

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	PowerPC e500v2
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	1.0GHz
Co-Processors/DSP	Security; SEC
RAM Controllers	DDR, DDR2
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100/1000Mbps (2)
SATA	-
USB	-
Voltage - I/O	1.8V, 2.5V, 3.3V
Operating Temperature	0°C ~ 105°C (TA)
Security Features	Cryptography, Random Number Generator
Package / Case	783-BBGA, FCBGA
Supplier Device Package	783-FCPBGA (29x29)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/kmpc8533evtaqg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Four banks of memory supported, each up to 4 Gbytes, to a maximum of 16 Gbytes
- DRAM chip configurations from 64 Mbits to 4 Gbits with x8/x16 data ports
- Full ECC support
- Page mode support
 - Up to 16 simultaneous open pages for DDR
 - Up to 32 simultaneous open pages for DDR2
- Contiguous or discontiguous memory mapping
- Sleep mode support for self-refresh SDRAM
- On-die termination support when using DDR2
- Supports auto refreshing
- On-the-fly power management using CKE signal
- Registered DIMM support
- Fast memory access via JTAG port
- 2.5-V SSTL_2 compatible I/O (1.8-V SSTL_1.8 for DDR2)
- Programmable interrupt controller (PIC)
 - Programming model is compliant with the OpenPIC architecture.
 - Supports 16 programmable interrupt and processor task priority levels
 - Supports 12 discrete external interrupts
 - Supports 4 message interrupts with 32-bit messages
 - Supports connection of an external interrupt controller such as the 8259 programmable interrupt controller
 - Four global high resolution timers/counters that can generate interrupts
 - Supports a variety of other internal interrupt sources
 - Supports fully nested interrupt delivery
 - Interrupts can be routed to external pin for external processing.
 - Interrupts can be routed to the e500 core's standard or critical interrupt inputs.
 - Interrupt summary registers allow fast identification of interrupt source.
- Integrated security engine (SEC) optimized to process all the algorithms associated with IPSec, IKE, WTLS/WAP, SSL/TLS, and 3GPP
 - Four crypto-channels, each supporting multi-command descriptor chains
 - Dynamic assignment of crypto-execution units via an integrated controller
 - Buffer size of 256 bytes for each execution unit, with flow control for large data sizes
 - PKEU—public key execution unit
 - RSA and Diffie-Hellman; programmable field size up to 2048 bits
 - Elliptic curve cryptography with F_2m and F(p) modes and programmable field size up to 511 bits
 - DEU—Data Encryption Standard execution unit
 - DES, 3DES

6.1 DDR SDRAM DC Electrical Characteristics

Table 10 provides the recommended operating conditions for the DDR SDRAM component(s) of the MPC8533E when $GV_{DD}(typ) = 1.8 \text{ V}$.

Parameter/Condition	Symbol	Min	Мах	Unit	Notes
I/O supply voltage	GV _{DD}	1.71	1.89	V	1
I/O reference voltage	MV _{REF}	$0.49 imes GV_{DD}$	$0.51 imes GV_{DD}$	V	2
I/O termination voltage	V _{TT}	MV _{REF} – 0.04	MV _{REF} + 0.04	V	3
Input high voltage	V _{IH}	MV _{REF} + 0.26	GV _{DD} + 0.3	V	_
Input low voltage	V _{IL}	-0.3	MV _{REF} – 0.24	V	_
Output high current (V _{OUT} = 1.26 V)	I _{OH}	-13.4	_	mA	_
Output low current (V _{OUT} = 0.33 V)	I _{OL}	13.4	_	mA	_

Table 10. DDR2 SDRAM DC Electrical Characteristics for GV_{DD}(typ) = 1.8 V

Notes:

1. GV_{DD} is expected to be within 50 mV of the DRAM GV_{DD} at all times.

2. MV_{REF} is expected to be equal to 0.5 × GV_{DD} , and to track GV_{DD} DC variations as measured at the receiver. Peak-to-peak noise on MV_{REF} may not exceed ±2% of the DC value.

3. V_{TT} is not applied directly to the device. It is the supply to which far end signal termination is made and is expected to be equal to MV_{REF}. This rail should track variations in the DC level of MV_{REF}.

Table 11 provides the DDR2 I/O capacitance when $GV_{DD}(typ) = 1.8 V$.

Table 11. DDR2 SDRAM Capacitance for GV_{DD}(typ) = 1.8 V

Parameter/Condition	Symbol	Min	Max	Unit	Notes
Input/output capacitance: DQ, DQS, DQS	C _{IO}	6	8	pF	1
Delta input/output capacitance: DQ, DQS, \overline{DQS}	C _{DIO}	_	0.5	pF	1

Note:

1. This parameter is sampled. GV_{DD} = 1.8 V ± 0.090 V, f = 1 MHz, T_A = 25°C, V_{OUT} = $GV_{DD}/2$, V_{OUT} (peak-to-peak) = 0.2 V.

