-pin QFN PSoC devices.

Ordering Information

The following table lists the CY8C21x23 PSoC device's key package features and ordering codes.

Table 38. CY8C21x23 PSoC Device Key Features and Ordering Information

Package	Ordering Code	Flash (Bytes)	RAM (Bytes)	Switch Mode Pump	Temperature Range	Digital PSoC Blocks	Analog Blocks	Digital I/O Pins	Analog Inputs	Analog Outputs	XRES Pin
8-Pin (150-Mil) SOIC	CY8C21123-24SXI	4 K	256	No	–40 °C to +85 °C	4	4	6	4	0	No
8-Pin (150-Mil) SOIC (Tape and Reel)	CY8C21123-24SXIT	4 K	256	No	–40 °C to +85 °C	4	4	6	4	0	No
16-Pin (150-Mil) SOIC	CY8C21223-24SXI	4 K	256	Yes	–40 °C to +85 °C	4	4	12	8	0	No
16-Pin (150-Mil) SOIC (Tape and Reel)	CY8C21223-24SXIT	4 K	256	Yes	–40 °C to +85 °C	4	4	12	8	0	No
16-Pin (3 × 3) QFN with no E-Pad	CY8C21223-24LGXI	4 K	256	No	–40 °C to +85 °C	4	4	12	8	0	Yes
20-Pin (210-Mil) SSOP	CY8C21323-24PVXI	4 K	256	No	–40 °C to +85 °C	4	4	16	8	0	Yes
20-Pin (210-Mil) SSOP (Tape and Reel)	CY8C21323-24PVXIT	4 K	256	No	–40 °C to +85 °C	4	4	16	8	0	Yes
24-Pin (4 × 4) QFN (Punched)	CY8C21323-24LFXI	4 K	256	Yes	–40 °C to +85 °C	4	4	16	8	0	Yes
24-Pin (4 × 4) QFN (Punched) (Tape and Reel)	CY8C21323-24LFXIT	4 K	256	Yes	–40 °C to +85 °C	4	4	16	8	0	Yes
24-Pin (4 × 4) QFN (Sawn)	CY8C21323-24LQXI	4 K	256	Yes	–40 °C to +85 °C	4	4	16	8	0	Yes
24-Pin (4 × 4) QFN (Sawn) (Tape and Reel)	CY8C21323-24LQXIT	4 K	256	Yes	–40 °C to +85 °C	4	4	16	8	0	Yes

Note For Die sales information, contact a local Cypress sales office or Field Applications Engineer (FAE).

Ordering Code Definitions

CY 8 C 21 xxx-24xx

Document Conventions

Units of Measure

Table 40 lists the units of measures.

Table 40. Units of Measure

Symbol	Unit of Measure	Symbol	Unit of Measure
dB	decibels	mH	millihenry
°C	degree Celsius	μH	microhenry
μF	microfarad	μs	microsecond
pF	picofarad	ms	millisecond
kHz	kilohertz	ns	nanosecond
MHz	megahertz	ps	picosecond
rt-Hz	root hertz	μV	microvolt
kΩ	kilohm	mV	millivolt
Ω	ohm	mVpp	millivolts peak-to-peak
μA	microampere	V	volt
mA	milliampere	W	watt
nA	nanoampere	mm	millimeter
pА	pikoampere	%	percent

Numeric Conventions

Hexadecimal numbers are represented with all letters in uppercase with an appended lowercase 'h' (for example, '14h' or '3Ah'). Hexadecimal numbers may also be represented by a '0x' prefix, the C coding convention. Binary numbers have an appended lowercase 'b' (for example, 01010100b' or '01000011b'). Numbers not indicated by an 'h' or 'b' are decimals.

Glossary

active high	 A logic signal having its asserted state as the logic 1 state. A logic signal having the logic 1 state as the higher voltage of the two states.
analog blocks	The basic programmable opamp circuits. These are SC (switched capacitor) and CT (continuous time) blocks. These blocks can be interconnected to provide ADCs, DACs, multi-pole filters, gain stages, and much more.
analog-to-digital (ADC)	A device that changes an analog signal to a digital signal of corresponding magnitude. Typically, an ADC converts a voltage to a digital number. The digital-to-analog (DAC) converter performs the reverse operation.
Application programming interface (API)	A series of software routines that comprise an interface between a computer application and lower level services and functions (for example, user modules and libraries). APIs serve as building blocks for programmers that create software applications.
asynchronous	A signal whose data is acknowledged or acted upon immediately, irrespective of any clock signal.
bandgap reference	A stable voltage reference design that matches the positive temperature coefficient of VT with the negative temperature coefficient of VBE, to produce a zero temperature coefficient (ideally) reference.
bandwidth	 The frequency range of a message or information processing system measured in hertz. The width of the spectral region over which an amplifier (or absorber) has substantial gain (or loss); it is sometimes represented more specifically as, for example, full width at half maximum.

