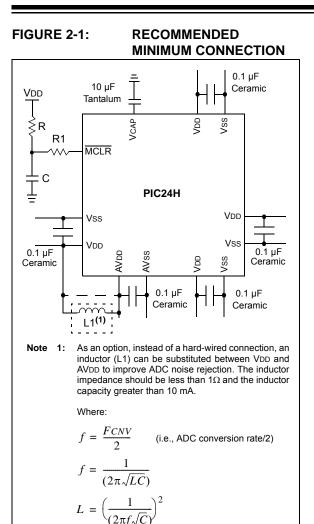


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	21
Program Memory Size	32KB (11K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 10x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24hj32gp202-e-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.2.1 TANK CAPACITORS

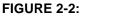
On boards with power traces running longer than six inches in length, it is suggested to use a tank capacitor for integrated circuits including microcontrollers to supply a local power source. The value of the tank capacitor should be determined based on the trace resistance that connects the power supply source to the microcontroller, and the maximum current drawn by the microcontroller in the application. In other words, select the tank capacitor so that it meets the acceptable voltage sag at the device. Typical values range from 4.7 μ F to 47 μ F.

2.3 CPU Logic Filter Capacitor Connection (VCAP)

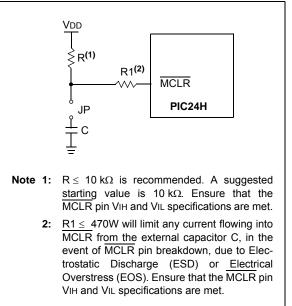
A low-ESR (< 5 Ohms) capacitor is required on the VCAP pin, which is used to stabilize the voltage regulator output voltage. The VCAP pin must not be connected to VDD, and must have a capacitor between 4.7 μ F and 10 μ F, 16V connected to ground. The type can be ceramic or tantalum. Refer to **Section 22.0** "**Electrical Characteristics**" for additional information.

The placement of this capacitor should be close to the VCAP. It is recommended that the trace length not exceed one-quarter inch (6 mm). Refer to **Section 19.2 "On-Chip Voltage Regulator"** for details.

2.4 Master Clear (MCLR) Pin


The $\overline{\text{MCLR}}$ pin provides for two specific device functions:

- Device Reset
- Device programming and debugging


During device programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the MCLR pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R and C will need to be adjusted based on the application and PCB requirements.

For example, as shown in Figure 2-2, it is recommended that capacitor C is isolated from the MCLR pin during programming and debugging operations.

Place the components shown in Figure 2-2 within one-quarter inch (6 mm) from the MCLR pin.

EXAMPLE OF MCLR PIN CONNECTIONS

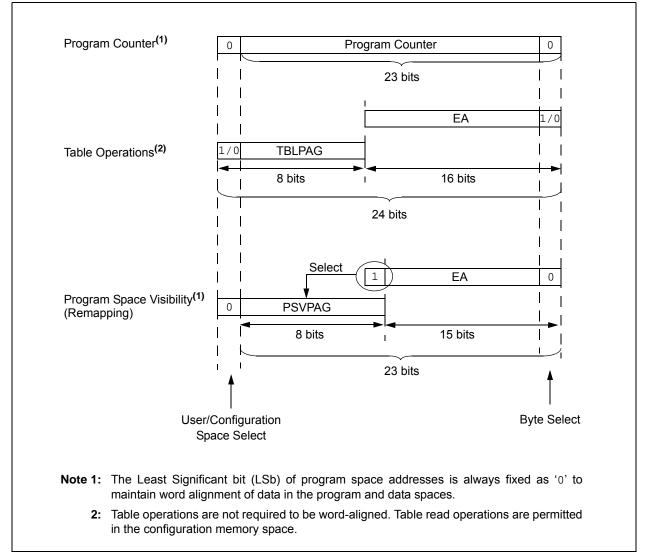
DS70289J-page 30

TABLE 4-2: CHANGE NOTIFICATION REGISTER MAP FOR PIC24HJ32GP202

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CNEN1	0060	CN15IE	CN14IE	CN13IE	CN12IE	CN11IE		_	—	CN7IE	CN6IE	CN5IE	CN4IE	CN3IE	CN2IE	CN1IE	CN0IE	0000
CNEN2	0062	_	CN30IE	CN29IE	_	CN27IE		_	CN24IE	CN23IE	CN22IE	CN21IE				_	CN16IE	0000
CNPU1	0068	CN15PUE	CN14PUE	CN13PUE	CN12PUE	CN11PUE		_	_	CN7PUE	CN6PUE	CN5PUE	CN4PUE	CN3PUE	CN2PUE	CN1PUE	CN0PUE	0000
CNPU2	006A	_	CN30PUE	CN29PUE	_	CN27PUE	_		CN24PUE	CN23PUE	CN22PUE	CN21PUE	_	_	_	_	CN16PUE	0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-3: CHANGE NOTIFICATION REGISTER MAP FOR PIC24HJ32GP204 AND PIC24HJ16GP304


SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CNEN1	0060	CN15IE	CN14IE	CN13IE	CN12IE	CN11IE	CN10IE	CN9IE	CN8IE	CN7IE	CN6IE	CN5IE	CN4IE	CN3IE	CN2IE	CN1IE	CN0IE	0000
CNEN2	0062	—	CN30IE	CN29IE	CN28IE	CN27IE	CN26IE	CN25IE	CN24IE	CN23IE	CN22IE	CN21IE	CN20IE	CN19IE	CN18IE	CN17IE	CN16IE	0000
CNPU1	0068	CN15PUE	CN14PUE	CN13PUE	CN12PUE	CN11PUE	CN10PUE	CN9PUE	CN8PUE	CN7PUE	CN6PUE	CN5PUE	CN4PUE	CN3PUE	CN2PUE	CN1PUE	CN0PUE	0000
CNPU2	006A	_	CN30PUE	CN29PUE	CN28PUE	CN27PUE	CN26PUE	CN25PUE	CN24PUE	CN23PUE	CN22PUE	CN21PUE	CN20PUE	CN19PUE	CN18PUE	CN17PUE	CN16PUE	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-13: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP FOR PIC24HJ32GP204 AND PIC24HJ16GP304																		
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 12 Bit 11 Bit 10 Bit 9 Bit 8			Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets	
RPOR0	06C0	—	_	—		RP1R<4:0>			_	_	_	RP0R<4:0>				0000		
RPOR1	06C2	_	_	_		RP3R<4:0>					_	_			RP2R<4:0>	•		0000
RPOR2	06C4	_	_			RP5R<4:0>				_	_	_			RP4R<4:0>	•		0000
RPOR3	06C6		_			RP7R<4:0>				_	_	_			RP6R<4:0>	`		0000
RPOR4	06C8	_	_	_		RP9R<4:0>				_	_	_			RP8R<4:0>	>		0000
RPOR5	06CA	_	_			RP11R<4:0>				_	_	_	RP10R<4:0>				0000	
RPOR6	06CC		_			F	RP13R<4:0>			_	_	_	RP12R<4:0>				0000	
RPOR7	06CE		_			F	RP15R<4:0>			_	_	_	RP14R<4:0>				0000	
RPOR8	06D0		_			F	RP17R<4:0			_	_	_			RP16R<4:0	>		0000
RPOR9	06D2		_			F	RP19R<4:0>			_	_	_	RP18R<4:0>				0000	
RPOR10	06D4	_	_			RP21R<4:0>				—		RP20R<4:0>				0000		
RPOR11	06D6	_	_	_		RP23R<4:0>			_	_	_			RP22R<4:0	>		0000	
RPOR12	06D8	_	_	_		F	RP25R<4:0>			_	_	_			RP24R<4:0	>		0000

x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

6.2 Reset Control Registers

REGISTER 6-1: RCON: RESET CONTROL REGISTER⁽¹⁾

R/W-0	R/W-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0		
TRAPR	R IOPUWR		—			СМ	VREGS		
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1		
EXTR	SWR	SWDTEN ⁽²⁾	WDTO	SLEEP	IDLE	BOR	POR		
bit 7							bit 0		
Legend:									
R = Reada		W = Writable	oit	-	nented bit, read				
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown		
bit 15	1 = A Trap Co	Reset Flag bit onflict Reset ha onflict Reset ha	s occurred	d					
bit 14	1 = An illega Address	egal Opcode or al opcode detec Pointer caused I opcode or unit	ction, an illeg a Reset	al address m	ode or uninitial	ized W registe	r used as an		
bit 13-10	Unimplemen	Unimplemented: Read as '0'							
bit 9	1 = A configu	CM: Configuration Mismatch Flag bit 1 = A configuration mismatch Reset has occurred 0 = A configuration mismatch Reset has not occurred							
bit 8	VREGS: Volta	age Regulator S	Standby Durin	ig Sleep bit					
		egulator is active egulator goes in			еер				
bit 7	EXTR: Extern	nal Reset (MCL	R) Pin bit						
		Clear (pin) Res Clear (pin) Res							
bit 6	SWR: Softwa	ire Reset (Instru	uction) Flag bi	it					
		instruction has instruction has							
bit 5	SWDTEN: So	oftware Enable/	Disable of WI	DT bit ⁽²⁾					
	1 = WDT is e 0 = WDT is d								
bit 4	WDTO: Watc	hdog Timer Tim	ne-out Flag bit	t					
		e-out has occur e-out has not oc							
bit 3	SLEEP: Wak	e-up from Slee	o Flag bit						
		as been in Slee as not been in S							
bit 2	IDLE: Wake-u	up from Idle Fla	g bit						
	1 = Device wa	as in Idle mode as not in Idle m	-						
	All of the Reset sta cause a device Re		set or cleared	d in software. S	Setting one of the	ese bits in soft	vare does not		
2:	If the FWDTEN Co	onfiguration bit i	s '1' (unprogr	ammed), the V	VDT is always e	enabled, regard	less of the		

2: If the FWDTEN Configuration bit is '1' (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting.

