

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E-XF

Product Status	Obsolete
Core Processor	M8C
Core Size	8-Bit
Speed	24MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	16
Program Memory Size	4KB (4K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.4V ~ 5.25V
Data Converters	A/D 8x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	24-VFQFN Exposed Pad
Supplier Device Package	24-QFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c21323-24lfxi

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PSoC Device Characteristics

Depending on your PSoC device characteristics, the digital and analog systems can have 16, 8, or 4 digital blocks, and 12, 6, or 4 analog blocks. Table 1 lists the resources available for specific PSoC device groups. The PSoC device covered by this datasheet is highlighted.

PSoC Part Number	Digital I/O	Digital Rows	Digital Blocks	Analog Inputs	Analog Outputs	Analog Columns	Analog Blocks	SRAM Size	Flash Size
CY8C29x66	up to 64	4	16	up to 12	4	4	12	2 K	32 K
CY8C28xxx	up to 44	up to 3	up to 12	up to 44	up to 4	up to 6	up to 12 + 4 ^[1]	1 K	16 K
CY8C27x43	up to 44	2	8	up to 12	4	4	12	256	16 K
CY8C24x94	up to 56	1	4	up to 48	2	2	6	1 K	16 K
CY8C24x23A	up to 24	1	4	up to 12	2	2	6	256	4 K
CY8C23x33	up to 26	1	4	up to 12	2	2	4	256	8 K
CY8C22x45	up to 38	2	8	up to 38	0	4	6 ^[1]	1 K	16 K
CY8C21x45	up to 24	1	4	up to 24	0	4	6 ^[1]	512	8 K
CY8C21x34	up to 28	1	4	up to 28	0	2	4 ^[1]	512	8 K
CY8C21x23	up to 16	1	4	up to 8	0	2	4 ^[1]	256	4 K
CY8C20x34	up to 28	0	0	up to 28	0	0	3 ^[1,2]	512	8 K
CY8C20xx6	up to 36	0	0	up to 36	0	0	3 ^[1,2]	up to 2 K	up to 32 K

Table 1. PSoC Device Characteristics

Getting Started

The quickest way to understand PSoC silicon is to read this datasheet and then use the PSoC Designer Integrated Development Environment (IDE). This datasheet is an overview of the PSoC integrated circuit and presents specific pin, register, and electrical specifications.

For in depth information, along with detailed programming details, see the Technical Reference Manual for this PSoC device.

For up to date ordering, packaging, and electrical specification information, see the latest PSoC device datasheets on the web at http://www.cypress.com.

Application Notes

Application notes are an excellent introduction to the wide variety of possible PSoC designs. They can be found at http://www.cypress.com.

Development Kits

PSoC Development Kits are available online from Cypress at http://www.cypress.com and through a growing number of regional and global distributors, which include Arrow, Avnet, Digi-Key, Farnell, Future Electronics, and Newark.

Training

Free PSoC technical training (on demand, webinars, and workshops) is available online at http://www.cypress.com. The training covers a wide variety of topics and skill levels to assist you in your designs.

CYPros Consultants

Certified PSoC Consultants offer everything from technical assistance to completed PSoC designs. To contact or become a PSoC Consultant go to http://www.cypress.com and refer to CYPros Consultants.

Solutions Library

Visit our growing library of solution focused designs at http://www.cypress.com. Here you can find various application designs that include firmware and hardware design files that enable you to complete your designs quickly.

Technical Support

For assistance with technical issues, search KnowledgeBase articles and forums at http://www.cypress.com. If you cannot find an answer to your question, call technical support at 1-800-541-4736.

Notes

1. Limited analog functionality.

^{2.} Two analog blocks and one CapSense[®].

Development Tool Selection

Software

PSoC Designer

At the core of the PSoC development software suite is PSoC Designer. Utilized by thousands of PSoC developers, this robust software has been facilitating PSoC designs for years. PSoC Designer is available free of charge at http://www.cypress.com. PSoC Designer comes with a free C compiler.

PSoC Designer Software Subsystems

You choose a base device to work with and then select different onboard analog and digital components called user modules that use the PSoC blocks. Examples of user modules are ADCs, DACs, Amplifiers, and Filters. You configure the user modules for your chosen application and connect them to each other and to the proper pins. Then you generate your project. This prepopulates your project with APIs and libraries that you can use to program your application.

The tool also supports easy development of multiple configurations and dynamic reconfiguration. Dynamic reconfiguration allows for changing configurations at run time. Code Generation Tools PSoC Designer supports multiple third-party C compilers and assemblers. The code generation tools work seamlessly within the PSoC Designer interface and have been tested with a full range of debugging tools. The choice is yours.

Assemblers. The assemblers allow assembly code to be merged seamlessly with C code. Link libraries automatically use absolute addressing or are compiled in relative mode, and linked with other software modules to get absolute addressing.

C Language Compilers. C language compilers are available that support the PSoC family of devices. The products allow you to create complete C programs for the PSoC family devices. The optimizing C compilers provide all the features of C tailored to the PSoC architecture. They come complete with embedded libraries providing port and bus operations, standard keypad and display support, and extended math functionality.

Debugger

PSoC Designer has a debug environment that provides hardware in-circuit emulation, allowing you to test the program in a physical system while providing an internal view of the PSoC device. Debugger commands allow the designer to read and program and read and write data memory, read and write I/O registers, read and write CPU registers, set and clear breakpoints, and provide program run, halt, and step control. The debugger also allows the designer to create a trace buffer of registers and memory locations of interest.

In-Circuit Emulator

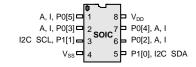
A low cost, high functionality In-Circuit Emulator (ICE) is available for development support. This hardware has the capability to program single devices. The emulator consists of a base unit that connects to the PC by way of a USB port. The base unit is universal and operates with all PSoC devices. Emulation pods for each device family are available separately. The emulation pod takes the place of the PSoC device in the target board and performs full speed (24MHz) operation.

Standard Cypress PSoC IDE tools are available for debugging the CY8C20x36A/66A family of parts. However, the additional trace length and a minimal ground plane in the Flex-Pod can create noise problems that make it difficult to debug the design. A custom bonded On-Chip Debug (OCD) device is available in a 48-pin QFN package. The OCD device is recommended for debugging designs that have high current and/or high analog accuracy requirements. The QFN package is compact and is connected to the ICE through a high density connector.

