

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

ĿXF

Product Status	Active
Core Processor	PowerPC e500v2
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	667MHz
Co-Processors/DSP	-
RAM Controllers	DDR, DDR2
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100/1000Mbps (2)
SATA	-
USB	-
Voltage - I/O	1.8V, 2.5V, 3.3V
Operating Temperature	0°C ~ 90°C (TA)
Security Features	-
Package / Case	783-BBGA, FCBGA
Supplier Device Package	783-FCPBGA (29x29)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mpc8533vjalfa

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Three PCI Express interfaces
 - Two \times 4 link width interfaces and one \times 1 link width interface
 - PCI Express 1.0a compatible
 - Auto-detection of number of connected lanes
 - Selectable operation as root complex or endpoint
 - Both 32- and 64-bit addressing
 - 256-byte maximum payload size
 - Virtual channel 0 only
 - Traffic class 0 only
 - Full 64-bit decode with 32-bit wide windows
- Power management
 - Supports power saving modes: doze, nap, and sleep
 - Employs dynamic power management, which automatically minimizes power consumption of blocks when they are idle
- System performance monitor
 - Supports eight 32-bit counters that count the occurrence of selected events
 - Ability to count up to 512 counter-specific events
 - Supports 64 reference events that can be counted on any of the 8 counters
 - Supports duration and quantity threshold counting
 - Burstiness feature that permits counting of burst events with a programmable time between bursts
 - Triggering and chaining capability
 - Ability to generate an interrupt on overflow
- System access port
 - Uses JTAG interface and a TAP controller to access entire system memory map
 - Supports 32-bit accesses to configuration registers
 - Supports cache-line burst accesses to main memory
 - Supports large block (4-Kbyte) uploads and downloads
 - Supports continuous bit streaming of entire block for fast upload and download
- IEEE Std 1149.1[™]-compliant, JTAG boundary scan
- 783 FC-PBGA package

Figure 1 shows the MPC8533E block diagram.

Figure 1. MPC8533E Block Diagram

2 Electrical Characteristics

This section provides the AC and DC electrical specifications and thermal characteristics for the MPC8533E. This device is currently targeted to these specifications. Some of these specifications are independent of the I/O cell, but are included for a more complete reference. These are not purely I/O buffer design specifications.

2.1 **Overall DC Electrical Characteristics**

This section covers the ratings, conditions, and other characteristics.

2.1.1 Absolute Maximum Ratings

Table 1 provides the absolute maximum ratings.

able 1. Absolute	Maximum	Ratings ¹
------------------	---------	----------------------

Characteristic	Symbol	Max Value	Unit	Notes
Core supply voltage	V _{DD}	-0.3 to 1.1	V	—
PLL supply voltage	AV _{DD}	–0.3 to 1.1	V	_
Core power supply for SerDes transceivers	SV _{DD}	–0.3 to 1.1	V	—
Pad power supply for SerDes transceivers	XV _{DD}	-0.3 to 1.1	V	_

Power Characteristics

3 Power Characteristics

The estimated typical core power dissipation for the core complex bus (CCB) versus the core frequency for this family of PowerQUICC III devices is shown in Table 4.

Power Mode	Core Frequency (MHz)	Platform Frequency (MHz)	V _{DD} (V)	Junction Temperature (°C)	Power (W)	Notes
Typical	667	333	1.0	65	2.6	1, 2
Thermal				90	3.75	1, 3
Maximum					5.85	1, 4
Typical	800	400	1.0	65	2.9	1, 2
Thermal				90	4.0	1, 3
Maximum					6.0	1, 4
Typical	1000	400	1.0	65	3.6	1, 2
Thermal				90	4.4	1, 3
Maximum					6.2	1, 4
Typical	1067	533	1.0	65	3.9	1, 2
Thermal				90	5.0	1, 3
Maximum					6.5	1, 4

Table 4. MPC8533E Core Power Dissipation

Notes:

- 1. These values specify the power consumption at nominal voltage and apply to all valid processor bus frequencies and configurations. The values do not include power dissipation for I/O supplies.
- Typical power is an average value measured at the nominal recommended core voltage (V_{DD}) and 65°C junction temperature (see Table 2) while running the Dhrystone 2.1 benchmark.
- Thermal power is the average power measured at nominal core voltage (V_{DD}) and maximum operating junction temperature (see Table 2) while running the Dhrystone 2.1 benchmark.
- 4. Maximum power is the maximum power measured at nominal core voltage (V_{DD}) and maximum operating junction temperature (see Table 2) while running a smoke test which includes an entirely L1-cache-resident, contrived sequence of instructions which keep the execution unit maximally busy.

