

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	35
Program Memory Size	16KB (5.5K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 13x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24hj16gp304-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.7 Oscillator Value Conditions on Device Start-up

If the PLL of the target device is enabled and configured for the device start-up oscillator, the maximum oscillator source frequency must be limited to \leq 8 MHz for start-up with PLL enabled. This means that if the external oscillator frequency is outside this range, the application must start-up in FRC mode first. The default PLL settings after a POR with an oscillator frequency outside this range will violate the device operating speed.

Once the device powers up, the application firmware can initialize the PLL SFRs, CLKDIV and PLLDBF to a suitable value, and then perform a clock switch to the Oscillator + PLL clock source. Note that clock switching must be enabled in the device Configuration word.

2.8 Configuration of Analog and Digital Pins During ICSP Operations

If MPLAB ICD 3 or MPLAB REAL ICE in-circuit emulator is selected as a debugger, it automatically initializes all of the A/D input pins (ANx) as "digital" pins, by setting all bits in the AD1PCFGL registers.

The bits in the registers that correspond to the A/D pins that are initialized by MPLAB ICD 3 or MPLAB REAL ICE in-circuit emulator, must not be cleared by the user application firmware; otherwise, communication errors will result between the debugger and the device.

If your application needs to use certain A/D pins as analog input pins during the debug session, the user application must clear the corresponding bits in the AD1PCFGL register during initialization of the ADC module.

When the MPLAB ICD 3 or MPLAB REAL ICE in-circuit emulator is used as a programmer, the user application firmware must correctly configure the AD1PCFGL register. Automatic initialization of this register is only done during debugger operation. Failure to correctly configure the register(s) will result in all A/D pins being recognized as analog input pins, resulting in the port value being read as a logic '0', which may affect user application functionality.

2.9 Unused I/Os

Unused I/O pins should be configured as outputs and driven to a logic low state.

Alternatively, connect a 1k to 10k resistor between Vss and the unused pins.

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ADC1BUF0	0300		ADC Data Buffer 0							xxxx								
ADC1BUF1	0302								ADC Data	a Buffer 1								xxxx
ADC1BUF2	0304								ADC Data	a Buffer 2								xxxx
ADC1BUF3	0306								ADC Data	a Buffer 3								xxxx
ADC1BUF4	0308								ADC Data	a Buffer 4								xxxx
ADC1BUF5	030A								ADC Data	a Buffer 5								xxxx
ADC1BUF6	030C								ADC Data	a Buffer 6								xxxx
ADC1BUF7	030E								ADC Data	a Buffer 7								xxxx
ADC1BUF8	0310								ADC Data	a Buffer 8								xxxx
ADC1BUF9	0312								ADC Data	a Buffer 9								xxxx
ADC1BUFA	0314								ADC Data	Buffer 10								xxxx
ADC1BUFB	0316								ADC Data	Buffer 11								xxxx
ADC1BUFC	0318		ADC Data Buffer 12						xxxx									
ADC1BUFD	031A		ADC Data Buffer 13 x:						xxxx									
ADC1BUFE	031C								ADC Data	Buffer 14								xxxx
ADC1BUFF	031E								ADC Data	Buffer 15								xxxx
AD1CON1	0320	ADON	-	ADSIDL			AD12B	FOR	M<1:0>	5	SSRC<2:0>	>	_	SIMSAM	ASAM	SAMP	DONE	0000
AD1CON2	0322	١	/CFG<2:0>	>	—	—	CSCNA	CHP	'S<1:0>	BUFS	—		SMPI	<3:0>		BUFM	ALTS	0000
AD1CON3	0324	ADRC	-	—			SAMC<4:0	>					ADC	S<7:0>			1	0000
AD1CHS123	0326	—	_	_	—	—	CH123N		CH123SB	—	_	_	—	—		VA<1:0>	CH123SA	0000
AD1CHS0	0328	CH0NB	_	—			CH0SB<4:(CH0NA	—	—			CH0SA<4:			0000
AD1PCFGL	032C			—	PCFG12	PCFG11	PCFG10	PCFG9	—		—	PCFG5	PCFG4	PCFG3	PCFG2	PCFG1	PCFG0	0000
AD1CSSL	0330	—	—	_	CSS12	CSS11	CSS10	CSS9	—	—		CSS5	CSS4	CSS3	CSS2	CSS1	CSS0	0000

TABLE 4-15: ADC1 REGISTER MAP FOR PIC24HJ32GP202

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Legend:							
bit 7							bit 0
IPL2 ⁽²⁾	IPL1 ⁽²⁾	IPL0 ⁽²⁾	RA	Ν	OV	Z	С
R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R-0	R/W-0	R/W-0	R/W-0	R/W-0
bit 15	-						bit 8
—	—	—	_	—	—	—	DC
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0

C = Clear only bit	R = Readable bit	U = Unimplemented bit, read as '0'
S = Set only bit	W = Writable bit	-n = Value at POR
'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