Table 12 provides the recommended operating conditions for the DDR SDRAM component(s) when $GV_{DD}(typ) = 2.5 \text{ V}.$

Table 12. DDR SDRAM DC Electrical Characteristics for GV_{DD}(typ) = 2.5 V

Parameter/Condition	Symbol	Min	Мах	Unit	Notes
I/O supply voltage	GV _{DD}	2.375	2.625	V	1
I/O reference voltage	MV _{REF}	$0.49 imes GV_{DD}$	$0.51 imes GV_{DD}$	V	2
I/O termination voltage	V _{TT}	MV _{REF} – 0.04	MV _{REF} + 0.04	V	3
Input high voltage	V _{IH}	MV _{REF} + 0.31	GV _{DD} + 0.3	V	
Input low voltage	V _{IL}	-0.3	MV _{REF} – 0.3	V	
Output high current (V _{OUT} = 1.8 V)	I _{OH}	-16.2	—	mA	

DDR and DDR2 SDRAM

Table 12. DDR SDRAM DC Electrical Characteristics for GV_{DD}(typ) = 2.5 V (continued)

Parameter/Condition	Symbol	Min	Мах	Unit	Notes
Output low current (V _{OUT} = 0.42 V)	I _{OL}	16.2		mA	

Notes:

1. GV_{DD} is expected to be within 50 mV of the DRAM GV_{DD} at all times.

2. MV_{REF} is expected to be equal to $0.5 \times GV_{DD}$, and to track GV_{DD} DC variations as measured at the receiver. Peak-to-peak noise on MV_{REF} may not exceed ±2% of the DC value.

3. V_{TT} is not applied directly to the device. It is the supply to which far end signal termination is made and is expected to be equal to MV_{REF}. This rail should track variations in the DC level of MV_{REF}.

Table 13 provides the DDR I/O capacitance when $GV_{DD}(typ) = 2.5 \text{ V}$.

Table 13. DDR SDRAM Capacitance for GV_{DD}(typ) = 2.5 V

Parameter/Condition	Symbol	Min	Max	Unit	Notes
Input/output capacitance: DQ, DQS	C _{IO}	6	8	pF	1
Delta input/output capacitance: DQ, DQS	C _{DIO}	_	0.5	pF	1

Note:

1. This parameter is sampled. $GV_{DD} = 2.5 V \pm 0.125 V$, f = 1 MHz, $T_A = 25^{\circ}C$, $V_{OUT} = GV_{DD}/2$, V_{OUT} (peak-to-peak) = 0.2 V.

Table 14 provides the current draw characteristics for MV_{REF} .

Table 14. Current Draw Characteristics for MV_{REF}

Parameter/Condition	Symbol	Min	Max	Unit	Notes
Current draw for MV _{REF}	I _{MVREF}		500	μA	1

Note:

1. The voltage regulator for MV_{REF} must be able to supply up to 500 μ A current.

6.2 DDR SDRAM AC Electrical Characteristics

This section provides the AC electrical characteristics for the DDR SDRAM interface.

6.2.1 DDR SDRAM Input AC Timing Specifications

Table 15 provides the input AC timing specifications for the DDR SDRAM when $GV_{DD}(typ) = 1.8 V$.

Table 15. DDR2 SDRAM Input AC Timing Specifications for 1.8-V Interface

At recommended operating conditions.

Parameter	Symbol	Min	Мах	Unit	Notes
AC input low voltage	V _{IL}	—	MV _{REF} – 0.25	V	_
AC input high voltage	V _{IH}	MV _{REF} + 0.25	_	V	

8.4.1 MII Transmit AC Timing Specifications

Table 27 provides the MII transmit AC timing specifications.

Table 27. MII Transmit AC Timing Specifications

At recommended operating conditions with L/TV_{DD} of 3.3 V \pm 5% or 2.5 V \pm 5%

Parameter/Condition	Symbol ¹	Min	Тур	Max	Unit	Notes
TX_CLK clock period 10 Mbps	t _{MTX}	—	400	_	ns	—
TX_CLK clock period 100 Mbps	t _{MTX}	—	40	_	ns	—
TX_CLK duty cycle	t _{MTXH/} t _{MTX}	35	—	65	%	—
TX_CLK to MII data TXD[3:0], TX_ER, TX_EN delay	t _{MTKHDX}	1	5	15	ns	—
TX_CLK data clock rise (20%-80%)	t _{MTXR}	1.0	—	4.0	ns	—
TX_CLK data clock fall (80%-20%)	t _{MTXF}	1.0	_	4.0	ns	_

Note:

The symbols used for timing specifications follow the pattern of t_{(first two letters of functional block)(signal)(state)(reference)(state)} for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{MTKHDX} symbolizes MII transmit timing (MT) for the time t_{MTX} clock reference (K) going high (H) until data outputs (D) are invalid (X). Note that, in general, the clock reference symbol representation is based on two to three letters representing the clock of a particular functional. For example, the subscript of t_{MTX} represents the MII(M) transmit (TX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).