4 Input Clocks

This section contains the following subsections:

- Section 4.1, "System Clock Timing"
- Section 4.2, "Real-Time Clock Timing"
- Section 4.3, "eTSEC Gigabit Reference Clock Timing"
- Section 4.4, "Platform to FIFO Restrictions"
- Section 4.5, "Other Input Clocks"

Figure 5 shows the DDR SDRAM output timing diagram.

Figure 5. DDR and DDR2 SDRAM Output Timing Diagram

Figure 6 provides the AC test load for the DDR bus.

Figure 6. DDR AC Test Load

7 DUART

This section describes the DC and AC electrical specifications for the DUART interface of the MPC8533E.

7.1 DUART DC Electrical Characteristics

Table 19 provides the DC electrical characteristics for the DUART interface.

Table 19. DUART DC Electrical Characteristics

Parameter	Symbol	Min	Max	Unit	Notes
High-level input voltage	V _{IH}	2	OV _{DD} + 0.3	V	_
Low-level input voltage	V _{IL}	-0.3	0.8	V	_
Input current ($V_{IN} = 0 V \text{ or } V_{IN} = V_{DD}$)	I _{IN}	_	±5	μA	1
High-level output voltage ($OV_{DD} = min, I_{OH} = -2 mA$)	V _{OH}	2.4		V	

Enhanced Three-Speed Ethernet (eTSEC), MII Management

Table 24. FIFO Mode Receive AC Timing Specification (continued)

At recommended operating conditions with L/TVDD of 3.3 V \pm 5% or 2.5 V \pm 5%

Parameter/Condition	Symbol	Min	Тур	Max	Unit	Notes
Rise time RX_CLK (20%–80%)	t _{FIRR}	—	—	0.75	ns	_
Fall time RX_CLK (80%–20%)	t _{FIRF}	—	—	0.75	ns	_
RXD[7:0], RX_DV, RX_ER setup time to RX_CLK	t _{FIRDV}	1.5	—	—	ns	_
RX_CLK to RXD[7:0], RX_DV, RX_ER hold time	t _{FIRDX}	0.5	—	—	ns	—

Timing diagrams for FIFO appear in Figure 7 and Figure 8.

Figure 8. FIFO Receive AC Timing Diagram

8.3.2 GMII AC Timing Specifications

This section describes the GMII transmit and receive AC timing specifications.

8.3.2.1 GMII Transmit AC Timing Specifications

Table 25 provides the GMII transmit AC timing specifications.

Table 25. GMII Transmit AC Timing Specifications

At recommended operating conditions with L/TVDD of 3.3 V \pm 5% or 2.5 V \pm 5%

Parameter/Condition	Symbol ¹	Min	Тур	Max	Unit	Notes
GTX_CLK clock period	t _{GTX}		8.0		ns	_
GTX_CLK to GMII data TXD[7:0], TX_ER, TX_EN delay	^t GTKHDX	0.2	_	5.0	ns	2
GTX_CLK data clock rise time (20%-80%)	t _{GTXR}			1.0	ns	_

Enhanced Three-Speed Ethernet (eTSEC), MII Management

Table 30. TBI Receive AC Timing Specifications (continued)

At recommended operating conditions with L/TVDD of 3.3 V \pm 5% or 2.5 V \pm 5%.