Glossary (continued)

bias	 A systematic deviation of a value from a reference value. The amount by which the average of a set of values departs from a reference value. The electrical, mechanical, magnetic, or other force (field) applied to a device to establish a reference level to operate the device.
block	 A functional unit that performs a single function, such as an oscillator. A functional unit that may be configured to perform one of several functions, such as a digital PSoC block or an analog PSoC block.
buffer	 A storage area for data that is used to compensate for a speed difference, when transferring data from one device to another. Usually refers to an area reserved for IO operations, into which data is read, or from which data is written.
	2. A portion of memory set aside to store data, often before it is sent to an external device or as it is received from an external device.
	3. An amplifier used to lower the output impedance of a system.
bus	1. A named connection of nets. Bundling nets together in a bus makes it easier to route nets with similar routing patterns.
	2. A set of signals performing a common function and carrying similar data. Typically represented using vector notation; for example, address[7:0].
	3. One or more conductors that serve as a common connection for a group of related devices.
clock	The device that generates a periodic signal with a fixed frequency and duty cycle. A clock is sometimes used to synchronize different logic blocks.
comparator	An electronic circuit that produces an output voltage or current whenever two input levels simultaneously satisfy predetermined amplitude requirements.
compiler	A program that translates a high level language, such as C, into machine language.
configuration space	In PSoC devices, the register space accessed when the XIO bit, in the CPU_F register, is set to '1'.
crystal oscillator	An oscillator in which the frequency is controlled by a piezoelectric crystal. Typically a piezoelectric crystal is less sensitive to ambient temperature than other circuit components.
cyclic redundancy check (CRC)	A calculation used to detect errors in data communications, typically performed using a linear feedback shift register. Similar calculations may be used for a variety of other purposes such as data compression.
data bus	A bi-directional set of signals used by a computer to convey information from a memory location to the central processing unit and vice versa. More generally, a set of signals used to convey data between digital functions.
debugger	A hardware and software system that allows you to analyze the operation of the system under development. A debugger usually allows the developer to step through the firmware one step at a time, set break points, and analyze memory.
dead band	A period of time when neither of two or more signals are in their active state or in transition.
digital blocks	The 8-bit logic blocks that can act as a counter, timer, serial receiver, serial transmitter, CRC generator, pseudo-random number generator, or SPI.
digital-to-analog (DAC)	A device that changes a digital signal to an analog signal of corresponding magnitude. The analog-to-digital (ADC) converter performs the reverse operation.

Errata

This section describes the errata for the CY8C21x23 PSoC[®] programmable system-on-chip family. Details include errata trigger conditions, scope of impact, available workarounds, and silicon revision applicability.

Contact your local Cypress Sales Representative if you have questions.

Part Numbers Affected

Part Number	Ordering Information
	CY8C21123-24SXI
	CY8C21123-24SXIT
	CY8C21223-24SXI
	CY8C21223-24SXIT
CY8C21123	CY8C21323-24PVXI
010021123	CY8C21323-24PVXIT
	CY8C21323-24LFXI
	CY8C21323-24LFXIT
	CY8C21323-24LQXI
	CY8C21323-24LQXIT

CY8C21123 Qualification Status

Product Status: Production

CY8C21123 Errata Summary

The following table defines the errata applicability to available CY8C21123 family devices. An "X" indicates that the errata pertains to the selected device.

Note Errata items, in the table below, are hyperlinked. Click on any item entry to jump to its description.

Items	Part Number	Silicon Revision	Fix Status
[1.] Internal Main Oscillator (IMO) Tolerance Deviation at Temperature Extremes	CY8C21123		No silicon fix is planned. Workaround is required.

1. Internal Main Oscillator (IMO) Tolerance Deviation at Temperature Extremes

Problem Definition

Asynchronous Digital Communications Interfaces may fail framing beyond 0 to 70 °C. This problem does not affect end-product usage between 0 and 70 °C.

Parameters Affected

The IMO frequency tolerance. The worst case deviation when operated below 0 °C and above +70 °C and within the upper and lower datasheet temperature range is $\pm 5\%$.

Trigger Condition(S)

The asynchronous Rx/Tx clock source IMO frequency tolerance may deviate beyond the data sheet limit of $\pm 2.5\%$ when operated beyond the temperature range of 0 to ± 70 °C.

Scope of Impact

This problem may affect UART, IrDA, and FSK implementations.

Workaround

Implement a quartz crystal stabilized clock source on at least one end of the asynchronous digital communications interface.

Fix Status

No silicon fix is planned. The workaround mentioned above should be used.