Figure 12 shows the MII transmit AC timing diagram.

Figure 12. MII Transmit AC Timing Diagram

8.4.2 MII Receive AC Timing Specifications

Table 28 provides the MII receive AC timing specifications.

Table 28. MII Receive AC Timing Specifications

At recommended operating conditions with L/TVDD of $3.3 \text{ V} \pm 5\%$ or $2.5 \text{ V} \pm 5\%$.

Parameter/Condition	Symbol ¹	Min	Тур	Max	Unit	Notes
RX_CLK clock period 10 Mbps	t _{MRX}	_	400	_	ns	_
RX_CLK clock period 100 Mbps	t _{MRX}	_	40	_	ns	_
RX_CLK duty cycle	t _{MRXH} /t _{MRX}	35		65	%	_

Enhanced Three-Speed Ethernet (eTSEC), MII Management

Table 32. RGMII and RTBI AC Timing Specifications (continued)

At recommended operating conditions with L/TV_{DD} of 2.5 V \pm 5%.

Parameter/Condition	Symbol ¹	Min	Тур	Max	Unit	Notes
Fall time (20%-80%)	t _{RGTF}			0.75	ns	—

Notes:

- In general, the clock reference symbol representation for this section is based on the symbols RGT to represent RGMII and RTBI timing. For example, the subscript of t_{RGT} represents the TBI (T) receive (RX) clock. Note also that the notation for rise (R) and fall (F) times follows the clock symbol that is being represented. For symbols representing skews, the subscript is skew (SK) followed by the clock that is being skewed (RGT).
- 2. This implies that PC board design will require clocks to be routed such that an additional trace delay of greater than 1.5 ns will be added to the associated clock signal.
- 3. For 10 and 100 Mbps, t_{BGT} scales to 400 ns ± 40 ns and 40 ns ± 4 ns, respectively.
- 4. Duty cycle may be stretched/shrunk during speed changes or while transitioning to a received packet's clock domains as long as the minimum duty cycle is not violated and stretching occurs for no more than three t_{RGT} of the lowest speed transitioned between.
- 5. Guaranteed by design.

Figure 18 shows the RGMII and RTBI AC timing and multiplexing diagrams.

Figure 18. RGMII and RTBI AC Timing and Multiplexing Diagrams

10 Local Bus

This section describes the DC and AC electrical specifications for the local bus interface of the MPC8533E.

10.1 Local Bus DC Electrical Characteristics

Table 37 provides the DC electrical characteristics for the local bus interface operating at $BV_{DD} = 3.3 \text{ V DC}$.

Table 37. Local Bus DC E	lectrical Cha	racteristics (3	3.3 V DC)	
				_

Parameter	Symbol	Min	Max	Unit	Notes
High-level input voltage	V _{IH}	2	BV _{DD} + 0.3	V	
Low-level input voltage	V _{IL}	-0.3	0.8	V	
Input current ($BV_{IN} = 0 V \text{ or } BV_{IN} = BOV_{DD}$)	I _{IN}	-	±5	μA	1
High-level output voltage ($BV_{DD} = min, I_{OH} = -2 mA$)	V _{OH}	2.4	-	V	
Low-level output voltage ($BV_{DD} = min$, $I_{OL} = 2 mA$)	V _{OL}	_	0.4	V	_

Note:

1. The symbol BV_{IN} , in this case, represents the BV_{IN} symbol referenced in Table 1 and Table 2.

Table 38 provides the DC electrical characteristics for the local bus interface operating at $BV_{DD} = 2.5 \text{ V DC}$.