PSoC Programmer

Flexible enough to be used on the bench in development, yet suitable for factory programming, PSoC Programmer works either as a standalone programming application or it can operate directly from PSoC Designer. PSoC Programmer software is compatible with both PSoC ICE-Cube in-circuit emulator and PSoC MiniProg. PSoC programmer is available free of charge at http://www.cypress.com/psocprogrammer.

Pin Information


This section describes, lists, and illustrates the CY8C21x23 PSoC device pins and pinout configurations. Every port pin (labeled with a "P") is capable of Digital I/O. However, V_{SS}, V_{DD}, SMP, and XRES are not capable of Digital I/O.

8-Pin Part Pinout

Table 2.	Pin Definitions	- CY8C21123 8-Pin SOIC
----------	-----------------	------------------------

Pin	Ту	ре	Pin	Description					
No.	Digital	Analog	Name	Description					
1	I/O	I	P0[5]	Analog column mux input					
2	I/O	I	P0[3]	Analog column mux input					
3	I/O		P1[1]	I ² C serial clock (SCL), ISSP-SCLK ^[3]					
4	Pov	wer	V _{SS}	Ground connection					
5	I/O		P1[0]	I ² C serial data (SDA), ISSP-SDATA ^[3]					
6	I/O	I	P0[2]	Analog column mux input					
7	I/O	I	P0[4]	Analog column mux input					
8	Power V _{DI}		V_{DD}	Supply voltage					
LEOEN		بير ما ا							

Figure 3. CY8C21123 8-Pin SOIC

LEGEND: A = Analog, I = Input, and O = Output.

16-Pin Part Pinout

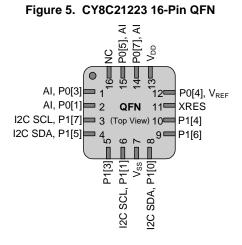
Table 3. Pin Definitions - CY8C21223 16-Pin SOIC

Pin	Ту	pe	Pin	Description
No.	Digital	Analog	Name	Description
1	I/O	I	P0[7]	Analog column mux input
2	I/O	I	P0[5]	Analog column mux input
3	I/O	I	P0[3]	Analog column mux input
4	I/O	I	P0[1]	Analog column mux input
5	Po	wer	SMP	SMP connection to required external components
6	Po	wer	V _{SS}	Ground connection
7	I/O		P1[1]	I ² C SCL, ISSP-SCLK ^[3]
8	Po	wer	V _{SS}	Ground connection
9	I/O		P1[0]	I ² C SDA, ISSP-SDATA ^[3]
10	I/O		P1[2]	
11	I/O		P1[4]	Optional external clock input (EXTCLK)
12	I/O	I	P0[0]	Analog column mux input
13	I/O	I	P0[2]	Analog column mux input
14	I/O	Ι	P0[4]	Analog column mux input
15	I/O	I	P0[6]	Analog column mux input
16	Po	Power V _{DD}		Supply voltage
LECEN	$\mathbf{D} \wedge - \wedge \mathbf{pole}$	na I = Input	and $O = O$	la stan a st

Figure 4. CY8C21223 16-Pin SOIC

A, I, P0[7] = 1 A, I, P0[5] = 2 A, I, P0[3] = 3 A, I, P0[1] = 4 SMP = 5 Vss = 6 I2C SCL, P1[1] = 7 Vss = 8	16 15 14 SOIC 13 12 11 10	 V_{DD} P0[6], A, I P0[4], A, I P0[2], A, I P0[0], A, I P1[4], EXTCLK P1[2] P1[0], I2C SDA
---	--	--

LEGEND A = Analog, I = Input, and O = Output.


Note

3. These are the ISSP pins, which are not high Z at POR (power on reset). See the PSoC Technical Reference Manual for details.

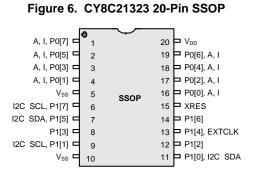
Pin	Ту	vpe	Pin	Description
No.	Digital	Analog	Name	Description
1	I/O	I	P0[3]	Analog column mux input
2	I/O	I	P0[1]	Analog column mux input
3	I/O		P1[7]	I ² C SCL
4	I/O		P1[5]	I ² C SDA
5	I/O		P1[3]	
6	I/O		P1[1]	I ² C SCL, ISSP-SCLK ^[5]
7	Po	wer	V _{SS}	Ground connection
8	I/O		P1[0]	I ² C SDA, ISSP-SDATA ^[5]
9	I/O		P1[6]	
10	I/O		P1[4]	EXTCLK
11	In	put	XRES	Active high external reset with internal pull-down
12	I/O	I	P0[4]	V _{REF}
13	Po	wer	V _{DD}	Supply voltage
14	I/O	I	P0[7]	Analog column mux input
15	I/O	I	P0[5]	Analog column mux input
16			NC	No Connection. Pin must be left floating
LEGEN	A = Analog	g, I = Input, ar	d O = Output	ut

Table 4. Pin Definitions – CY8C21223 16-Pin QFN with no E-Pad [4]

LEGEND A = Analog, I = Input, and O = Output.

Notes

The center pad on the QFN package must be connected to ground (Vss) for best mechanical, thermal, and electrical performance. If not connected to ground, it must be electrically floated and not connected to any other signal.
 These are the ISSP pins, which are not high Z at POR (power on reset). See the PSoC Technical Reference Manual for details.