Document History Page

Revision	ECN	Orig. of Change	Submission Date	Description of Change
**	133248	NWJ	See ECN	New silicon and document (Revision **).
*A	208900	NWJ	See ECN	Add new part, new package and update all ordering codes to Pb-free.
*В	212081	NWJ	See ECN	Expand and prepare Preliminary version.
*C	227321	CMS Team	See ECN	Update specs., data, format.
*D	235973	SFV	See ECN	Updated Overview and Electrical Spec. chapters, along with 24-pin pinout. Added CMP_GO_EN register (1,64h) to mapping table.
*E	290991	НМТ	See ECN	Update datasheet standards per SFV memo. Fix device table. Add part numbers to pinouts and fine tune. Change 20-pin SSOP to CY8C21323. Add Reflow Temp. table. Update diagrams and specs.
*F	301636	HMT	See ECN	DC Chip-Level Specification changes. Update links to new CY.com Portal.
*G	324073	НМТ	See ECN	Obtained clearer 16 SOIC package. Update Thermal Impedances and Solder Reflow tables. Re-add pinout ISSP notation. Fix ADC type-o. Fix TMP register names. Update Electrical Specifications. Add CY logo. Update CY copyright. Make datasheet Final.
*H	2588457	KET/HMI/ AESA	10/22/2008	New package information on page 9. Converted datasheet to new template. Added 16-Pin OFN package diagram.
*	2618175	OGNE / PYRS	12/09/2008	Added Note in Ordering Information Section. Changed title from PSoC Mixed-Signal Array to PSoC Programmable System-on-Chip. Updated 'Devel opment Tools' and 'Designing with PSoC Designer' sections on pages 5 and 6
*J	2682782	MAXK / AESA	04/03/2009	Corrected 16 COL pinout.
*K	2699713	MAXK	04/29/2009	Minor ECN to correct paragraph style of 16 COL Pinout. No change in content
*L	2762497	JVY	09/11/2009	Updated DC GPIO, AC Chip-Level, and AC Programming Specifications as follows: Modified F_{IMO6} and T_{WRITE} specifications. Replaced T_{RAMP} time) specification with SR_{POWER_UP} (slew rate) specification. Added note [11] to Flash Endurance specification. Added I _{OH} , I _{OL} , DC _{ILO} , F_{32K_U} , $T_{POWERUP}$, $T_{ERASEALL}$, $T_{PROGRAM_HOT}$, and $T_{PROGRAM_COLD}$ specifications
*M	2792630	TTO	10/26/2009	Updated ordering information for CY8C21223-24LGXI to indicate availability of XRES pin.
*N	2901653	NJF	03/30/2010	Changed 16-pin COL to 16-pin QFN in the datasheet. Added Contents. Updated links in Sales, Solutions, and Legal Information Updated Cypress website links. Added T _{BAKETEMP} and T _{BAKETIME} parameters in Absolute Maximum Ratings Updated 5-V and 3.3-V AC Chip-Level Specifications Updated Notes in Packaging Information and package diagrams. Updated Ordering Code Definitions
*0	2928895	YJI	05/06/2010	No technical updates. Included with EROS spec.

Document History Page (continued)

Revision	ECN	Orig. of Change	Submission Date	Description of Change
۴P	3044869	NJF	10/01/2010	Added PSoC Device Characteristics table. Added DC I ² C Specifications table. Added F _{32K U} max limit. Added Tjit_IMO specification, removed existing jitter specifications. Updated Units of Measure, Acronyms, Glossary, and References sections. Updated solder reflow specifications. No specific changes were made to AC Digital Block Specifications table and I ² C Timing Diagram. They were updated for clearer understanding. Updated Figure 13 since the labelling for y-axis was incorrect. Template and styles update.
*Q	3263669	YJI	05/23/2011	Updated 16-pin SOIC and 20-pin SSOP package diagrams. Updated Development Tool Selection and Designing with PSoC Designer sections.
*R	3383787	GIR	09/26/2011	The text "Pin must be left floating" is included under Description of NC pin in Table 6 on page 11. Updated Table 37 on page 35 for improved clarity.
*S	3558729	RJVB	03/22/2012	Updated 16-pin SOIC package.
*T	3598261	LURE / XZNG	04/24/2012	Changed the PWM description string from "8- to 32-bit" to "8- and 16-bit".
*U	3649990	BVI / YLIU	06/19/2012	Updated description of NC pin as "No Connection. Pin must be left floating"
*V	3873870	UVS	01/18/2013	Updated Packaging Information: spec 51-85068 – Changed revision from *D to *E. spec 001-09116 – Changed revision from *F to *G. spec 51-85203 – Changed revision from *C to *D.
*W	3993321	UVS	05/07/2013	Added Errata.
*X	4067216	UVS	07/18/2013	Added Errata footnotes (Note 19). Updated Features: Replaced 2.5% with 5% under "Precision, programmable clocking". Updated Electrical Specifications: Updated AC Electrical Characteristics: Updated AC Chip-Level Specifications: Added Note 19 and referred the same note in F _{IMO24} parameter. Updated minimum and maximum values of F _{IMO24} parameter. Updated AC Digital Block Specifications: Replaced all instances of maximum value "49.2" with "50.4" and "24.6" with "25.2" in Table 28. Updated Packaging Information: spec 51-85066 – Changed revision from *E to *F. spec 001-09116 – Changed revision from *G to *H. Updated to new template.
*Ү	4479648	RJVB	08/20/2014	Updated Errata: Updated CY8C21123 Errata Summary: Updated details in "Fix Status" column in the table. Updated details in "Fix Status" bulleted point below the table.