Table 38. Local Bus DC Electrical Characteristics (2.5 V DC)

Parameter	Symbol	Min	Мах	Unit	Notes
High-level input voltage	V _{IH}	1.70	BV _{DD} + 0.3	V	—
Low-level input voltage	V _{IL}	-0.3	0.7	V	—
Input current ($BV_{IN} = 0 V \text{ or } BV_{IN} = BV_{DD}$)	I _{IN}	—	±15	μA	1
High-level output voltage ($BV_{DD} = min, I_{OH} = -1 mA$)	V _{OH}	2.0	—	V	—
Low-level output voltage ($BV_{DD} = min, I_{OL} = 1 mA$)	V _{OL}	—	0.4	V	—

Note:

1. The symbol BV_{IN} , in this case, represents the BV_{IN} symbol referenced in Table 1 and Table 2.

Table 39 provides the DC electrical characteristics for the local bus interface operating at $BV_{DD} = 1.8 \text{ V DC}$.

Table 39. Local Bus DC Electrical Characteristics (1.8 V DC)

Parameter	Symbol	Min	Мах	Unit	Notes
High-level input voltage	V _{IH}	1.3	BV _{DD} + 0.3	V	
Low-level input voltage	V _{IL}	-0.3	0.6	V	—
Input current ($BV_{IN} = 0 V \text{ or } BV_{IN} = BV_{DD}$)	I _{IN}	—	±15	μA	1

Table 42. Local Bus General Ti	ing Parameters (BV _{DD} =	1.8 V DC) (continued)
--------------------------------	------------------------------------	-----------------------

Parameter	Symbol ¹	Min	Max	Unit	Notes
Local bus clock to output high impedance for LAD/LDP	t _{LBKHOZ2}	_	2.6	ns	5

Notes:

- The symbols used for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{LBIXKH1} symbolizes local bus timing (LB) for the input (I) to go invalid (X) with respect to the time the t_{LBK} clock reference (K) goes high (H), in this case for clock one (1). Also, t_{LBKHOX} symbolizes local bus timing (LB) for the t_{LBK} clock reference (K) to go high (H), with respect to the output (O) going invalid (X) or output hold time.
 </sub>
- 2. All timings are in reference to LSYNC_IN for PLL enabled and internal local bus clock for PLL bypass mode.

3. All signals are measured from $BV_{DD}/2$ of the rising edge of LSYNC_IN for PLL enabled or internal local bus clock for PLL bypass mode to $0.4 \times BV_{DD}$ of the signal in question for 1.8-V signaling levels.

- 4. Input timings are measured at the pin.
- 5. For purposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification.
- t_{LBOTOT} is a measurement of the minimum time between the negation of LALE and any change in LAD. t_{LBOTOT} is programmed with the LBCR[AHD] parameter.
- 7. Maximum possible clock skew between a clock LCLK[m] and a relative clock LCLK[n]. Skew measured between complementary signals at BV_{DD}/2.

Figure 23 provides the AC test load for the local bus.

Figure 23. Local Bus AC Test Load

Parameter	Symbol ¹	Min	Max	Unit	Notes
Local bus clock to data valid for LAD/LDP	t _{LBKLOV2}	_	1.6	ns	4
Local bus clock to address valid for LAD, and LALE	t _{LBKLOV3}	_	1.6	ns	4
Output hold from local bus clock (except LAD/LDP and LALE)	t _{LBKLOX1}	-4.1	_	ns	4
Output hold from local bus clock for LAD/LDP	t _{LBKLOX2}	-4.1	_	ns	4
Local bus clock to output high Impedance (except LAD/LDP and LALE)	t _{LBKLOZ1}	_	1.4	ns	7
Local bus clock to output high impedance for LAD/LDP	t _{LBKLOZ2}	_	1.4	ns	7

Table 43. Local Bus General Timing Parameters—PLL Bypassed (continued)

Notes:

- The symbols used for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{LBIXKH1} symbolizes local bus timing (LB) for the input (I) to go invalid (X) with respect to the time the t_{LBK} clock reference (K) goes high (H), in this case for clock one (1). Also, t_{LBKH0X} symbolizes local bus timing (LB) for the output (O) going invalid (X) or output hold time.
 </sub>
- All timings are in reference to local bus clock for PLL bypass mode. Timings may be negative with respect to the local bus clock because the actual launch and capture of signals is done with the internal launch/capture clock, which proceeds LCLK by t_{LBKHKT}.
- 3. Maximum possible clock skew between a clock LCLK[m] and a relative clock LCLK[n]. Skew measured between complementary signals at BV_{DD}/2.
- 4. All signals are measured from BV_{DD}/2 of the rising edge of local bus clock for PLL bypass mode to 0.4 × BV_{DD} of the signal in question for 3.3-V signaling levels.
- 5. Input timings are measured at the pin.
- 6. The value of t_{LBOTOT} is the measurement of the minimum time between the negation of LALE and any change in LAD.
- 7. For purposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification.