IPL<2:0>: CPU Interrupt Priority Level Status bits ⁽²⁾
111 = CPU Interrupt Priority Level is 7 (15), user interrupts disabled
110 = CPU Interrupt Priority Level is 6 (14)
101 = CPU Interrupt Priority Level is 5 (13)
100 = CPU Interrupt Priority Level is 4 (12)
011 = CPU Interrupt Priority Level is 3 (11)
010 = CPU Interrupt Priority Level is 2 (10)
001 = CPU Interrupt Priority Level is 1 (9)
000 = CPU Interrupt Priority Level is 0 (8)

SR: CPU STATUS REGISTER⁽¹⁾

Note 1: For complete register details, see Register 3-1.

- 2: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL if IPL < 3 > = 1. User interrupts are disabled when IPL<3> = 1.
- 3: The IPL<2:0> Status bits are read-only when the NSTDIS bit (INTCON1<15>) = 1.

REGISTER 7-1:

bit 7-5

REGISTER 7-5: IFS0: INTERRUPT FLAG STATUS REGISTER 0 (CONTINUED)

bit 1	IC1IF: Input Capture Channel 1	Interrupt Flag Status bit
	ion input oupture onumer i	interrupt i lug otatao bit

- 1 = Interrupt request has occurred
- 0 = Interrupt request has not occurred

INTOIF: External Interrupt 0 Flag Status bit

1 = Interrupt request has occurred

bit 0

0 = Interrupt request has not occurred

9.5 Power-Saving Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access
	the product page using the link above,
	enter this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en530271

9.5.1 KEY RESOURCES

- Section 9. "Watchdog Timer and Power-Saving Modes" (DS70196)
- Code Samples
- Application Notes
- Software Libraries
- · Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

10.6 Peripheral Pin Select

A major challenge in general purpose devices is providing the largest possible set of peripheral features while minimizing the conflict of features on I/O pins. The challenge is even greater on low-pin count devices. In an application where more than one peripheral must be assigned to a single pin, inconvenient workarounds in application code or a complete redesign may be the only option.

Peripheral pin select configuration enables peripheral set selection and placement on a wide range of I/O pins. By increasing the pinout options available on a particular device, programmers can better tailor the microcontroller to their entire application, rather than trimming the application to fit the device.

The peripheral pin select configuration feature operates over a fixed subset of digital I/O pins. Programmers can independently map the input and/or output of most digital peripherals to any one of these I/O pins. Peripheral pin select is performed in software, and generally does not require the device to be reprogrammed. Hardware safeguards are included that prevent accidental or spurious changes to the peripheral mapping, once it has been established.

10.6.1 AVAILABLE PINS

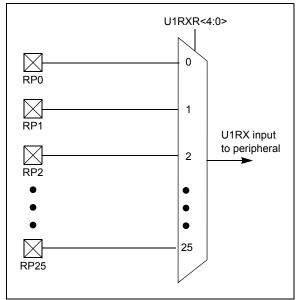
The peripheral pin select feature is used with a range of up to 26 pins. The number of available pins depends on the particular device and its pin count. Pins that support the peripheral pin select feature include the designation "RPn" in their full pin designation, where "RP" designates a remappable peripheral and "n" is the remappable pin number.

10.6.2 CONTROLLING PERIPHERAL PIN SELECT

Peripheral pin select features are controlled through two sets of special function registers to map peripherals and to map outputs.

Since they are separately controlled, a particular peripheral's input and output (if the peripheral has both) can be placed on any selectable function pin without constraint.

The association of a peripheral to a peripheral selectable pin is handled in two different ways, depending on whether an input or output is being mapped.


10.6.2.1 Input Mapping

The inputs of the peripheral pin select options are mapped on the basis of the peripheral. A control register associated with a peripheral dictates the pin it will be mapped to. The RPINRx registers are used to configure peripheral input mapping (see Register 10-1 through Register 10-9). Each register contains sets of 5-bit fields, with each set associated with one of the remappable peripherals. Programming a given peripheral's bit field with an appropriate 5-bit value maps the RPn pin with that value to that peripheral. For any given device, the valid range of values for any bit field corresponds to the maximum number of peripheral pin selections supported by the device.

Figure 10-2 Illustrates remappable pin selection for U1RX input.

For input mapping only, the Peripheral Pin
Select (PPS) functionality does not have
priority over the TRISx settings. There-
fore, when configuring the RPn pin for
input, the corresponding bit in the TRISx
register must also be configured for input
(i.e., set to '1').