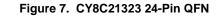
CY8C21123/CY8C21223/CY8C21323

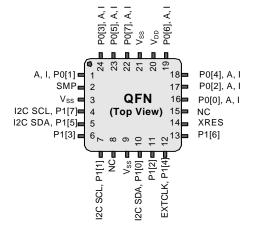
20-Pin Part Pinout

Table 5. Pin Definitions - CY8C21323 20-Pin SSOP

Pin	Ту	Туре		Description
No.	Digital	Analog	Name	Description
1	I/O	I	P0[7]	Analog column mux input
2	I/O	I	P0[5]	Analog column mux input
3	I/O	I	P0[3]	Analog column mux input
4	I/O	I	P0[1]	Analog column mux input
5	Po	wer	V _{SS}	Ground connection ^[6]
6	I/O		P1[7]	I ² C SCL
7	I/O		P1[5]	I ² C SDA
8	I/O		P1[3]	
9	I/O		P1[1]	I ² C SCL, ISSP-SCLK ^[7]
10	Po	wer	V _{SS}	Ground connection ^[6]
11	I/O		P1[0]	I ² C SDA, ISSP-SDATA ^[7]
12	I/O		P1[2]	
13	I/O		P1[4]	Optional EXTCLK input
14	I/O		P1[6]	
15	Inp	out	XRES	Active high external reset with internal pull-down
16	I/O	I	P0[0]	Analog column mux input
17	I/O	I	P0[2]	Analog column mux input
18	I/O	I	P0[4]	Analog column mux input
19	I/O	I	P0[6]	Analog column mux input
20	Po	wer	V _{DD}	Supply voltage
LEGENI	A = Analog	, I = Input, an	d O = Outpu	ıt.

Notes


All V_{SS} pins should be brought out to one common GND plane.
 These are the ISSP pins, which are not high Z at POR (power on reset). See the PSoC Technical Reference Manual for details.



24-Pin Part Pinout

Table 6. Pin Definitions – CY8C21323 24-Pin QFN^[8]

Pin			Pin	Description
No.	Digital	Analog	Name	Description
1	I/O	I	P0[1]	Analog column mux input
2	Po	wer	SMP	SMP connection to required external components
3	Po	wer	V_{SS}	Ground connection ^[9]
4	I/O		P1[7]	I ² C SCL
5	I/O		P1[5]	I ² C SDA
6	I/O		P1[3]	
7	I/O		P1[1]	I ² C SCL, ISSP-SCLK ^[10]
8			NC	No connection. Pin must be left floating
9	Po	wer	V _{SS}	Ground connection ^[9]
10	I/O		P1[0]	I ² C SDA, ISSP-SDATA ^[10]
11	I/O		P1[2]	
12	I/O		P1[4]	Optional (EXTCLK) input
13	I/O		P1[6]	
14	In	put	XRES	Active high external reset with internal pull-down
15			NC	No connection. Pin must be left floating
16	I/O	I	P0[0]	Analog column mux input
17	I/O	I	P0[2]	Analog column mux input
18	I/O	I	P0[4]	Analog column mux input
19	I/O	I	P0[6]	Analog column mux input
20	Po	wer	V _{DD}	Supply voltage
21	Po	wer	V _{SS}	Ground connection ^[9]
22	I/O	I	P0[7]	Analog column mux input
23	I/O	I	P0[5]	Analog column mux input
24	I/O	I	P0[3]	Analog column mux input

LEGEND A = Analog, I = Input, and O = Output.

Notes

- 8. The center pad on the QFN package must be connected to ground (V_{SS}) for best mechanical, thermal, and electrical performance. If not connected to ground, it must be electrically floated and not connected to any other signal. 9. All V_{SS} pins should be brought out to one common GND plane.

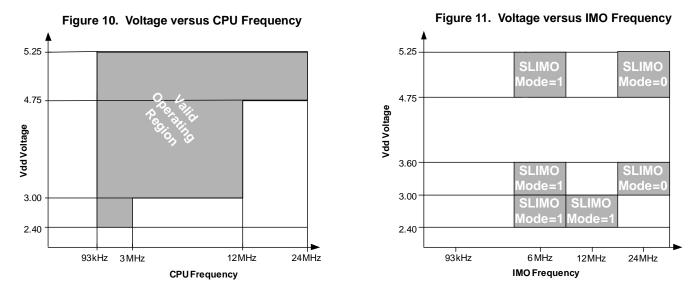
^{10.} These are the ISSP pins, which are not high Z at POR (power on reset). See the PSoC Technical Reference Manual for details.

Table 8. Register Map Bank 0 Table: User Space

Name	Addr (0,Hex)	Access	Name	Addr (0,Hex)	Access	Name	Addr (0,Hex)	Access	Name	Addr (0,Hex)	Access
PRT0DR	00	RW		40		ASE10CR0	80	RW		C0	
PRTOIE	01	RW		41			81			C1	
PRT0GS	02	RW		42			82			C2	
PRT0DM2	03	RW		43			83			C3	
PRT1DR	04	RW		44		ASE11CR0	84	RW		C4	
PRT1IE	05	RW		45			85			C5	
PRT1GS	06	RW		46			86			C6	
PRT1DM2	07	RW		47			87			C7	
	08			48			88			C8	
	09			49			89			C9	
	0A			4A			8A			CA	
	0B			4B			8B			СВ	
	0C			4C			8C			CC	
	0D			4D			8D			CD	
	0E			4E			8E			CE	
	0F			4F			8F			CF	
	10			50			90			D0	
	11			51			91			D1	
	12			52			92			D2	
	13			53			93			D3	
	14			54			94			D4	
	15			55			95			D5	
	16			56			96		I2C_CFG	D6	RW
	17			57			97		I2C_SCR	D7	#
	18			58			98		I2C_DR	D8	RW
	19			59			99		I2C_MSCR	D9	#
	1A			5A			9A		INT_CLR0	DA	RW
	1B			5B			9B		INT_CLR1	DB	RW
	1C			5C			9C			DC	
	1D			5D			9D		INT_CLR3	DD	RW
	1E			5E			9E		INT_MSK3	DE	RW
	1F			5F			9F			DF	
DBB00DR0	20	#	AMX_IN	60	RW		A0		INT_MSK0	E0	RW
DBB00DR1	21	W		61			A1		INT_MSK1	E1	RW
DBB00DR2	22	RW	PWM_CR	62	RW		A2		INT_VC	E2	RC
DBB00CR0	23	#		63			A3		RES_WDT	E3	W
DBB01DR0	24	#	CMP_CR0	64	#		A4			E4	
DBB01DR1	25	W		65			A5			E5	
DBB01DR2	26	RW	CMP_CR1	66	RW		A6		DEC_CR0	E6	RW
DBB01CR0	27	#		67			A7		DEC_CR1	E7	RW
DCB02DR0	28	#	ADC0_CR	68	#		A8			E8	
DCB02DR1	29	W	ADC1_CR	69	#		A9			E9	
DCB02DR2	2A	RW		6A			AA			EA	
DCB02CR0	2B	#		6B			AB			EB	
DCB03DR0	2C	#	TMP_DR0	6C	RW		AC			EC	
DCB03DR1	2D	W	TMP_DR1	6D	RW		AD			ED	
DCB03DR2	2E	RW	TMP_DR2	6E	RW		AE			EE	
DCB03CR0	2F	#	TMP_DR3	6F	RW	Ī	AF	1		EF	1

Blank fields are Reserved and must not be accessed.