Figure 26. Local Bus Signals, GPCM/UPM Signals for LCCR[CLKDIV] = 4 (PLL Enabled)

12 JTAG

This section describes the AC electrical specifications for the IEEE 1149.1 (JTAG) interface of the MPC8533E.

12.1 JTAG DC Electrical Characteristics

Table 44 provides the DC electrical characteristics for the JTAG interface.

Table 44. JTAG DC Electrical Characteristics

Parameter	Symbol	Min	Max	Unit	Notes
High-level input voltage	V _{IH}	2	OV _{DD} + 0.3	V	
Low-level input voltage	V _{IL}	-0.3	0.8	V	_
Input current (OV _{IN} = 0 V or OV _{IN} = OV _{DD})	I _{IN}	_	±5	μA	1
High-level output voltage ($OV_{DD} = min, I_{OH} = -2 mA$)	V _{OH}	2.4	_	V	_
Low-level output voltage ($OV_{DD} = min, I_{OL} = 2 mA$)	V _{OL}	_	0.4	V	_

Note:

1. Note that the symbol V_{IN} , in this case, represents the OV_{IN} .

12.2 JTAG AC Electrical Specifications

Table 45 provides the JTAG AC timing specifications as defined in Figure 30 through Figure 33.

Table 45. JTAG AC Timing Specifications (Independent of SYSCLK)¹

At recommended operating conditions (see Table 3).

Parameter	Symbol ²	Min	Max	Unit	Notes
JTAG external clock frequency of operation	f _{JTG}	0	33.3	MHz	—
JTAG external clock cycle time	t _{JTG}	30	—	ns	—
JTAG external clock pulse width measured at 1.4 V	t _{JTKHKL}	15	—	ns	—
JTAG external clock rise and fall times	t _{JTGR} & t _{JTGF}	0	2	ns	—
TRST assert time	t _{TRST}	25	—	ns	3
Input setup times: Boundary-scan data TMS, TDI	t _{JTDVKH} t _{JTIVKH}	4 0	_	ns	4
Input hold times: Boundary-scan data TMS, TDI	t _{JTDXKH} t _{JTIXKH}	20 25	_	ns	4
Valid times: Boundary-scan data TDO	t _{JTKLDV} t _{JTKLOV}	4 4	20 25	ns	5
Output hold times: Boundary-scan data TDO	t _{jtkldx} t _{jtklox}	2.5 4		ns	5

High-Speed Serial Interfaces (HSSI)

16.2.4 AC Requirements for SerDes Reference Clocks

The clock driver selected should provide a high quality reference clock with low phase noise and cycle-to-cycle jitter. Phase noise less than 100 kHz can be tracked by the PLL and data recovery loops and is less of a problem. Phase noise above 15 MHz is filtered by the PLL. The most problematic phase noise occurs in the 1–15 MHz range. The source impedance of the clock driver should be 50 Ω to match the transmission line and reduce reflections which are a source of noise to the system.

Table 52 describes some AC parameters common to SGMII, and PCI Express protocols.

Parameter	Symbol	Min	Max	Unit	Notes
Rising Edge Rate	Rise Edge Rate	1.0	4.0	V/ns	2, 3
Falling Edge Rate	Fall Edge Rate	1.0	4.0	V/ns	2, 3
Differential Input High Voltage	V _{IH}	+200		mV	2
Differential Input Low Voltage	V _{IL}	_	-200	mV	2
Rising edge rate (SD <i>n</i> _REF_CLK) to falling edge rate (SD <i>n</i> _REF_CLK) matching	Rise-Fall Matching	_	20	%	1, 4

Table 52. SerDes Reference Clock Common AC Parameters

Notes:

- 1. Measurement taken from single ended waveform.
- 2. Measurement taken from differential waveform.
- 3. Measured from –200 mV to +200 mV on the differential waveform (derived from SD*n*_REF_CLK minus SD*n*_REF_CLK). The signal must be monotonic through the measurement region for rise and fall time. The 400 mV measurement window is centered on the differential zero crossing. See Figure 49.
- 4. Matching applies to rising edge rate for SDn_REF_CLK and falling edge rate for SDn_REF_CLK. It is measured using a 200 mV window centered on the median cross point where SDn_REF_CLK rising meets SDn_REF_CLK falling. The median cross point is used to calculate the voltage thresholds the oscilloscope is to use for the edge rate calculations. The rise edge rate of SDn_REF_CLK should be compared to the fall edge rate of SDn_REF_CLK, the maximum allowed difference should not exceed 20% of the slowest edge rate. See Figure 50.

Figure 49. Differential Measurement Points for Rise and Fall Time

PCI Express

17 PCI Express

This section describes the DC and AC electrical specifications for the PCI Express bus of the MPC8533E.