FIGURE 10-2: REMAPPABLE MUX INPUT FOR U1RX

WEEL IV 2. OUT						
Function	RPnR<4:0>	Output Name				
NULL	00000	RPn tied to default port pin				
U1TX	00011	RPn tied to UART1 Transmit				
U1RTS	00100	RPn tied to UART1 Ready To Send				
SDO1	00111	RPn tied to SPI1 Data Output				
SCK1OUT	01000	RPn tied to SPI1 Clock Output				
SS1OUT	01001	RPn tied to SPI1 Slave Select Output				
OC1	10010	RPn tied to Output Compare 1				
OC2	10011	RPn tied to Output Compare 2				

TABLE 10-2: OUTPUT SELECTION FOR REMAPPABLE PIN (RPn)

10.6.3 CONTROLLING CONFIGURATION CHANGES

Because peripheral remapping can be changed during run time, some restrictions on peripheral remapping are needed to prevent accidental configuration changes. PIC24H devices include three features to prevent alterations to the peripheral map:

- Control register lock sequence
- · Continuous state monitoring
- · Configuration bit pin select lock

10.6.3.1 Control Register Lock

Under normal operation, writes to the RPINRx and RPORx registers are not allowed. Attempted writes appear to execute normally, but the contents of the registers remain unchanged. To change these registers, they must be unlocked in hardware. The register lock is controlled by the IOLOCK bit (OSCCON<6>). Setting the IOLOCK bit prevents writes to the control registers; clearing this bit allows writes.

To set or clear the IOLOCK bit, a specific command sequence must be executed:

- 1. Write 0x46 to OSCCON<7:0>.
- 2. Write 0x57 to OSCCON<7:0>.
- 3. Clear (or set) IOLOCK as a single operation.

Note:	MPLAB [®] C30 provides built-in C language functions for unlocking the OSCCON register:
	builtin_write_OSCCONL(value) builtin_write_OSCCONH(value)
	See MPLAB Help for more information.

Unlike the similar sequence with the oscillator's LOCK bit, IOLOCK remains in one state until changed. This allows all the peripheral pin selects to be configured with a single unlock sequence followed by an update to all control registers, then locked with a second lock sequence.

10.6.3.2 Continuous State Monitoring

In addition to being protected from direct writes, the contents of the RPINRx and RPORx registers are constantly monitored in hardware by shadow registers. If an unexpected change in any of the registers occurs (such as cell disturbances caused by ESD or other external events), a configuration mismatch Reset will be triggered.

10.6.3.3 Configuration Bit Pin Select Lock

As an additional level of safety, the device can be configured to prevent more than one write session to the RPINRx and RPORx registers. The IOL1WAY configuration bit (FOSC<5>) blocks the IOLOCK bit from being cleared after it has been set once.

In the default (unprogrammed) state, IOL1WAY is set restricting the users to one write session. Programming IOL1WAY allows user applications unlimited access (with the proper use of the unlock sequence) to the peripheral pin select registers.

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
0-0	0-0		10/00-1	10/00-1	INT1R<4:0>		10/00-1	
	_				111111111111111111111111111111111111111		L : L :	
bit 15							bit 8	
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	_	—	—	_	—	—	—	
bit 7							bit C	
Legend:								
R = Readab	le bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'		
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unknown		
bit 15-13	Unimpleme	nted: Read as '	0'					
bit 12-8	-	: Assign Externa		(INTR1) to the	corresponding	RPn pin		
		ut tied to Vss		, , , , , , , , , , , , , , , , , , , ,	5	r		
		ut tied to RP25						
	•							
	•							
	•							
		ut tied to RP1 ut tied to RP0						

REGISTER 10-1: RPINR0: PERIPHERAL PIN SELECT INPUT REGISTER 0

bit 7-0	Unimplemented: Read as '0'

REGISTER 10-2: RPINR1: PERIPHERAL PIN SELECT INPUT REGISTER 1

U-0								
bit 8								
R/W-1								
bit 0								
nown								
•								
00001 = Input tied to RP1 00000 = Input tied to RP0								

REGISTER 10-6: RPINR11: PERIPHERAL PIN SELECT INPUT REGISTER 11

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15					•		bit 8
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	—			OCFAR<4:0>		
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'			
-n = Value at P	POR	'1' = Bit is set	et '0' = Bit is cleared x = Bit is unknown				

bit 15-5 Unimplemented: Read as '0'

bit 4-0

OCFAR<4:0>: Assign Output Capture A (OCFA) to the corresponding RPn pin

11111 = Input tied to Vss 11001 = Input tied to RP25

- •
- •

•

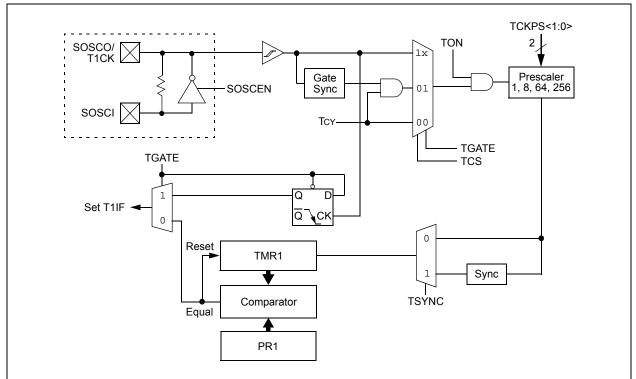
00001 = Input tied to RP1 00000 = Input tied to RP0