Parameter/Condition	Symbol ¹	Min	Тур	Max	Unit	Notes
PMA_RX_CLK[0:1] duty cycle	t _{TRXH} /t _{TRX}	40	—	60	%	—
RCG[9:0] setup time to rising PMA_RX_CLK	t _{TRDVKH}	2.5	—	_	ns	—
PMA_RX_CLK to RCG[9:0] hold time	t _{TRDXKH}	1.5	—	_	ns	—
PMA_RX_CLK[0:1] clock rise time (20%-80%)	t _{TRXR}	0.7	—	2.4	ns	—
PMA_RX_CLK[0:1] clock fall time (80%-20%)	t _{TRXF}	0.7	_	2.4	ns	

Note:

1. The symbols used for timing specifications follow the pattern of t_{(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{TRDVKH} symbolizes TBI receive timing (TR) with respect to the time data input signals (D) reach the valid state (V) relative to the t_{TRX} clock reference (K) going to the high (H) state or setup time. Also, t_{TRDXKH} symbolizes TBI receive timing (TR) with respect to the time data input signals (D) went invalid (X) relative to the t_{TRX} clock reference (K) going to the high (H) state. Note that, in general, the clock reference symbol representation is based on three letters representing the clock of a particular functional. For example, the subscript of t_{TRX} represents the TBI (T) receive (RX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall). For symbols representing skews, the subscript is skew (SK) followed by the clock that is being skewed (TRX).}

Figure 16 shows the TBI receive AC timing diagram.

Figure 16. TBI Receive AC Timing Diagram

8.5.3 TBI Single-Clock Mode AC Specifications

When the eTSEC is configured for TBI modes, all clocks are supplied from external sources to the relevant eTSEC interface. In single-clock TBI mode, when TBICON[CLKSEL] = 1, a 125-MHz TBI receive clock is supplied on the TSEC n_RX_CLK pin (no receive clock is used on TSEC n_TX_CLK in this mode, whereas for the dual-clock mode this is the PMA1 receive clock). The 125-MHz transmit clock is applied on the TSEC_GTX_CLK125 pin in all TBI modes.

Enhanced Three-Speed Ethernet (eTSEC), MII Management

8.5.5.2 RMII Receive AC Timing Specifications

Table 34 shows the RMII receive AC timing specifications.

Table 34. RMII Receive AC Timing Specifications

At recommended operating conditions with L/TV_{DD} of 3.3 V \pm 5%.or 2.5 V \pm 5%.

Parameter/Condition	Symbol ¹	Min	Тур	Max	Unit	Notes
REF_CLK clock period	t _{RMR}	15.0	20.0	25.0	ns	_
REF_CLK duty cycle	t _{RMRH}	35	50	65	%	_
REF_CLK peak-to-peak jitter	t _{RMRJ}	_	_	250	ps	_
Rise time REF_CLK (20%-80%)	t _{RMRR}	1.0		2.0	ns	_
Fall time REF_CLK (80%-20%)	t _{RMRF}	1.0		2.0	ns	_
RXD[1:0], CRS_DV, RX_ER setup time to REF_CLK rising edge	t _{RMRDV}	4.0	_	_	ns	
RXD[1:0], CRS_DV, RX_ER hold time to REF_CLK rising edge	t _{RMRDX}	2.0	_	_	ns	_

Note:

1. The symbols used for timing specifications follow the pattern of t_{(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{MRDVKH} symbolizes MII receive timing (MR) with respect to the time data input signals (D) reach the valid state (V) relative to the t_{MRX} clock reference (K) going to the high (H) state or setup time. Also, t_{MRDXKL} symbolizes MII receive timing (GR) with respect to the time data input signals (D) went invalid (X) relative to the t_{MRX} clock reference (K) going to the low (L) state or hold time. Note that, in general, the clock reference symbol representation is based on three letters representing the clock of a particular functional. For example, the subscript of t_{MRX} represents the MII (M) receive (RX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).}

Figure 20 provides the AC test load for eTSEC.

Figure 20. eTSEC AC Test Load

Figure 21 shows the RMII receive AC timing diagram.

Figure 21. RMII Receive AC Timing Diagram

Local Bus

Figure 25. Local Bus Signals (PLL Bypass Mode)

NOTE

In PLL bypass mode, LCLK[n] is the inverted version of the internal clock with the delay of t_{LBKHKT} . In this mode, signals are launched at the rising edge of the internal clock and are captured at falling edge of the internal clock withe the exception of LGTA/LUPWAIT (which is captured on the rising edge of the internal clock).

12 JTAG

This section describes the AC electrical specifications for the IEEE 1149.1 (JTAG) interface of the MPC8533E.

12.1 JTAG DC Electrical Characteristics

Table 44 provides the DC electrical characteristics for the JTAG interface.