Access is bit specific.



Electrical Specifications

This section presents the DC and AC electrical specifications of the CY8C21x23 PSoC device. For up to date electrical specifications, check if you have the latest datasheet by visiting the web at http://www.cypress.com.

Specifications are valid for –40 $^{\circ}C \leq T_A \leq 85 \ ^{\circ}C$ and $T_J \leq 100 \ ^{\circ}C,$ except where noted.

Refer to Table 24 on page 25 for the electrical specifications on the IMO using SLIMO mode.

Absolute Maximum Ratings

Exceeding maximum ratings may shorten the useful life of the device. User guidelines are not tested.

Symbol	Description	Min	Тур	Max	Units	Notes
Τ _{STG}	Storage temperature	-55	_	+100	°C	Higher storage temperatures reduce data retention time. Recommended storage temperature is +25 °C \pm 25 °C. Extended duration storage temperatures higher than 65 °C degrade reliability.
T _{BAKETEMP}	Bake temperature	-	125	See package label	°C	
t _{BAKETIME}	Bake time	See package label	_	72	Hours	
T _A	Ambient temperature with power applied	-40	-	+85	°C	
V _{DD}	Supply voltage on V_{DD} relative to V_{SS}	-0.5	-	+6.0	V	
V _{IO}	DC input voltage	V _{SS} – 0.5	-	V _{DD} + 0.5	V	
V _{IOZ}	DC voltage applied to tristate	V _{SS} – 0.5	-	V _{DD} + 0.5	V	
I _{MIO}	Maximum current into any port pin	-25	-	+50	mA	
ESD	Electro static discharge voltage	2000	-	-	V	Human body model ESD
LU	Latch-up current	-	_	200	mA	

Table 10. Absolute Maximum Ratings

DC Amplifier Specifications

The following tables list the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C \leq T_A \leq 85 °C, 3.0 V to 3.6 V and –40 °C \leq T_A \leq 85 °C, or 2.4 V to 3.0 V and –40 °C \leq T_A \leq 85 °C, respectively. Typical parameters apply to 5 V, 3.3 V, or 2.7 V at 25 °C and are for design guidance only.

Table 15. 5-V DC Amplifier Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
V _{OSOA}	Input offset voltage (absolute value)	-	2.5	15	mV	
TCV _{OSOA}	Average input offset voltage drift	-	10	-	μV/°C	
I _{EBOA}	Input leakage current (port 0 analog pins)	-	200	-	pА	Gross tested to 1 µA
C _{INOA}	Input capacitance (port 0 analog pins)	-	4.5	9.5	pF	Package and pin dependent. Temp = 25 °C
V _{CMOA}	Common mode voltage range	0.0	-	V _{DD} – 1	V	
G _{OLOA}	Open loop gain	80	-	-	dB	
I _{SOA}	Amplifier supply current	_	10	30	μA	

Table 16. 3.3-V DC Amplifier Specifications

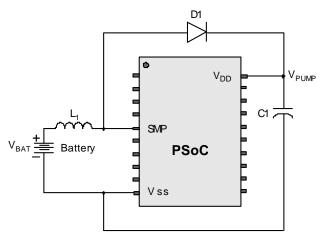

Symbol	Description	Min	Тур	Max	Units	Notes
V _{OSOA}	Input offset voltage (absolute value)	-	2.5	15	mV	
TCV _{OSOA}	Average input offset voltage drift	-	10	-	µV/°C	
I _{EBOA}	Input leakage current (port 0 analog pins)	-	200	-	pА	Gross tested to 1 µA
C _{INOA}	Input capacitance (port 0 analog pins)	-	4.5	9.5	pF	Package and pin dependent. Temp = 25 °C
V _{CMOA}	Common mode voltage range	0	-	V _{DD} – 1	V	
G _{OLOA}	Open loop gain	80	-	-	dB	
I _{SOA}	Amplifier supply current	-	10	30	μA	

Table 17. 2.7V DC Amplifier Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
V _{OSOA}	Input offset voltage (absolute value)	-	2.5	15	mV	
TCV _{OSOA}	Average input offset voltage drift	-	10	-	µV/°C	
I _{EBOA}	Input leakage current (port 0 analog pins)	-	200	-	pА	Gross tested to 1 µA
C _{INOA}	Input capacitance (port 0 analog pins)	-	4.5	9.5	pF	Package and pin dependent. Temp = 25 °C
V _{CMOA}	Common mode voltage range	0	-	V _{DD} – 1	V	
G _{OLOA}	Open loop gain	80	-	-	dB	
I _{SOA}	Amplifier supply current	-	10	30	μA	

Figure 12. Basic Switch Mode Pump Circuit

DC POR and LVD Specifications

Table 19 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C \leq T_A \leq 85 °C, 3.0 V to 3.6 V and -40 °C \leq T_A \leq 85 °C, or 2.4 V to 3.0 V and -40 °C \leq T_A \leq 85 °C, respectively. Typical parameters apply to 5 V, 3.3 V, or 2.7 V at 25 °C and are for design guidance only.