11.0 TIMER1

- Note 1: This data sheet summarizes the features of the PIC24HJ32GP202/204 and PIC24HJ16GP304 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Section 11. Timers" (DS70205) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip website (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Timer1 module is a 16-bit timer, which can serve as the time counter for the real-time clock, or operate as a free-running interval timer/counter. Timer1 can operate in three modes:

- 16-bit Timer
- 16-bit Synchronous Counter
- 16-bit Asynchronous Counter


Timer1 also supports these features:

- Timer gate operation
- · Selectable prescaler settings
- Timer operation during CPU Idle and Sleep modes
- Interrupt on 16-bit Period register match or falling edge of external gate signal

Figure 11-1 shows a block diagram of the 16-bit timer module.

To configure Timer1 for operation:

- 1. Set the TON bit (= 1) in the T1CON register.
- 2. Select the timer prescaler ratio using the TCKPS<1:0> bits in the T1CON register.
- 3. Set the Clock and Gating modes using the TCS and TGATE bits in the T1CON register.
- 4. Set or clear the TSYNC bit in T1CON to select synchronous or asynchronous operation.
- 5. Load the timer period value into the PR1 register.
- 6. If interrupts are required, set the interrupt enable bit, T1IE. Use the priority bits, T1IP<2:0>, to set the interrupt priority.

FIGURE 11-1: 16-BIT TIMER1 MODULE BLOCK DIAGRAM

13.2 Input Capture Registers

REGISTER 13-1: ICxCON: INPUT CAPTURE x CONTROL REGISTER

U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
—	—	ICSIDL	—	—	—	—	—
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R-0, HC	R-0, HC	R/W-0	R/W-0	R/W-0
ICTMR	ICI<1:0>		ICOV	ICBNE			
bit 7							bit 0

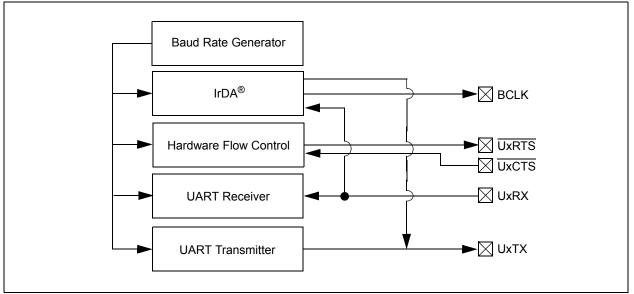
Legend: HC = Cleared in Hardware					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-14	Unimplemented: Read as '0'
bit 13	ICSIDL: Input Capture Module Stop in Idle Control bit
	1 = Input capture module will halt in CPU Idle mode
	0 = Input capture module will continue to operate in CPU Idle mode
bit 12-8	Unimplemented: Read as '0'
bit 7	ICTMR: Input Capture Timer Select bits
	 1 = TMR2 contents are captured on capture event 0 = TMR3 contents are captured on capture event
bit 6-5	ICI<1:0>: Select Number of Captures per Interrupt bits
	11 = Interrupt on every fourth capture event
	10 = Interrupt on every third capture event
	 01 = Interrupt on every second capture event 00 = Interrupt on every capture event
bit 4	ICOV: Input Capture Overflow Status Flag bit (read-only)
	1 = Input capture overflow occurred
	0 = No input capture overflow occurred
bit 3	ICBNE: Input Capture Buffer Empty Status bit (read-only)
	 1 = Input capture buffer is not empty, at least one more capture value can be read 0 = Input capture buffer is empty
bit 2-0	ICM<2:0>: Input Capture Mode Select bits
	111 = Input capture functions as interrupt pin only when device is in Sleep or Idle mode
	(Rising edge detect only, all other control bits are not applicable.) 110 = Unused (module disabled)
	101 = Capture mode, every 16th rising edge
	100 = Capture mode, every 4th rising edge
	011 = Capture mode, every rising edge
	010 = Capture mode, every falling edge
	 001 = Capture mode, every edge (rising and falling) (ICI<1:0> bits do not control interrupt generation for this mode.)
	000 = Input capture module turned off

17.0 UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER (UART)

- Note 1: This data sheet summarizes the features of the PIC24HJ32GP202/204 and PIC24HJ16GP304 family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Section 17. UART" (DS70188) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip website (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Universal Asynchronous Receiver Transmitter (UART) module is one of the serial I/O modules available in the PIC24HJ32GP202/204 and PIC24HJ16GP304 device family. The UART is a full-duplex asynchronous system that can communicate with peripheral devices, such as personal computers, LIN, RS-232 and RS-485 interfaces. The module also supports a hardware flow control option with the UxCTS and UxRTS pins and also includes an IrDA[®] encoder and decoder.