17.1 DC Requirements for PCI Express SD_REF_CLK and SD_REF_CLK

For more information, see Section 16.2, "SerDes Reference Clocks."

17.2 AC Requirements for PCI Express SerDes Clocks

Table 53 provides the AC requirements for the PCI Express SerDes clocks.

Symbol ²	Parameter Description	Min	Тур	Max	Units	Notes
t _{REF}	REFCLK cycle time		10	—	ns	1
t _{REFCJ} REFCLK cycle-to-cycle jitter. Difference in the period of any two adjacent REFCLK cycles			_	100	ps	—
t _{REFPJ}	Phase jitter. Deviation in edge location with respect to mean edge location	-50	_	50	ps	—

Table 53. SD_REF_CLK and SD_REF_CLK AC Requirements

Notes:

1. Typical based on PCI Express Specification 2.0.

2. Guaranteed by characterization.

17.3 Clocking Dependencies

The ports on the two ends of a link must transmit data at a rate that is within 600 parts per million (ppm) of each other at all times. This is specified to allow bit rate clock sources with a \pm 300 ppm tolerance.

17.4 Physical Layer Specifications

The following is a summary of the specifications for the physical layer of PCI Express on this device. For further details as well as the specifications of the transport and data link layer please refer to the *PCI Express Base Specification. Rev. 1.0a.*

The eye diagram must be valid for any 250 consecutive UIs.

A recovered TX UI is calculated over 3500 consecutive unit intervals of sample data. The eye diagram is created using all edges of the 250 consecutive UI in the center of the 3500 UI used for calculating the TX UI.

NOTE

The reference impedance for return loss measurements is 50Ω to ground for both the D+ and D– line (that is, as measured by a vector network analyzer with $50-\Omega$ probes, see Figure 53). Note that the series capacitors, CTX, are optional for the return loss measurement.

Figure 53. Minimum Receiver Eye Timing and Voltage Compliance Specification

17.5.1 Compliance Test and Measurement Load

The AC timing and voltage parameters must be verified at the measurement point, as specified within 0.2 inches of the package pins, into a test/measurement load shown in Figure 54.

NOTE

The allowance of the measurement point to be within 0.2 inches of the package pins is meant to acknowledge that package/board routing may benefit from D+ and D- not being exactly matched in length at the package pin boundary.

Figure 54. Compliance Test/Measurement Load

18.2 Mechanical Dimensions of the MPC8533E FC-PBGA

Figure 55 shows the mechanical dimensions and bottom surface nomenclature of the MPC8533E, 783 FC-PBGA package without a lid.

Notes:

- 1. All dimensions are in millimeters.
- 2. Dimensions and tolerances per ASME Y14.5M-1994.
- 3. Maximum solder ball diameter measured parallel to datum A.
- 4. Datum A, the seating plane, is determined by the spherical crowns of the solder balls.
- 5. Parallelism measurement shall exclude any effect of mark on top surface of package.
- 6. Capacitors may not be present on all parts. Care must be taken not to short exposed metal capacitor pads.
- 7. All dimensions are symmetric across the package center lines, unless dimensioned otherwise.

Figure 55. Mechanical Dimensions and Bottom Surface Nomenclature of the MPC8533E FC-PBGA without a Lid

Table 57. MPC8533E Pinout Listing (continued)

Signal	Package Pin Number	Pin Type	Power Supply	Notes
SD2_REF_CLK	AF2	I	XV _{DD}	_
SD2_TST_CLK	AG4	_	_	_
SD2_TST_CLK	AF4	_	_	_
	General-Purpose Output			
GPOUT[0:7]	AF22, AH23, AG27, AH25, AF21, AF25, AG26, AF26	0	OV _{DD}	—
	General-Purpose Input			-
GPIN[0:7]	AH24, AG24, AD23, AE21, AD22, AF23, AG25, AE20	Ι	OV _{DD}	—
	System Control			
HRESET	AG16	I	OV _{DD}	_
HRESET_REQ	AG15	0	OV _{DD}	21
SRESET	AG19	Ι	OV _{DD}	—
CKSTP_IN	AH5	Ι	OV _{DD}	—
CKSTP_OUT	AA12	0	OV _{DD}	2, 4
	Debug			
TRIG_IN	AC5	I	OV _{DD}	_
TRIG_OUT/READY/ QUIESCE	AB5	0	OV _{DD}	5, 8, 15, 21
MSRCID[0:1]	Y7, W9	0	OV _{DD}	4, 5, 8
MSRCID[2:4]	AA9, AB6, AD5	0	OV _{DD}	5, 15, 21
MDVAL	Y8	0	OV _{DD}	5
CLK_OUT	AE16	0	OV _{DD}	10
	Clock			
RTC	AF15	I	OV _{DD}	—
SYSCLK	AH16	I	OV _{DD}	_
	JTAG			
тск	AG28	I	OV _{DD}	—
TDI	AH28	I	OV _{DD}	11
TDO	AF28	0	OV _{DD}	10
TMS	AH27	I	OV _{DD}	11
TRST	AH22		OV _{DD}	11