9.5 Power-Saving Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access
	the product page using the link above,
	enter this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en530271

9.5.1 KEY RESOURCES

- Section 9. "Watchdog Timer and Power-Saving Modes" (DS70196)
- Code Samples
- Application Notes
- Software Libraries
- · Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

10.9 Peripheral Pin Select Registers

The PIC24HJ32GP202/204 and PIC24HJ16GP304 devices implement 17 registers for remappable peripheral configuration:

- Input Remappable Peripheral Registers (9)
- Output Remappable Peripheral Registers (8)
- Note: Input and Output Register values can only be changed if the IOLOCK bit (OSC-CON<6>) = 0. See Section 10.6.3.1 "Control Register Lock" for a specific command sequence.

REGISTER 10-21: RPOR11: PERIPHERAL PIN SELECT OUTPUT REGISTER 11

U-0 U-0 U-0 R/W-0 R/W-0 — — — — — — — — — — — — — — — — — — —	-0 R/W-0 R/W-0 R/W-0 RP23R<4:0> bit 8
bit 15	bit 8
U-0 U-0 U-0 R/W-0 R/W-0	-0 R/W-0 R/W-0 R/W-0
	RP22R<4:0>
bit 7	bit 0
Legend:	

Legena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13 Unimplemented: Read as '0'

bit 12-8 **RP23R<4:0>:** Peripheral Output Function is Assigned to RP23 Output Pin (see Table 10-2 for peripheral function numbers)

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP22R<4:0>:** Peripheral Output Function is Assigned to RP22 Output Pin (see Table 10-2 for peripheral function numbers)

REGISTER 10-22: RPOR12: PERIPHERAL PIN SELECT OUTPUT REGISTER 12

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
—				RP25R<4:0>							
bit 15							bit 8				
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
					RP24R<4:0	>					
bit 7							bit 0				
Legend:											
R = Readable bit W = Writable b			bit	bit U = Unimplemented bit, read as '0'							
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown							

bit 15-13 Unimplemented: Read as '0'

bit 12-8 **RP25R<4:0>:** Peripheral Output Function is Assigned to RP25 Output Pin (see Table 10-2 for peripheral function numbers)

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP24R<4:0>:** Peripheral Output Function is Assigned to RP24 Output Pin (see Table 10-2 for peripheral function numbers)

11.1 Timer Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access
	the product page using the link above,
	enter this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en530271

11.1.1 KEY RESOURCES

- Section 11. "Timers" (DS70205)
- Code Samples
- Application Notes
- Software Libraries
- · Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

REGISTER 16-2: I2CxSTAT: I2Cx STATUS REGISTER (CONTINUED)

bit 3	S: Start bit
	 1 = Indicates that a Start (or Repeated Start) bit has been detected last 0 = Start bit was not detected last
	Hardware set or clear when Start, Repeated Start or Stop detected.
bit 2	R_W: Read/Write Information bit (when operating as I ² C slave)
	1 = Read – indicates data transfer is output from slave
	0 = Write – indicates data transfer is input to slave
	Hardware set or clear after reception of I ² C device address byte.
bit 1	RBF: Receive Buffer Full Status bit
	1 = Receive complete, I2CxRCV is full
	0 = Receive not complete, I2CxRCV is empty
	Hardware set when I2CxRCV is written with received byte. Hardware clear when software reads I2CxRCV.
bit 0	TBF: Transmit Buffer Full Status bit
	 1 = Transmit in progress, I2CxTRN is full 0 = Transmit complete, I2CxTRN is empty Hardware set when software writes I2CxTRN. Hardware clear at completion of data transmission.