Table 44. JTAG DC Electrical Characteristics

Parameter	Symbol	Min	Max	Unit	Notes
High-level input voltage	V _{IH}	2	OV _{DD} + 0.3	V	
Low-level input voltage	V _{IL}	-0.3	0.8	V	_
Input current (OV _{IN} = 0 V or OV _{IN} = OV _{DD})	I _{IN}	_	±5	μA	1
High-level output voltage ($OV_{DD} = min, I_{OH} = -2 mA$)	V _{OH}	2.4	_	V	_
Low-level output voltage ($OV_{DD} = min, I_{OL} = 2 mA$)	V _{OL}	_	0.4	V	_

Note:

1. Note that the symbol V_{IN} , in this case, represents the OV_{IN} .

12.2 JTAG AC Electrical Specifications

Table 45 provides the JTAG AC timing specifications as defined in Figure 30 through Figure 33.

Table 45. JTAG AC Timing Specifications (Independent of SYSCLK)¹

At recommended operating conditions (see Table 3).

Parameter	Symbol ²	Min	Max	Unit	Notes
JTAG external clock frequency of operation	f _{JTG}	0	33.3	MHz	—
JTAG external clock cycle time	t _{JTG}	30	—	ns	—
JTAG external clock pulse width measured at 1.4 V	t _{JTKHKL}	15	—	ns	—
JTAG external clock rise and fall times	t _{JTGR} & t _{JTGF}	0	2	ns	—
TRST assert time	t _{TRST}	25	—	ns	3
Input setup times: Boundary-scan data TMS, TDI	t _{JTDVKH} t _{JTIVKH}	4 0	_	ns	4
Input hold times: Boundary-scan data TMS, TDI	t _{JTDXKH} t _{JTIXKH}	20 25	_	ns	4
Valid times: Boundary-scan data TDO	t _{JTKLDV} t _{JTKLOV}	4 4	20 25	ns	5
Output hold times: Boundary-scan data TDO	t _{jtkldx} t _{jtklox}	2.5 4		ns	5

PCI Express

17 PCI Express

This section describes the DC and AC electrical specifications for the PCI Express bus of the MPC8533E.

17.1 DC Requirements for PCI Express SD_REF_CLK and SD_REF_CLK

For more information, see Section 16.2, "SerDes Reference Clocks."

17.2 AC Requirements for PCI Express SerDes Clocks

Table 53 provides the AC requirements for the PCI Express SerDes clocks.

Symbol ²	Parameter Description	Min	Тур	Max	Units	Notes
t _{REF}	REFCLK cycle time		10	—	ns	1
t _{REFCJ}	REFCLK cycle-to-cycle jitter. Difference in the period of any two adjacent REFCLK cycles		_	100	ps	—
t _{REFPJ}	Phase jitter. Deviation in edge location with respect to mean edge location	-50	_	50	ps	—

Table 53. SD_REF_CLK and SD_REF_CLK AC Requirements

Notes:

1. Typical based on PCI Express Specification 2.0.

2. Guaranteed by characterization.

17.3 Clocking Dependencies

The ports on the two ends of a link must transmit data at a rate that is within 600 parts per million (ppm) of each other at all times. This is specified to allow bit rate clock sources with a \pm 300 ppm tolerance.

17.4 Physical Layer Specifications

The following is a summary of the specifications for the physical layer of PCI Express on this device. For further details as well as the specifications of the transport and data link layer please refer to the *PCI Express Base Specification. Rev. 1.0a.*

Figure 52. Minimum Transmitter Timing and Voltage Output Compliance Specifications

17.4.3 Differential Receiver (RX) Input Specifications

Table 55 defines the specifications for the differential input at all receivers. The parameters are specified at the component pins.

Symbol	Parameter	Min	Nom	Max	Units	Comments
UI	Unit interval	399.88	400	400.12	ps	Each UI is 400 ps ± 300 ppm. UI does not account for spread spectrum clock dictated variations. See Note 1.
V _{RX-DIFFp-p}	Differential peak-to- peak input voltage	0.175	_	1.200	V	$V_{RX-DIFFp-p} = 2 \times V_{RX-D+} - V_{RX-D-} $ See Note 2.
T _{RX-EYE}	Minimum receiver eye width	0.4			UI	The maximum interconnect media and transmitter jitter that can be tolerated by the receiver can be derived as $T_{RX-MAX-JITTER} = 1 - T_{RX-EYE} = 0.6$ UI. See Notes 2 and 3.