Package Description

Table 57	. MPC8533E	Pinout Listing	(continued)
----------	------------	-----------------------	-------------

Signal	Package Pin Number	Pin Type	Power Supply	Notes				
AVDD_SRDS	W28	Power for SRDSPLL (1.0 V)	_	19				
AVDD_SRDS2	AG1	Power for SRDSPLL (1.0 V)	_	19				
SENSEVDD	W11	0	V _{DD}	12				
SENSEVSS	W10	_	—	12				
	Analog Signals							
MVREF	A28	Reference voltage signal for DDR	MVREF	_				
SD1_IMP_CAL_RX	M26	—	200 Ω to GND	_				
SD1_IMP_CAL_TX	AE28	—	100 Ω to GND	_				
SD1_PLL_TPA	V26	_	AVDD_SRDS ANALOG	17				
SD2_IMP_CAL_RX	АНЗ	I	200 Ω to GND	_				
SD2_IMP_CAL_TX	Y1	I	100 Ω to GND	_				
SD2_PLL_TPA	AH1	0	AVDD_SRDS2 ANALOG	17				
No Connect Pins								
NC	C19, D7, D10, K13, L6, K9, B6, F12, J7, M19, M25, N19, N24, P19, R19, AB19, T12, W3, M12, W5, P12, T19, W1, W7, L13, U19, W4, V8, V9, V10, V11, V12, V13, V14, V15, V16, V17, V18, V19, W2, W6, W8, T11, U11, W12, W13, W14, W15, W16, W17, W18, W19, W27, V25, Y17, Y18, Y19, AA18, AA19, AB20, AB21, AB22, AB23, J9	_	_	_				

Notes:

1.All multiplexed signals are listed only once and do not re-occur. For example, LCS5/DMA_REQ2 is listed only once in the Local Bus Controller Interface section, and is not mentioned in the DMA section even though the pin also functions as DMA_REQ2.

2.Recommend a weak pull-up resistor (2–10 K Ω) be placed on this pin to OV_{DD}.

3. This pin must always be pulled high.

4. This pin is a reset configuration pin. It has a weak internal pull-up P-FET which is enabled only when the processor is in the reset state. This pull-up is designed such that it can be overpowered by an external 4.7-kΩ pull-down resistor. However, if the signal is intended to be high after reset, and if there is any device on the net which might pull down the value of the net at reset, then a pull-up or active driver is needed.

5. Treat these pins as no connects (NC) unless using debug address functionality.

Note that there is no default for this PLL ratio; these signals must be pulled to the desired values. Also note that the DDR data rate is the determining factor in selecting the CCB bus frequency, since the CCB frequency must equal the DDR data rate.

Binary Value of LA[28:31] Signals	CCB:SYSCLK Ratio	Binary Value of LA[28:31] Signals	CCB:SYSCLK Ratio
0000	16:1	1000	8:1
0001	Reserved	1001	9:1
0010	Reserved	1010	10:1
0011	3:1	1011	Reserved
0100	4:1	1100	12:1
0101	5:1	1101	Reserved
0110	6:1	1110	Reserved
0111	Reserved	1111	Reserved

Table	60.	ССВ	Clock	Ratio
	•••			

19.3 e500 Core PLL Ratio

Table 61 describes the clock ratio between the e500 core complex bus (CCB) and the e500 core clock. This ratio is determined by the binary value of LBCTL, LALE, and LGPL2 at power up, as shown in Table 61.

Table 61. e500 Core to CCB Clock Ratio
--

Binary Value of LBCTL, LALE, LGPL2 Signals	e500 core:CCB Clock Ratio	Binary Value of LBCTL, LALE, LGPL2 Signals	e500 core:CCB Clock Ratio
000	4:1	100	2:1
001	Reserved	101	5:2
010	Reserved	110	3:1
011	3:2	111	7:2

19.4 PCI Clocks

For specifications on the PCI_CLK, refer to the PCI 2.2 Local Bus Specifications.

The use of PCI_CLK is optional if SYSCLK is in the range of 33–66 MHz. If SYSCLK is outside this range then use of PCI_CLK is required as a separate PCI clock source, asynchronous with respect to SYSCLK.