The primary features of the UART module are:

- Full-Duplex 8-bit or 9-bit Data Transmission through the UxTX and UxRX pins
- Even, odd or no parity options (for 8-bit data)
- One or two stop bits
- Hardware Flow Control Option with UxCTS and UxRTS pins
- Fully Integrated Baud Rate Generator with 16-bit prescaler
- Baud rates ranging from 10 Mbps to 38 bps at 40 MIPS
- 4-deep first-in-first-out (FIFO) Transmit Data Buffer
- 4-deep FIFO Receive Data Buffer
- · Parity, framing and buffer overrun error detection
- Support for 9-bit mode with Address Detect (9th bit = 1)
- · Transmit and Receive interrupts
- · A separate interrupt for all UART error conditions
- Loopback mode for diagnostic support
- · Support for Sync and Break characters
- · Support for automatic baud rate detection
- IrDA[®] encoder and decoder logic
- + 16x baud clock output for $\mbox{IrDA}^{\mbox{$\mathbb{R}$}}$ support

A simplified block diagram of the UART module is shown in Figure 17-1. The UART module consists of the following key hardware elements:

- Baud Rate Generator
- Asynchronous Transmitter
- Asynchronous Receiver

FIGURE 17-1: UART SIMPLIFIED BLOCK DIAGRAM

TABLE 20-1: SYMBOLS USED IN OPCODE DESCRIPTIONS

Field	Description	Description						
#text	Means literal defined by "text"							
(text)	Means "content of text"							
[text]	Means "the location addressed by text"							
{ }	Optional field or operation							
<n:m></n:m>	Register bit field							
.b	Byte mode selection							
.d	Double Word mode selection							
.S	Shadow register select							
.w	Word mode selection (default)							
bit4	4-bit bit selection field (used in word addressed instructions) $\in \{015\}$							
C, DC, N, OV, Z	MCU Status bits: Carry, Digit Carry, Negative, Overflow, Sticky Zero							
Expr	Absolute address, label or expression (resolved by the linker)							
f	File register address ∈ {0x00000x1FFF}							
lit1	1-bit unsigned literal ∈ {0,1}							
lit4	4-bit unsigned literal ∈ {015}							
lit5	5-bit unsigned literal ∈ {031}							
lit8	8-bit unsigned literal ∈ {0255}							
lit10	10-bit unsigned literal ∈ {0255} for Byte mode, {0:1023} for Word mode							
lit14	14-bit unsigned literal ∈ {016384}							
lit16	16-bit unsigned literal ∈ {065535}							
lit23	23-bit unsigned literal ∈ {08388608}; LSB must be '0'							
None	Field does not require an entry, may be blank							
PC	Program Counter							
Slit10	10-bit signed literal ∈ {-512511}							
Slit16	16-bit signed literal ∈ {-3276832767}							
Slit6	6-bit signed literal ∈ {-1616}							
Wb	Base W register ∈ {W0W15}							
Wd	Destination W register ∈ { Wd, [Wd], [Wd++], [Wd], [++Wd], [Wd] }							
Wdo	Destination W register \in { Wnd, [Wnd], [Wnd++], [Wnd], [++Wnd], [Wnd], [Wnd+Wb] }							
Wm,Wn	Dividend, Divisor working register pair (direct addressing)							
Wm*Wm	Multiplicand and Multiplier working register pair for Square instructions ∈ {W4 * W4,W5 * W5,W6 * W6,W7 * W7}							
Wn	One of 16 working registers ∈ {W0W15}							
Wnd	One of 16 destination working registers ∈ {W0W15}							
Wns	One of 16 source working registers ∈ {W0W15}							
WREG	W0 (working register used in file register instructions)							
Ws	Source W register ∈ { Ws, [Ws], [Ws++], [Ws], [++Ws], [Ws] }							
Wso	Source W register ∈ { Wns, [Wns], [Wns++], [Wns], [++Wns], [Wns], [Wns+Wb] }							

22.1 DC Characteristics

TABLE 22-1: OPERATING MIPS VS. VOLTAGE

	Voo Bango	Tomp Bongo	Max MIPS
Characteristic	VDD Range (in Volts)	Temp Range (in °C)	PIC24HJ32GP202/204 and PIC24HJ16GP304
	— VBOR-3.6V ⁽¹⁾ -40°		40
	VBOR-3.6V ⁽¹⁾	-40°C to +125°C	40

Note 1: Device is functional at VBORMIN < VDD < VDDMIN. Analog modules such as the ADC will have degraded performance. Device functionality is tested but not characterized. Refer to parameter BO10 in Table 22-11 for the minimum and maximum BOR values.