Table 55. Differential Receiver (RX) Input Specifications

Package Description

Signal	Package Pin Number	Pin Type	Power Supply	Notes
LCS6/DMA_DACK2	J16	0	BV _{DD}	1
LCS7/DMA_DDONE2	L18	0	BV _{DD}	1
LWE0/LBS0/LSDDQM[0]	J22	0	BV _{DD}	4, 8
LWE1/LBS1/LSDDQM[1]	H22	0	BV _{DD}	4, 8
LWE2/LBS2/LSDDQM[2]	H23	0	BV _{DD}	4, 8
LWE3/LBS3/LSDDQM[3]	H21	0	BV _{DD}	4, 8
LALE	J26	0	BV _{DD}	4, 7, 8
LBCTL	J25	0	BV _{DD}	4, 7, 8
LGPL0/LSDA10	J20	0	BV _{DD}	4, 8
LGPL1/LSDWE	К20	0	BV _{DD}	4, 8
LGPL2/LOE/LSDRAS	G20	0	BV _{DD}	4, 7, 8
LGPL3/LSDCAS	H18	0	BV _{DD}	4, 8
LGPL4/LGTA/LUPWAIT/ LPBSE	L20	I/O	BV _{DD}	28
LGPL5	K19	0	BV _{DD}	4, 8
LCKE	L17	0	BV _{DD}	—
LCLK[0:2]	H24, J24, H25	0	BV _{DD}	—
LSYNC_IN	D27	I	BV _{DD}	—
LSYNC_OUT	D28	0	BV _{DD}	—
	DMA			
DMA_DACK[0:1]	Y13, Y12	0	OV _{DD}	4, 8, 9
DMA_DREQ[0:1]	AA10, AA11	I	OV _{DD}	—
DMA_DDONE[0:1]	AA7, Y11	0	OV _{DD}	—
	Programmable Interrupt Contro	oller		
UDE	AH15	I	OV _{DD}	—
MCP	AG18	I	OV _{DD}	—
IRQ[0:7]	AG22, AF17, AD21, AF19, AG17, AF16, AC23, AC22	I	OV _{DD}	—
IRQ[8]	AC19	I	OV _{DD}	—
IRQ[9]/DMA_DREQ3	AG20	I	OV _{DD}	1
IRQ[10]/DMA_DACK3	AE27	I/O	OV _{DD}	1
IRQ[11]/DMA_DDONE3	AE24	I/O	OV _{DD}	1
IRQ_OUT	AD14	0	OV _{DD}	2

Table 57. MPC8533E Pinout Listing (continued)

Package Description

Table 57. MPC8533E Pinout Listing (continued)

Signal	Package Pin Number	Pin Type	Power Supply	Notes
	DFT	·		
L1_TSTCLK	AC20	I	OV _{DD}	18
L2_TSTCLK	AE17	I	OV _{DD}	18
LSSD_MODE	AH19	I	OV _{DD}	18
TEST_SEL	AH13	I	OV _{DD}	3
	Thermal Management	·		
TEMP_ANODE	Y3	—	_	13
TEMP_CATHODE	ААЗ		—	13
	Power Management			•
ASLEEP	AH17	0	OV _{DD}	8, 15, 21
	Power and Ground Signals			
GND	D5, M10, F4, D26, D23, C12, C15, E20, D8, B10, E3, J14, K21, F8, A3, F16, E12, E15, D17, L1, F21, H1, G13, G15, G18, C6, A14, A7, G25, H4, C20, J12, J15, J17, F27, M5, J27, K11, L26, K7, K8, L12, L15, M14, M16, M18, N13, N15, N17, N2, P5, P14, P16, P18, R13, R15, R17, T14, T16, T18, U13, U15, U17, AA8, U6, Y10, AC21, AA17, AC16, V4, AD7, AD18, AE23, AF11, AF14, AG23, AH9, A27, B28, C27		_	
OV _{DD} [1:17]	Y16, AB7, AB10, AB13, AC6, AC18, AD9, AD11, AE13, AD15, AD20, AE5, AE22, AF10, AF20, AF24, AF27	Power for PCI and other standards (3.3 V)	OV _{DD}	_
LV _{DD} [1:2]	R4, U3	Power for TSEC1 interfaces (2.5 V, 3.3 V)	LV _{DD}	_
TV _{DD} [1:2]	N8, R10	Power for TSEC3 interfaces (2.5 V, 3.3 V)	TV _{DD}	_
GV _{DD}	B1, B11, C7, C9, C14, C17, D4, D6, R3, D15, E2, E8,C24, E18, F5, E14, C21, G3, G7, G9, G11, H5, H12, E22, F15, J10, K3, K12, K14, H14, D20, E11, M1, N5	Power for DDR1 and DDR2 DRAM I/O voltage (1.8 V, 2.5 V)	GV _{DD}	_
BV _{DD}	L23, J18, J19, F20, F23, H26, J21, J23	Power for local bus (1.8 V, 2.5 V, 3.3 V)	BV _{DD}	—