Table 19.	DC POR	and LVD	Specifications
-----------	--------	---------	-----------------------

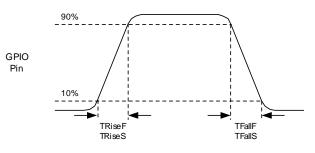
Symbol	Description	Min	Тур	Max	Units	Notes
V _{PPOR0}	V _{DD} value for PPOR trip PORLEV[1:0] = 00b	_	2.36	2.40	V	V _{DD} must be greater than or equal to 2.5 V during startup, reset from the
V _{PPOR1} V _{PPOR2}	PORLEV[1:0] = 01b PORLEV[1:0] = 10b	-	2.82 4.55	2.95 4.70	V V	XRES pin, or reset from watchdog.
V _{LVD0} V _{LVD1} V _{LVD2} V _{LVD3} V _{LVD4} V _{LVD5} V _{LVD6} V _{LVD7}	V _{DD} value for LVD trip VM[2:0] = 000b VM[2:0] = 001b VM[2:0] = 010b VM[2:0] = 011b VM[2:0] = 100b VM[2:0] = 101b VM[2:0] = 110b VM[2:0] = 111b	2.40 2.85 2.95 3.06 4.37 4.50 4.62 4.71	2.45 2.92 3.02 3.13 4.48 4.64 4.73 4.81	2.51 ^[12] 2.99 ^[13] 3.09 3.20 4.55 4.75 4.83 4.95	V V V V V V V V	
Vpumpo Vpump1 Vpump2 Vpump3 Vpump4 Vpump5 Vpump6 Vpump7	V _{DD} value for PUMP trip VM[2:0] = 000b VM[2:0] = 001b VM[2:0] = 010b VM[2:0] = 011b VM[2:0] = 100b VM[2:0] = 101b VM[2:0] = 110b VM[2:0] = 111b	2.45 2.96 3.03 3.18 4.54 4.62 4.71 4.89	2.55 3.02 3.10 3.25 4.64 4.73 4.82 5.00	2.62 ^[14] 3.09 3.16 3.32 ^[15] 4.74 4.83 4.92 5.12	V V V V V V V	

Notes

- 12. Always greater than 50 mV above V_{PPOR} (PORLEV = 00) for falling supply. 13. Always greater than 50 mV above V_{PPOR} (PORLEV = 01) for falling supply. 14. Always greater than 50 mV above V_{LVD0}. 15. Always greater than 50 mV above V_{LVD0}.

AC General Purpose I/O Specifications

Table 24 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C \leq T_A \leq 85 °C, 3.0 V to 3.6 V and -40 °C \leq T_A \leq 85 °C, or 2.4 V to 3.0 V and -40 °C \leq T_A \leq 85 °C, respectively. Typical parameters apply to 5 V, 3.3 V, or 2.7 V at 25 °C and are for design guidance only.


Table 24. 5-V and 3.3-V AC GPIO Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
F _{GPIO}	GPIO operating frequency	0	-	12	MHz	Normal strong mode
tRiseF	Rise time, normal strong mode, Cload = 50 pF	3	-	18	ns	V _{DD} = 4.5 V to 5.25 V, 10% to 90%
tFallF	Fall time, normal strong mode, Cload = 50 pF	2	-	18	ns	V _{DD} = 4.5 V to 5.25 V, 10% to 90%
tRiseS	Rise time, slow strong mode, Cload = 50 pF	10	27	-	ns	V _{DD} = 3 V to 5.25 V, 10% to 90%
tFallS	Fall time, slow strong mode, Cload = 50 pF	10	22	-	ns	V _{DD} = 3 V to 5.25 V, 10% to 90%

Table 25. 2.7-V AC GPIO Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
F _{GPIO}	GPIO operating frequency	0	-	3	MHz	Normal strong mode
tRiseF	Rise time, normal strong mode, Cload = 50 pF	6	-	50	ns	V _{DD} = 2.4 V to 3.0 V, 10% to 90%
tFallF	Fall time, normal strong mode, Cload = 50 pF	6	-	50	ns	V _{DD} = 2.4 V to 3.0 V, 10% to 90%
tRiseS	Rise time, slow strong mode, Cload = 50 pF	18	40	120	ns	V _{DD} = 2.4 V to 3.0 V, 10% to 90%
tFallS	Fall time, slow strong mode, Cload = 50 pF	18	40	120	ns	V _{DD} = 2.4 V to 3.0 V, 10% to 90%

Figure 13. GPIO Timing Diagram

AC Amplifier Specifications

The following tables list the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C \leq T_A \leq 85 °C, 3.0 V to 3.6 V and –40 °C \leq T_A \leq 85 °C, or 2.4 V to 3.0 V and –40 °C \leq T_A \leq 85 °C, respectively. Typical parameters apply to 5 V, 3.3 V, or 2.7 V at 25 °C and are for design guidance only.

Settling times, slew rates, and gain bandwidth are based on the analog continuous time PSoC block.

Table 26. 5-V and 3.3-V AC Amplifier Specifications

Symbol	Description	Min	Тур	Max	Units
t _{COMP1}	Comparator mode response time, 50 mVpp signal centered on Ref	-	-	100	ns
t _{COMP2}	Comparator mode response time, 2.5 V input, 0.5 V overdrive	-	_	300	ns

Table 27.	2.7-V	AC Amplifier	Specifications
-----------	-------	---------------------	----------------

Symbol	Description	Min	Тур	Max	Units
t _{COMP1}	Comparator mode response time, 50 mVpp signal centered on Ref	-	-	600	ns
t _{COMP2}	Comparator mode response time, 1.5 V input, 0.5 V overdrive	-	-	300	ns

AC Digital Block Specifications

Table 28 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and $-40 \degree C \le T_A \le 85 \degree C$, 3.0 V to 3.6 V and $-40 \degree C \le T_A \le 85 \degree C$, or 2.4 V to 3.0 V and $-40 \degree C \le T_A \le 85 \degree C$, respectively. Typical parametersapply to 5 V, 3.3 V, or 2.7 V at 25 °C and are for design guidance only.