TABLE 22-2: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min	Тур	Max	Unit
Industrial Temperature Devices					
Operating Junction Temperature Range	TJ	-40	_	+125	°C
Operating Ambient Temperature Range	TA	-40	—	+85	°C
Extended Temperature Devices					
Operating Junction Temperature Range	TJ	-40	—	+155	°C
Operating Ambient Temperature Range	TA	-40	_	+125	°C
Power Dissipation: Internal chip power dissipation: $PINT = VDD x (IDD - \Sigma IOH)$ I/O Pin Power Dissipation:	PD	PINT + PI/O			W
$I/O = \Sigma (\{VDD - VOH\} \times IOH) + \Sigma (VOL \times IOL)$					
Maximum Allowed Power Dissipation	Pdmax (Tj - Ta)/θja			W	

TABLE 22-3: THERMAL PACKAGING CHARACTERISTICS

Characteristic	Symbol	Тур	Max	Unit	Notes
Package Thermal Resistance, 44-pin QFN	θja	32		°C/W	1
Package Thermal Resistance, 44-pin TFQP	θја	45	—	°C/W	1
Package Thermal Resistance, 28-pin SPDIP	θја	45	—	°C/W	1
Package Thermal Resistance, 28-pin SOIC	θја	50	—	°C/W	1
Package Thermal Resistance, 28-pin SSOP	θја	71	—	°C/W	1
Package Thermal Resistance, 28-pin QFN-S	θja	35	_	°C/W	1

Note 1: Junction to ambient thermal resistance, Theta-JA (θ JA) numbers are achieved by package simulations.

SP36 SCKx (CKP = 0)SP10 SP21 SP20 SCKx (CKP = 1) SP35 SP20 SP21 SDOx Bit 14 LSb MSb -1 SP30, SP31 SP40-SDIx LSb In MSb In Bit 1 SP41 Note: Refer to Figure 22-1 for load conditions.

FIGURE 22-11: SPIX MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = X, SMP = 1) TIMING CHARACTERISTICS

TABLE 22-30:SPIX MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1) TIMING
REQUIREMENTS

AC CHA	RACTERIST	ICS	(unless o	Operatin otherwise g temperat	stated) ture -40	°C ≤ Ta ≤	/ to 3.6V +85°C for Industrial +125°C for Extended
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions
SP10	TscP	Maximum SCK Frequency	_	_	9	MHz	See Note 3
SP20	TscF	SCKx Output Fall Time	—	—	_	ns	See parameter DO32 and Note 4
SP21	TscR	SCKx Output Rise Time	—	—	_	ns	See parameter DO31 and Note 4
SP30	TdoF	SDOx Data Output Fall Time	—	-	_	ns	See parameter DO32 and Note 4
SP31	TdoR	SDOx Data Output Rise Time	—	-	—	ns	See parameter DO31 and Note 4
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	—
SP36	TdoV2sc, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	—	—	ns	—
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	—		ns	—
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	—		ns	

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

- **3:** The minimum clock period for SCKx is 111 ns. The clock generated in Master mode must not violate this specification.
- 4: Assumes 50 pF load on all SPIx pins.