Note that there is no default for this PLL ratio; these signals must be pulled to the desired values. Also note that the DDR data rate is the determining factor in selecting the CCB bus frequency, since the CCB frequency must equal the DDR data rate.

Binary Value of LA[28:31] Signals	CCB:SYSCLK Ratio	Binary Value of LA[28:31] Signals	CCB:SYSCLK Ratio
0000	16:1	1000	8:1
0001	Reserved	1001	9:1
0010	Reserved	1010	10:1
0011	3:1	1011	Reserved
0100	4:1	1100	12:1
0101	5:1	1101	Reserved
0110	6:1	1110	Reserved
0111	Reserved	1111	Reserved

Table	60.	ССВ	Clock	Ratio
	•••			

19.3 e500 Core PLL Ratio

Table 61 describes the clock ratio between the e500 core complex bus (CCB) and the e500 core clock. This ratio is determined by the binary value of LBCTL, LALE, and LGPL2 at power up, as shown in Table 61.

Table 61. e500 Core to CCB Clock Ratio
--

Binary Value of LBCTL, LALE, LGPL2 Signals	e500 core:CCB Clock Ratio	Binary Value of LBCTL, LALE, LGPL2 Signals	e500 core:CCB Clock Ratio
000	4:1	100	2:1
001	Reserved	101	5:2
010	Reserved	110	3:1
011	3:2	111	7:2

19.4 PCI Clocks

For specifications on the PCI_CLK, refer to the PCI 2.2 Local Bus Specifications.

The use of PCI_CLK is optional if SYSCLK is in the range of 33–66 MHz. If SYSCLK is outside this range then use of PCI_CLK is required as a separate PCI clock source, asynchronous with respect to SYSCLK.

Clocking

19.5 Security Controller PLL Ratio

Table 62 shows the SEC frequency ratio.

Table 62. SEC Frequency Ratio

Signal Name	Value (Binary)	CCB CLK:SEC CLK
LWE_B	0	2:1 ¹
	1	3:1 ²

Notes:

1. In 2:1 mode the CCB frequency must be operating \leq 400 MHz.

2. In 3:1 mode any valid CCB can be used. The 3:1 mode is the default ratio for security block.

19.6 Frequency Options

19.6.1 SYSCLK to Platform Frequency Options

Table 63 shows the expected frequency values for the platform frequency when using a CCB clock to SYSCLK ratio in comparison to the memory bus clock speed.

CCB to SYSCLK Ratio	SYSCLK (MHz)						
	33.33	41.66	66.66	83	100	111	133.33
			Platform	CCB Freque	ncy (MHz)		
2							—
3						333	400
4			—	333	400	445	533
5			333	415	500		
6			400	500			
8		333	533		_		
9		375					
10	333	417					
12	400	500					
16	533		-				

 Table 63. Frequency Options of SYSCLK with Respect to Memory Bus Speeds

System Design Information

where:

- $I_{fw} = Forward current$
- $I_s =$ Saturation current
- V_d = Voltage at diode
- $V_f =$ Voltage forward biased
- $V_{\rm H}$ = Diode voltage while $I_{\rm H}$ is flowing
- V_L = Diode voltage while I_L is flowing
- $I_{\rm H}$ = Larger diode bias current
- I_{L} = Smaller diode bias current
- q = Charge of electron $(1.6 \times 10^{-19} \text{ C})$
- n = Ideality factor (normally 1.0)
- K = Boltzman's constant (1.38×10^{-23} Joules/K)
- T = Temperature (Kelvins)

The ratio of I_H to I_L is usually selected to be 10:1. The above simplifies to the following:

$$V_{\rm H} - V_{\rm L} = 1.986 \times 10^{-4} \times nT$$

Solving for T, the equation becomes:

$$nT = \frac{V_{\rm H} - V_{\rm L}}{1.986 \times 10^{-4}}$$

21 System Design Information

This section provides electrical and thermal design recommendations for successful application of the MPC8533E.

21.1 System Clocking

This device includes six PLLs:

- The platform PLL generates the platform clock from the externally supplied SYSCLK input. The frequency ratio between the platform and SYSCLK is selected using the platform PLL ratio configuration bits as described in Section 19.2, "CCB/SYSCLK PLL Ratio."
- The e500 core PLL generates the core clock as a slave to the platform clock. The frequency ratio between the e500 core clock and the platform clock is selected using the e500 PLL ratio configuration bits as described in Section 19.3, "e500 Core PLL Ratio."
- The PCI PLL generates the clocking for the PCI bus.
- The local bus PLL generates the clock for the local bus.
- There are two PLLs for the SerDes block.

21.5 Connection Recommendations

To ensure reliable operation, it is highly recommended to connect unused inputs to an appropriate signal level. All unused active low inputs should be tied to V_{DD} , TV_{DD} , BV_{DD} , OV_{DD} , GV_{DD} , and LV_{DD} as required. All unused active high inputs should be connected to GND. All NC (no connect) signals must remain unconnected. Power and ground connections must be made to all external V_{DD} , TV_{DD} , BV_{DD} , OV_{DD} , GV_{DD} , TV_{DD} , BV_{DD} , OV_{DD} , GV_{DD} , and LV_{DD} , and GND pins of the device.

21.6 Pull-Up and Pull-Down Resistor Requirements

The MPC8533E requires weak pull-up resistors (2–10 k Ω is recommended) on open drain type pins including I²C pins and MPIC interrupt pins.

Correct operation of the JTAG interface requires configuration of a group of system control pins as demonstrated in Figure 65. Care must be taken to ensure that these pins are maintained at a valid deasserted state under normal operating conditions as most have asynchronous behavior and spurious assertion will give unpredictable results.

The following pins must NOT be pulled down during power-on reset: TSEC3_TXD[3], <u>HRESET_REQ</u>, TRIG_OUT/READY/QUIESCE, MSRCID[2:4], ASLEEP. The DMA_DACK[0:1] and TEST_SEL pins must be set to a proper state during POR configuration. Refer to the pinout listing table (Table 57) for more details. Refer to the *PCI 2.2 Local Bus Specifications*, for all pullups required for PCI.

21.7 Output Buffer DC Impedance

The MPC8533E drivers are characterized over process, voltage, and temperature. For all buses, the driver is a push-pull single-ended driver type (open drain for I^2C). To measure Z_0 for the single-ended drivers, an external resistor is connected from the chip pad to OV_{DD} or GND. Then, the value of each resistor is varied until the pad voltage is $OV_{DD}/2$ (see Figure 63). The output impedance is the average of two components, the resistances of the pull-up and pull-down devices. When data is held high, SW1 is closed (SW2 is open) and R_P is trimmed until the voltage at the pad equals $OV_{DD}/2$. R_P then becomes the

System Design Information

21.10 Guidelines for High-Speed Interface Termination

This section provides guidelines for when the SerDes interface is either not used at all or only partly used.

21.10.1 SerDes Interface Entirely Unused

If the high-speed SerDes interface is not used at all, the unused pin should be terminated as described in this section. However, the SerDes must always have power applied to its supply pins.

The following pins must be left unconnected (float):

- SD_TX[0:7]
- $\overline{\text{SD}}_{\text{TX}}[0:7]$

The following pins must be connected to GND:

- SD_RX[0:7]
- SD RX[0:7]
- SD REF CLK
- SD REF CLK

21.10.2 SerDes Interface Partly Unused

If only part of the high speed SerDes interface pins are used, the remaining high-speed serial I/O pins should be terminated as described in this section.