Function	Description	Min	Тур	Max	Unit	Notes
All functions	Block input clock frequency					
	$V_{DD} \ge 4.75 V$	-	_	50.4	MHz	
	V _{DD} < 4.75 V	-	-	25.2	MHz	
Timer	Input clock frequency					
	No capture, $V_{DD} \ge 4.75 \text{ V}$	-	-	50.4	MHz	
	No capture, V _{DD} < 4.75 V	-	-	25.2	MHz	
	With capture	-	-	25.2	MHz	
	Capture pulse width	50 ^[27]	-	-	ns	
Counter	Input clock frequency					
	No enable input, $V_{DD} \ge 4.75 \text{ V}$	-	_	50.4	MHz	
	No enable input, V _{DD} < 4.75 V	-	_	25.2	MHz	
	With enable input	-	-	25.2	MHz	
	Enable input pulse width	50 ^[27]	_	-	ns	
Dead Band	Kill pulse width			I	1	
	Asynchronous restart mode	20	-	-	ns	
	Synchronous restart mode	50 ^[27]	_	-	ns	
	Disable mode	50 ^[27]	_	_	ns	
	Input clock frequency					
	$V_{DD} \ge 4.75 \text{ V}$	-	_	50.4	MHz	
	V _{DD} < 4.75 V	-	_	25.2	MHz	
CRCPRS	Input clock frequency					
(PRS	$V_{DD} \ge 4.75 V$	-	_	50.4	MHz	
Mode)	V _{DD} < 4.75 V	-	-	25.2	MHz	
CRCPRS (CRC Mode)	Input clock frequency	_	Ι	25.2	MHz	
SPIM	Input clock frequency	_	-	8.2	MHz	The SPI serial clock (SCLK) frequency is equal to the input clock frequency divided by 2.
SPIS	Input clock (SCLK) frequency	_	_	4.1	MHz	The input clock is the SPI SCLK in SPIS mode.
	Width of SS_negated between transmissions	50 ^[27]	-	-	ns	
Transmitter	Input clock frequency					The baud rate is equal to the input clock frequency
	$V_{DD} \ge 4.75$ V, 2 stop bits	-	-	50.4	MHz	divided by 8.
	$V_{DD} \ge 4.75$ V, 1 stop bit	-	-	25.2	MHz	
	V _{DD} < 4.75 V	_	_	25.2	MHz	
Receiver	Input clock frequency					The baud rate is equal to the input clock frequency
	$V_{DD} \ge 4.75$ V, 2 stop bits	_	-	50.4	MHz	divided by 8.
	$V_{DD} \ge 4.75$ V, 1 stop bit	-	-	25.2	MHz	
	V _{DD} < 4.75 V	_	_	25.2	MHz	1

Note 27.50 ns minimum input pulse width is based on the input synchronizers running at 24 MHz (42 ns nominal period).

AC Programming Specifications

Table 33 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C \leq T_A \leq 85 °C, or 3.0 V to 3.6 V and -40 °C \leq T_A \leq 85 °C, respectively. Typical parameters apply to 5 V, 3.3 V, or 2.7 V at 25 °C and are for design guidance only.

Table 33. AC Programming Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
t _{RSCLK}	Rise time of SCLK	1	-	20	ns	
t _{FSCLK}	Fall time of SCLK	1	-	20	ns	
t _{SSCLK}	Data set up time to falling edge of SCLK	40	-	-	ns	
t _{HSCLK}	Data hold time from falling edge of SCLK	40	-	-	ns	
F _{SCLK}	Frequency of SCLK	0	-	8	MHz	
t _{ERASEB}	Flash erase time (block)	-	10	-	ms	
t _{WRITE}	Flash block write time	-	80	-	ms	
t _{DSCLK3}	Data out delay from falling edge of SCLK	-	-	50	ns	$3.0 \leq V_{DD} \leq 3.6.$
t _{DSCLK2}	Data out delay from falling edge of SCLK	-	-	70	ns	$2.4 \leq V_{DD} \leq 3.0.$
t _{ERASEALL}	Flash erase time (bulk)	-	20	-	ms	Erase all blocks and protection fields at once.
t _{PROGRAM_HOT}	Flash block erase + flash block write time	-	-	180 ^[30]	ms	$0~^{\circ}C \leq Tj \leq 100~^{\circ}C.$
t _{PROGRAM_COLD}	Flash block erase + flash block write time	—	-	360 ^[30]	ms	$-40~^{\circ}C \leq Tj \leq 0~^{\circ}C.$

AC I²C Specifications

Table 34 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C \leq T_A \leq 85 °C, 3.0 V to 3.6 V and -40 °C \leq T_A \leq 85 °C, or 2.4 V to 3.0 V and -40 °C \leq T_A \leq 85 °C, respectively. Typical parameters apply to 5 V, 3.3 V, or 2.7 V at 25 °C and are for design guidance only.

Table 34. AC Characteristics of the	2 C SDA and SCL Pins for V _{CC} \geq 3.0 V
-------------------------------------	--

Symbol	Description	Standard Mode		Fast Mode		Units
Symbol	Description	Min	Max	Min	Max	Units
F _{SCLI2C}	SCL clock frequency	0	100	0	400	kHz
t _{HDSTAI2C}	Hold time (repeated) START condition. After this period, the first clock pulse is generated.	4.0	-	0.6	-	μs
t _{LOWI2C}	Low period of the SCL clock	4.7	-	1.3	-	μs
t _{HIGHI2C}	High period of the SCL clock	4.0	-	0.6	-	μs
t _{SUSTAI2C}	Setup time for a repeated START condition	4.7	-	0.6	-	μs
t _{HDDATI2C}	Data hold time	0	-	0	-	μs
t _{SUDATI2C}	Data setup time	250	-	100 ^[29]	-	ns
t _{SUSTOI2C}	Setup time for STOP condition	4.0	-	0.6	-	μs
t _{BUFI2C}	Bus free time between a STOP and START condition	4.7	-	1.3	-	μs
t _{SPI2C}	Pulse width of spikes are suppressed by the input filter	_	-	0	50	ns

Notes

29. A fast-mode I²C-bus device can be used in a standard-mode I²C-bus system, but the requirement t_{SUDAT} ≥ 250 ns must then be met. This automatically becomes the case if the device does not stretch the LOW period of the SCL signal. If such device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line t_{rmax} + t_{SUDAT} = 1000 + 250 = 1250 ns (according to the standard-mode I²C-bus specification) before the SCL line is released.
 30. For the full industrial range, you must employ a temperature sensor user module (FlashTemp) and feed the result to the temperature argument before writing. Refer to the application note, Design Aids — Reading and Writing PSoC[®] Flash – AN2015 for more information on Flash APIs.