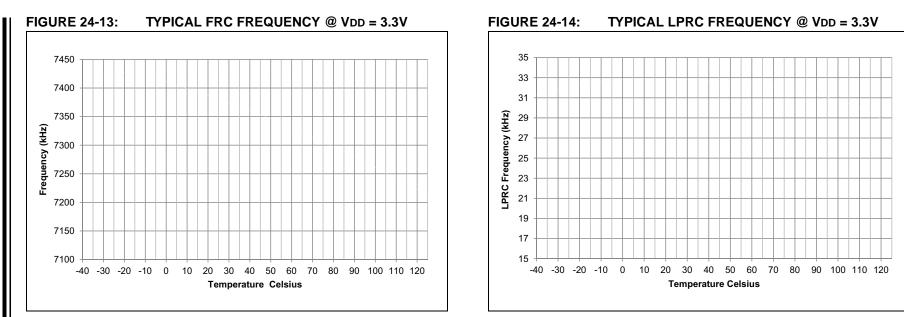
AC CHA	RACTERI			(unless othe	ns: 3.0V to 3.6V ≤ TA ≤ +85°C for Industrial ≤ TA ≤ +125°C for Extended		
Param	Symbol	Characte	eristic ⁽²⁾	Min	Max	Units	Conditions
IS10	TLO:SCL	Clock Low Time	100 kHz mode	4.7	_	μS	Device must operate at a minimum of 1.5 MHz
			400 kHz mode	1.3	-	μS	Device must operate at a minimum of 10 MHz
			1 MHz mode ⁽¹⁾	0.5		μS	—
IS11	THI:SCL	Clock High Time	100 kHz mode	4.0	—	μS	Device must operate at a minimum of 1.5 MHz
			400 kHz mode	0.6	—	μS	Device must operate at a minimum of 10 MHz
			1 MHz mode ⁽¹⁾	0.5		μS	_
IS20	TF:SCL	SDAx and SCLx	100 kHz mode		300	ns	CB is specified to be from
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF
			1 MHz mode ⁽¹⁾	—	100	ns	
IS21	TR:SCL	SDAx and SCLx	100 kHz mode	—	1000	ns	CB is specified to be from
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF
			1 MHz mode ⁽¹⁾	—	300	ns	
IS25	TSU:DAT	Data Input	100 kHz mode	250		ns	—
		Setup Time	400 kHz mode	100		ns	
			1 MHz mode ⁽¹⁾	100		ns	
IS26	THD:DAT	Data Input	100 kHz mode	0	0	μS	—
		Hold Time	400 kHz mode	0	0.9	μS	
			1 MHz mode ⁽¹⁾	0	0.3	μS	
IS30	TSU:STA	Start Condition	100 kHz mode	4.7		μS	Only relevant for Repeated
		Setup Time	400 kHz mode	0.6		μS	Start condition
			1 MHz mode ⁽¹⁾	0.25		μS	
IS31	THD:STA	Start Condition	100 kHz mode	4.0		μS	After this period, the first
		Hold Time	400 kHz mode	0.6		μS	clock pulse is generated
			1 MHz mode ⁽¹⁾	0.25		μS	
IS33	TSU:STO	Stop Condition	100 kHz mode	4.7		μS	_
		Setup Time	400 kHz mode	0.6		μS	
			1 MHz mode ⁽¹⁾	0.6	—	μS	
IS34	THD:ST	Stop Condition	100 kHz mode	4000	—	ns	—
	0	Hold Time	400 kHz mode	600		ns	
			1 MHz mode ⁽¹⁾	250		ns	
IS40	TAA:SCL	Output Valid	100 kHz mode	0	3500	ns	
		From Clock	400 kHz mode	0	1000	ns	
			1 MHz mode ⁽¹⁾	0	350	ns	
IS45	TBF:SDA	Bus Free Time	100 kHz mode	4.7		μS	Time the bus must be free
			400 kHz mode	1.3		μS	before a new transmission
			1 MHz mode ⁽¹⁾	0.5	—	μS	can start
IS50	Св	Bus Capacitive Lo	ading	—	400	pF	

TABLE 22-37: I2Cx BUS DATA TIMING REQUIREMENTS (SLAVE MODE)

Note 1: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

2: These parameters are characterized by similarity, but are not tested in manufacturing.

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended				
Param No.	Symbol	Characteristic	Min.	Тур	Max.	Units	Conditions
	A	DC Accuracy (10-bit Mode)	– Measu	rements	s with ex	ternal V	REF+/VREF- ⁽³⁾
AD20b	Nr	Resolution ⁽⁴⁾	1	0 data bi	ts	bits	_
AD21b	INL	Integral Nonlinearity	-1.5	—	+1.5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V
AD22b	DNL	Differential Nonlinearity	> -1	-	< 1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V
AD23b	Gerr	Gain Error	-	3	6	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V
AD24b	EOFF	Offset Error	-	2	5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V
AD25b	—	Monotonicity	—	—	—	_	Guaranteed ⁽¹⁾
	A	DC Accuracy (10-bit Mode)) – Meası	irement	s with in	ternal V	REF+/VREF- ⁽³⁾
AD20b	Nr	Resolution ⁽⁴⁾	1	0 data bi	ts	bits	—
AD21b	INL	Integral Nonlinearity	-1	_	+1	LSb	VINL = AVSS = 0V, AVDD = 3.6V
AD22b	DNL	Differential Nonlinearity	> -1	—	< 1	LSb	VINL = AVSS = 0V, AVDD = 3.6V
AD23b	Gerr	Gain Error	_	7	15	LSb	VINL = AVSS = 0V, AVDD = 3.6V
AD24b	EOFF	Offset Error	_	3	7	LSb	VINL = AVSS = 0V, AVDD = 3.6V
AD25b	_	Monotonicity	_	_	_	_	Guaranteed ⁽¹⁾
		Dynamic P	erformar	nce (10-l	oit Mode) ⁽²⁾	
AD30b	THD	Total Harmonic Distortion	_	_	-64	dB	—
AD31b	SINAD	Signal to Noise and Distortion	57	58.5	—	dB	_
AD32b	SFDR	Spurious Free Dynamic Range	72	_		dB	_
AD33b	Fnyq	Input Signal Bandwidth			550	kHz	—
AD34b	ENOB	Effective Number of Bits	9.16	9.4	_	bits	


TABLE 22-40: ADC MODULE SPECIFICATIONS (10-BIT MODE)⁽⁴⁾

Note 1: The A/D conversion result never decreases with an increase in the input voltage, and has no missing codes.

2: These parameters are characterized by similarity, but are not tested in manufacturing.