Clocking

19.5 Security Controller PLL Ratio

Table 62 shows the SEC frequency ratio.

Table 62. SEC Frequency Ratio

Signal Name	Value (Binary)	CCB CLK:SEC CLK
LWE_B	0	2:1 ¹
	1	3:1 ²

Notes:

1. In 2:1 mode the CCB frequency must be operating \leq 400 MHz.

2. In 3:1 mode any valid CCB can be used. The 3:1 mode is the default ratio for security block.

19.6 Frequency Options

19.6.1 SYSCLK to Platform Frequency Options

Table 63 shows the expected frequency values for the platform frequency when using a CCB clock to SYSCLK ratio in comparison to the memory bus clock speed.

CCB to SYSCLK Ratio	SYSCLK (MHz)						
	33.33	41.66	66.66	83	100	111	133.33
	Platform /CCB Frequency (MHz)						
2							—
3						333	400
4			—	333	400	445	533
5			333	415	500		
6			400	500			
8		333	533		_		
9		375					
10	333	417					
12	400	500					
16	533		-				

 Table 63. Frequency Options of SYSCLK with Respect to Memory Bus Speeds

System Design Information

where:

- $I_{fw} = Forward current$
- $I_s =$ Saturation current
- V_d = Voltage at diode
- $V_f =$ Voltage forward biased
- $V_{\rm H}$ = Diode voltage while $I_{\rm H}$ is flowing
- V_L = Diode voltage while I_L is flowing
- $I_{\rm H}$ = Larger diode bias current
- I_{L} = Smaller diode bias current
- q = Charge of electron $(1.6 \times 10^{-19} \text{ C})$
- n = Ideality factor (normally 1.0)
- K = Boltzman's constant (1.38×10^{-23} Joules/K)
- T = Temperature (Kelvins)

The ratio of I_H to I_L is usually selected to be 10:1. The above simplifies to the following:

$$V_{\rm H} - V_{\rm L} = 1.986 \times 10^{-4} \times nT$$

Solving for T, the equation becomes:

$$nT = \frac{V_{\rm H} - V_{\rm L}}{1.986 \times 10^{-4}}$$

21 System Design Information

This section provides electrical and thermal design recommendations for successful application of the MPC8533E.

21.1 System Clocking

This device includes six PLLs:

- The platform PLL generates the platform clock from the externally supplied SYSCLK input. The frequency ratio between the platform and SYSCLK is selected using the platform PLL ratio configuration bits as described in Section 19.2, "CCB/SYSCLK PLL Ratio."
- The e500 core PLL generates the core clock as a slave to the platform clock. The frequency ratio between the e500 core clock and the platform clock is selected using the e500 PLL ratio configuration bits as described in Section 19.3, "e500 Core PLL Ratio."
- The PCI PLL generates the clocking for the PCI bus.
- The local bus PLL generates the clock for the local bus.
- There are two PLLs for the SerDes block.

System Design Information

resistance of the pull-up devices. R_P and R_N are designed to be close to each other in value. Then, $Z_0 = (R_P + R_N) \div 2$.

Figure 63. Driver Impedance Measurement

Table 68 summarizes the signal impedance targets. The driver impedances are targeted at minimum V_{DD} , nominal OV_{DD} , 90°C.

Table 68. Impedance Characteristics

Impedance	Local Bus, Ethernet, DUART, Control, Configuration, Power Management	PCI	DDR DRAM	Symbol	Unit
R _N	43 Target	25 Target	20 Target	Z ₀	W
R _P	43 Target	25 Target	20 Target	Z ₀	W

Note: Nominal supply voltages. See Table 1.

21.8 Configuration Pin Muxing

The MPC8533E provides the user with power-on configuration options which can be set through the use of external pull-up or pull-down resistors of 4.7 k Ω on certain output pins (see customer visible configuration pins). These pins are generally used as output only pins in normal operation.

While $\overline{\text{HRESET}}$ is asserted however, these pins are treated as inputs. The value presented on these pins while $\overline{\text{HRESET}}$ is asserted, is latched when $\overline{\text{HRESET}}$ deasserts, at which time the input receiver is disabled and the I/O circuit takes on its normal function. Most of these sampled configuration pins are equipped with an on-chip gated resistor of approximately 20 k Ω . This value should permit the 4.7-k Ω resistor to pull the configuration pin to a valid logic low level. The pull-up resistor is enabled only during $\overline{\text{HRESET}}$ (and for platform/system clocks after $\overline{\text{HRESET}}$ deassertion to ensure capture of the reset value). When the input receiver is disabled the pull-up is also, thus allowing functional operation of the pin as an output with minimal signal quality or delay disruption. The default value for all configuration bits treated this way has