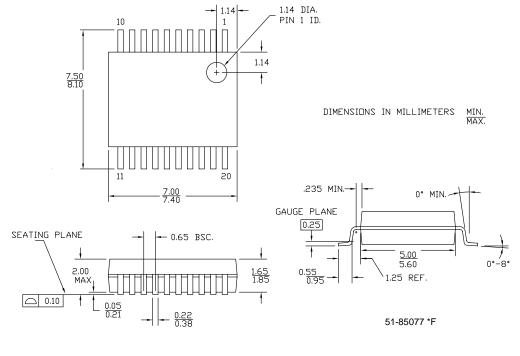
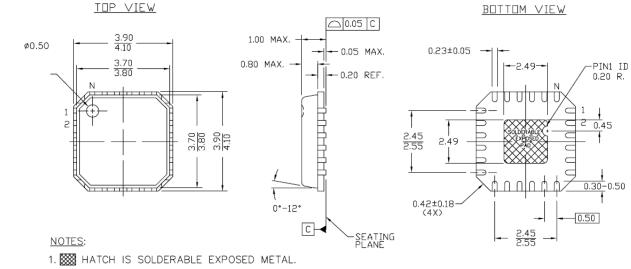
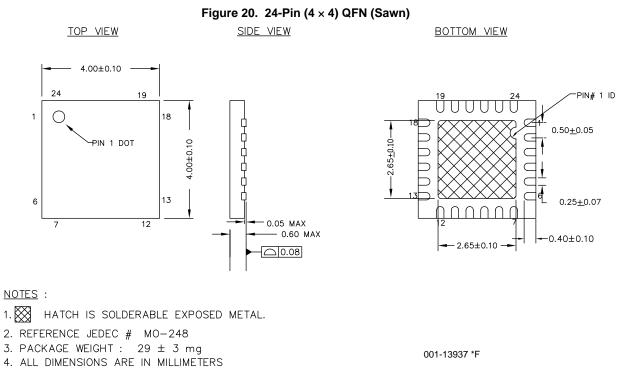



Figure 18. 20-pin SSOP (210 Mils) O20.21 Package Outline, 51-85077

Figure 19. 24-Pin (4 \times 4) QFN (Punched)

SIDE VIEW



- 2. REFERENCE JEDEC#: MO-220
- 3. PACKAGE WEIGHT: REFER TO PMDD SPEC.
- 4. ALL DIMENSIONS ARE IN MM [MIN/MAX]
- 5. PACKAGE CODE

PART #	DESCRIPTION	
LF24A	STANDARD	
LY24A	LEAD FREE	

51-85203 *D

Important Note For information on the preferred dimensions for mounting QFN packages, refer the application note, Application Notes for Surface Mount Assembly of Amkor's MicroLeadFrame (MLF) Packages available at http://www.amkor.com. Note that pinned vias for thermal conduction are not required for the low power 24, 32, and 48-pin QFN PSoC devices.

Document Conventions

Units of Measure

Table 40 lists the units of measures.

Table 40. Units of Measure

Symbol	Unit of Measure	Symbol	Unit of Measure
dB	decibels	mH	millihenry
°C	degree Celsius	μH	microhenry
μF	microfarad	μs	microsecond
pF	picofarad	ms	millisecond
kHz	kilohertz	ns	nanosecond
MHz	megahertz	ps	picosecond
rt-Hz	root hertz	μV	microvolt
kΩ	kilohm	mV	millivolt
Ω	ohm	mVpp	millivolts peak-to-peak
μA	microampere	V	volt
mA	milliampere	W	watt
nA	nanoampere	mm	millimeter
pА	pikoampere	%	percent

Numeric Conventions

Hexadecimal numbers are represented with all letters in uppercase with an appended lowercase 'h' (for example, '14h' or '3Ah'). Hexadecimal numbers may also be represented by a '0x' prefix, the C coding convention. Binary numbers have an appended lowercase 'b' (for example, 01010100b' or '01000011b'). Numbers not indicated by an 'h' or 'b' are decimals.

Glossary

active high	 A logic signal having its asserted state as the logic 1 state. A logic signal having the logic 1 state as the higher voltage of the two states.
analog blocks	The basic programmable opamp circuits. These are SC (switched capacitor) and CT (continuous time) blocks. These blocks can be interconnected to provide ADCs, DACs, multi-pole filters, gain stages, and much more.
analog-to-digital (ADC)	A device that changes an analog signal to a digital signal of corresponding magnitude. Typically, an ADC converts a voltage to a digital number. The digital-to-analog (DAC) converter performs the reverse operation.
Application programming interface (API)	A series of software routines that comprise an interface between a computer application and lower level services and functions (for example, user modules and libraries). APIs serve as building blocks for programmers that create software applications.
asynchronous	A signal whose data is acknowledged or acted upon immediately, irrespective of any clock signal.
bandgap reference	A stable voltage reference design that matches the positive temperature coefficient of VT with the negative temperature coefficient of VBE, to produce a zero temperature coefficient (ideally) reference.
bandwidth	 The frequency range of a message or information processing system measured in hertz. The width of the spectral region over which an amplifier (or absorber) has substantial gain (or loss); it is sometimes represented more specifically as, for example, full width at half maximum.

Glossary (continued)

microcontroller	An integrated circuit chip that is designed primarily for control systems and products. In addition to a CPU, a microcontroller typically includes memory, timing circuits, and IO circuitry. The reason for this is to permit the realization of a controller with a minimal quantity of chips, thus achieving maximal possible miniaturization. Thi in turn, reduces the volume and the cost of the controller. The microcontroller is normally not used for general-purpose computation as is a microprocessor.			
mixed-signal	The reference to a circuit containing both analog and digital techniques and components.			
modulator	A device that imposes a signal on a carrier.			
noise	 A disturbance that affects a signal and that may distort the information carried by the signal. The random variations of one or more characteristics of any entity such as voltage, current, or data. 			
oscillator	A circuit that may be crystal controlled and is used to generate a clock frequency.			
parity	A technique for testing transmitting data. Typically, a binary digit is added to the data to make the sum of all the digits of the binary data either always even (even parity) or always odd (odd parity).			
Phase-locked loop (PLL)	An electronic circuit that controls an oscillator so that it maintains a constant phase angle relative to a reference signal.			
pinouts	The pin number assignment: the relation between the logical inputs and outputs of the PSoC device and their physical counterparts in the printed circuit board (PCB) package. Pinouts involve pin numbers as a link between schematic and PCB design (both being computer generated files) and may also involve pin names.			
port	A group of pins, usually eight.			
Power on reset (POR)	A circuit that forces the PSoC device to reset when the voltage is lower than a pre-set level. This is one type of hardware reset.			
PSoC [®]	Cypress Semiconductor's PSoC [®] is a registered trademark and Programmable System-on-Chip™ is a trademark of Cypress.			
PSoC Designer™	The software for Cypress' Programmable System-on-Chip technology.			
pulse width modulator (PWM)	An output in the form of duty cycle which varies as a function of the applied measurand.			
RAM	An acronym for random access memory. A data-storage device from which data can be read out and new data can be written in.			
register	A storage device with a specific capacity, such as a bit or byte.			
reset	A means of bringing a system back to a know state. See hardware reset and software reset.			
ROM	An acronym for read only memory. A data-storage device from which data can be read out, but new data cannot be written in.			
serial	1. Pertaining to a process in which all events occur one after the other.			
	Pertaining to the sequential or consecutive occurrence of two or more related activities in a single device or channel.			
settling time	The time it takes for an output signal or value to stabilize after the input has changed from one value to another.			