3: These parameters are characterized, but are tested at 20 ksps only.

4: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.

Other Instructions	
Instruction Set	
Overview	
Summary	187
Instruction-Based Power-Saving Modes	
ldle	
Sleep	
Internal RC Oscillator	
Use with WDT	
Internet Address	
Interrupt Control and Status Registers	
IECx	
IFSx	
INTCON1	
INTCON2	
IPCx	
Interrupt Setup Procedures	
Initialization	
Interrupt Disable	
Interrupt Service Routine	
Trap Service Routine	
Interrupt Vector Table (IVT)	
Interrupts Coincident with Power Save Instructions.	
interrupte confordent with rower ouve instructions.	

J

JTAG Boundary Scan Interface	
------------------------------	--

Μ

Memory Organization	25
Microchip Internet Web Site	. 283
MPLAB ASM30 Assembler, Linker, Librarian	. 196
MPLAB Integrated Development Environment Software	. 195
MPLAB PM3 Device Programmer	. 198
MPLAB REAL ICE In-Circuit Emulator System	. 197
MPLINK Object Linker/MPLIB Object Librarian	. 196
Multi-bit Data Shifter	23

Ν

NVM Module		
Register	Мар	

0

Open-Drain Configuration	
Output Compare	
Registers	

Ρ

Packaging	
Details	259
Marking	
Peripheral Module Disable (PMD)	100
Pinout I/O Descriptions (table)	11
PMD Module	
Register Map	
PORTA	
Register Map	
PORTB	
Register Map	
Power-on Reset (POR)	59
Power-Saving Features	
Clock Frequency and Switching	
Program Address Space	
Construction	
Data Access from Program Memory Using Space Visibility	•
Data Access from Program Memory Using Table	e instruc-

tions
Data Access from, Address Generation 43
Memory Map25
Table Read Instructions
TBLRDH 44
TBLRDL 44
Visibility Operation 45
Program Memory
Interrupt Vector
Organization
Reset Vector
_
R
Reader Response
Registers
AD1CHS0 (ADC1 Input Channel 0 Select 175
AD1CHS123 (ADC1 Input Channel 1, 2, 3 Select) 173
AD1CON1 (ADC1 Control 1) 169
AD1CON2 (ADC1 Control 2) 171
AD1CON3 (ADC1 Control 3) 172
AD1CSSL (ADC1 Input Scan Select Low)
AD1PCFGL (ADC1 Port Configuration Low)
CLKDIV (Clock Divisor)
CORCON (Core Control)
I2CxCON (I2Cx Control)
I2CxMSK (I2Cx Slave Mode Address Mask)
I2CxSTAT (I2Cx Status)
ICxCON (Input Capture x Control)
IEC0 (Interrupt Enable Control 0)
IEC1 (Interrupt Enable Control 1)
IFS0 (Interrupt Flag Status 0)
IFS1 (Interrupt Flag Status 1)73
IFS4 (Interrupt Flag Status 4)74
INTCON1 (Interrupt Control 1) 69
INTCON2 (Interrupt Control 2)70
INTTREG Interrupt Control and Status Register 87
IPC0 (Interrupt Priority Control 0) 79
IPC1 (Interrupt Priority Control 1) 80
IPC16 (Interrupt Priority Control 16) 86
IPC2 (Interrupt Priority Control 2) 81
IPC3 (Interrupt Priority Control 3) 82
IPC4 (Interrupt Priority Control 4)
IPC5 (Interrupt Priority Control 5)
IPC7 (Interrupt Priority Control 7)
NVMCOM (Flash Memory Control)
OCxCON (Output Compare x Control) 144
OSCCON (Oscillator Control)
OSCTUN (FRC Oscillator Tuning)
PLLFBD (PLL Feedback Divisor)
PMD1 (Peripheral Module Disable Control
Register 1)
PMD2 (Peripheral Module Disable Control
Register 2)
RCON (Reset Control)
SPIxCON1 (SPIx Control 1)
SPIxSTAT (SPIx Status and Control)
SR (CPU Status)
T1CON (Timer1 Control)
TxCON (T2CON, T4CON, T6CON or
T8CON Control)
TyCON (T3CON, T5CON, T7CON or
T9CON Control) 135
UxMODE (UARTx Mode) 161
UxSTA (UARTx Status and Control) 163
Reset

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 Australia - Sydney

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hangzhou Tel: 86-571-2819-3187 Fax: 86-571-2819-3189

China - Hong Kong SAR Tel: 852-2401-1200

Fax: 852-2401-3431 China - Nanjing Tel: 86-25-8473-2460

Fax: 86-25-8473-2470 China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8203-2660 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Osaka Tel: 81-66-152-7160 Fax: 81-66-152-9310

Japan - Yokohama Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-536-4818 Fax: 886-7-330-9305

Taiwan - Taipei Tel: 886-2-2500-6610 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820