The following pins must be left unconnected (float) if not used:

- SD_TX[0:7]
- $\overline{\text{SD}}_{TX}[0:7]$

The following pins must be connected to GND if not used:

- SD_RX[0:7]
- $\overline{\text{SD}_{RX}}[0:7]$
- SD_REF_CLK
- SD_REF_CLK

21.11 Guideline for PCI Interface Termination

PCI termination, if not used at all, is done as follows.

Option 1

- If PCI arbiter is enabled during POR,
- All AD pins will be driven to the stable states after POR. Therefore, all ADs pins can be floating.
- All PCI control pins can be grouped together and tied to OV_{DD} through a single 10-k Ω resistor.
- It is optional to disable PCI block through DEVDISR register after POR reset.

Option 2

- If PCI arbiter is disabled during POR,
- All AD pins will be in the input state. Therefore, all ADs pins need to be grouped together and tied to OV_{DD} through a single (or multiple) 10-k Ω resistor(s).
- All PCI control pins can be grouped together and tied to OV_{DD} through a single 10-k Ω resistor.

21.12 Guideline for LBIU Termination

If the LBIU parity pins are not used, the following list shows the termination recommendation:

- For LDP[0:3]: tie them to ground or the power supply rail via a 4.7-k Ω resistor.
- For LPBSE: tie it to the power supply rail via a 4.7-k Ω resistor (pull-up resistor).

22 Device Nomenclature

Ordering information for the parts fully covered by this hardware specifications document is provided in Section 22.3, "Part Marking." Contact your local Freescale sales office or regional marketing team for order information.

22.1 Industrial and Commercial Tier Qualification

The MPC8533E device has been tested to meet the commercial tier qualification. Table 69 provides a description for commercial and industrial qualifications.

Tier ¹	Typical Application Use Time	Power-On Hours	Example of Typical Applications
Commercial	5 years	Part-time/ Full-Time	PC's, consumer electronics, office automation, SOHO networking, portable telecom products, PDAs, etc.
Industrial	10 years	Typically Full-Time	Installed telecom equipment, work stations, servers, warehouse equipment, etc.

Table 69. Commercial and Industrial Description

Note:

1. Refer to Table 2 for operating temperature ranges. Temperature is independent of tier and varies per product.

23 Document Revision History

This table provides a revision history for the MPC8533E hardware specification.

Table 71. MPC8533E Document Revision History

Revision	Date	Substantive Change(s)
8	09/2015	• In Table 10 and Table 12, removed the output leakage current rows and removed table note 4.
7	06/2014	 In Table 70, "Device Nomenclature," added full Pb-free part code. In Table 70, "Device Nomenclature," added footnotes 3 and 4.
6	05/2011	Updated the value of t _{JTKLDX} to 2.5 ns from 4ns in Table 45.
5	01/2011	Updated Table 70.
4	09/2010	 Modified local bus information in Section 1.1, "Key Features," to show max local bus frequency as 133 MHz. Added footnote 28 to Table 57. Updated solder-ball parameter in Table 56.
3	11/2009	 Update Section 20.3.4, "Temperature Diode," Update Table 56 Package Parameters from 95.5%sn to 96.5%sn
2	01/2009	 Update power number table to include 1067 MHz/533 MHz power numbers. Remove Part number tables from Hardware spec. The part numbers are available on Freescale web site product page. Removed I/O power numbers from the Hardware spec. and added the table to bring-up guide applacation note Updated RX_CLK duty cycle min, and max value to meet the industry standard GMII duty cycle. In Table 35, removed note 1 and renumbered remaining note. Update paragraph Section 21.3, "Decoupling Recommendations Update t_{DDKHMP}, t_{DDKHME} in Table 18 Update Figure 5 DDR Output Timing Diagram
1	06/2008	Update in Table 18 DDR SDRAM Output AC Timing Specifications tMCK Max value Improvement to Section 16, "High-Speed Serial Interfaces (HSSI) Update Figure 55 Mechanical Dimensions Update in Table 43 Local Bus General Timing Parameters—PLL Bypassed
0	04/2008	Initial release.