Glossary (continued)

shift register	A memory storage device that sequentially shifts a word either left or right to output a stream of serial data.
slave device	A device that allows another device to control the timing for data exchanges between two devices. Or when devices are cascaded in width, the slave device is the one that allows another device to control the timing of data exchanges between the cascaded devices and an external interface. The controlling device is called the master device.
SRAM	An acronym for static random access memory. A memory device where you can store and retrieve data at a high rate of speed. The term static is used because, after a value is loaded into an SRAM cell, it remains unchanged until it is explicitly altered or until power is removed from the device.
SROM	An acronym for supervisory read only memory. The SROM holds code that is used to boot the device, calibrate circuitry, and perform Flash operations. The functions of the SROM may be accessed in normal user code, operating from Flash.
stop bit	A signal following a character or block that prepares the receiving device to receive the next character or block.
synchronous	 A signal whose data is not acknowledged or acted upon until the next active edge of a clock signal. A system whose operation is synchronized by a clock signal.
tri-state	A function whose output can adopt three states: 0, 1, and Z (high-impedance). The function does not drive any value in the Z state and, in many respects, may be considered to be disconnected from the rest of the circuit, allowing another output to drive the same net.
UART	A UART or universal asynchronous receiver-transmitter translates between parallel bits of data and serial bits.
user modules	Pre-build, pre-tested hardware/firmware peripheral functions that take care of managing and configuring the lower level Analog and Digital PSoC Blocks. User Modules also provide high level API (Application Programming Interface) for the peripheral function.
user space	The bank 0 space of the register map. The registers in this bank are more likely to be modified during normal program execution and not just during initialization. Registers in bank 1 are most likely to be modified only during the initialization phase of the program.
V _{DD}	A name for a power net meaning "voltage drain." The most positive power supply signal. Usually 5 V or 3.3 V.
V _{SS}	A name for a power net meaning "voltage source." The most negative power supply signal.
watchdog timer	A timer that must be serviced periodically. If it is not serviced, the CPU resets after a specified period of time.

Document History Page (continued)

Revision	ECN	Orig. of Change	Submission Date	Description of Change
۴P	3044869	NJF	10/01/2010	Added PSoC Device Characteristics table. Added DC I ² C Specifications table. Added F _{32K U} max limit. Added Tjit_IMO specification, removed existing jitter specifications. Updated Units of Measure, Acronyms, Glossary, and References sections. Updated solder reflow specifications. No specific changes were made to AC Digital Block Specifications table and I ² C Timing Diagram. They were updated for clearer understanding. Updated Figure 13 since the labelling for y-axis was incorrect. Template and styles update.
*Q	3263669	YJI	05/23/2011	Updated 16-pin SOIC and 20-pin SSOP package diagrams. Updated Development Tool Selection and Designing with PSoC Designer sections.
*R	3383787	GIR	09/26/2011	The text "Pin must be left floating" is included under Description of NC pin in Table 6 on page 11. Updated Table 37 on page 35 for improved clarity.
*S	3558729	RJVB	03/22/2012	Updated 16-pin SOIC package.
*T	3598261	LURE / XZNG	04/24/2012	Changed the PWM description string from "8- to 32-bit" to "8- and 16-bit".
*U	3649990	BVI / YLIU	06/19/2012	Updated description of NC pin as "No Connection. Pin must be left floating"
*V	3873870	UVS	01/18/2013	Updated Packaging Information: spec 51-85068 – Changed revision from *D to *E. spec 001-09116 – Changed revision from *F to *G. spec 51-85203 – Changed revision from *C to *D.
*W	3993321	UVS	05/07/2013	Added Errata.
*X	4067216	UVS	07/18/2013	Added Errata footnotes (Note 19). Updated Features: Replaced 2.5% with 5% under "Precision, programmable clocking". Updated Electrical Specifications: Updated AC Electrical Characteristics: Updated AC Chip-Level Specifications: Added Note 19 and referred the same note in F _{IMO24} parameter. Updated minimum and maximum values of F _{IMO24} parameter. Updated AC Digital Block Specifications: Replaced all instances of maximum value "49.2" with "50.4" and "24.6" with "25.2" in Table 28. Updated Packaging Information: spec 51-85066 – Changed revision from *E to *F. spec 001-09116 – Changed revision from *G to *H. Updated to new template.
*Ү	4479648	RJVB	08/20/2014	Updated Errata: Updated CY8C21123 Errata Summary: Updated details in "Fix Status" column in the table. Updated details in "Fix Status" bulleted point below the table.

Document History Page (continued)

Document Title: CY8C21123/CY8C21223/CY8C21323, PSoC [®] Programmable System-on-Chip™ Document Number: 38-12022				
Revision	ECN	Orig. of Change	Submission Date	Description of Change
*Z	4623500	DIMA	01/14/2015	Updated Pin Information: Updated 20-Pin Part Pinout: Updated Table 5: Added Note 6 and referred the same note in description of pin 5 and pin 10. Updated 24-Pin Part Pinout: Updated Table 6: Added Note 9 and referred the same note in description of pin 3, pin 9 and pin 21. Updated Packaging Information: spec 51-85066 – Changed revision from *F to *G. spec 51-85077 – Changed revision from *E to *F. Completing Sunset Review.
AA	5090662	ARVI	01/18/2016	Updated Ordering Information, Ordering Code Definitions, and Errata. Upated figure title in Figure 19. Updated Table 38. Updated Figure 15 (spec 51-85066 *G to *H) in Packaging Information. Added Figure 20 (spec 001-13937 *F) in Packaging Information.