REGISTER 18-5: AD1CHS0: ADC1 INPUT CHANNEL 0 SELECT REGISTER (CONTINUED)

```
bit 4-0 CH0SA<4:0>: Channel 0 Positive Input Select for Sample A bits

PIC24HJ32GP204 and PIC24HJ16GP304 devices only:

01100 = Channel 0 positive input is AN12

.

.

00010 = Channel 0 positive input is AN2

00001 = Channel 0 positive input is AN1

00000 = Channel 0 positive input is AN0

PIC24HJ32GP202 devices only:

01100 = Channel 0 positive input is AN12

.

.

01000 = Reserved

00111 = Reserved

00110 = Reserved

00110 = Reserved

.

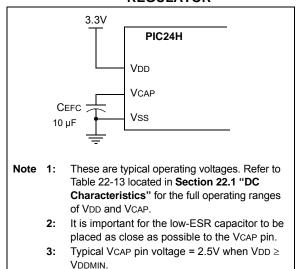
.

00010 = Channel 0 positive input is AN2

00010 = Channel 0 positive input is AN1

00010 = Channel 0 positive input is AN1
```

19.2 On-Chip Voltage Regulator


PIC24HJ32GP202/204 All of the and PIC24HJ16GP304 devices power their core digital logic at a nominal 2.5V. This can create a conflict for designs that are required to operate at a higher typical voltage, such as 3.3V. To simplify system design, all devices in the PIC24HJ32GP202/204 and PIC24HJ16GP304 family incorporate an on-chip regulator that allows the device to run its core logic from Vdd.

The regulator provides power to the core from the other VDD pins. When the regulator is enabled, a low-ESR (less than 5 ohms) capacitor (such as tantalum or ceramic) must be connected to the VCAP pin (Figure 19-1). This helps to maintain the stability of the regulator. The recommended value for the filter capacitor is provided in Table 22-13 located in **Section 22.1** "**DC Characteristics**".

Note:	It is important for the low-ESR capacitor to
	be placed as close as possible to the VCAP
	pin.

On a POR, it takes approximately 20 μ s for the on-chip voltage regulator to generate an output voltage. During this time, designated as TSTARTUP, code execution is disabled. TSTARTUP is applied every time the device resumes operation after any power-down.

FIGURE 19-1: CONNECTIONS FOR THE ON-CHIP VOLTAGE REGULATOR^(1,2,3)

19.3 Brown-Out Reset (BOR)

The Brown-out Reset (BOR) module is based on an internal voltage reference circuit that monitors the regulated voltage VCAP. The main purpose of the BOR module is to generate a device Reset when a brown-out condition occurs. Brown-out conditions are generally caused by glitches on the AC mains (for example, missing portions of the AC cycle waveform due to bad power transmission lines, or voltage sags due to excessive current draw when a large inductive load is turned on).

A BOR generates a Reset pulse, which resets the device. The BOR selects the clock source, based on the device Configuration bit values (FNOSC<2:0> and POSCMD<1:0>).

If an oscillator mode is selected, the BOR activates the Oscillator Start-up Timer (OST). The system clock is held until OST expires. If the PLL is used, the clock is held until the LOCK bit (OSCCON<5>) is '1'.

Concurrently, the PWRT time-out (TPWRT) will be applied before the internal Reset is released. If TPWRT = 0 and a crystal oscillator is being used, a nominal delay of TFSCM = 100 is applied. The total delay in this case is TFSCM.

The BOR Status bit (RCON<1>) is set to indicate that a BOR has occurred. The BOR circuit continues to operate while in Sleep or Idle mode and resets the device in case VDD falls below the BOR threshold voltage.

DC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param No. Symbol Characteristic				Тур ⁽¹⁾	Max	Units	Conditions	
Operating Voltage								
DC10	10 Supply Voltage							
	Vdd		3.0	_	3.6	V	Industrial and Extended	
DC12	Vdr	RAM Data Retention Voltage ⁽²⁾	1.8	_	—	V	—	
DC16	VPOR	VDD Start Voltage to ensure internal Power-on Reset signal	_	_	Vss	V	_	
DC17	SVDD	VDD Rise Rate to ensure internal Power-on Reset signal	0.03	_	—	V/ms	0-3.0V in 0.1s	

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

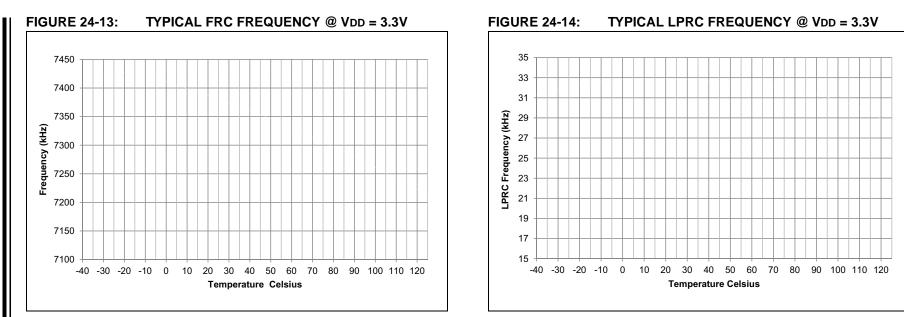
2: This is the limit to which VDD can be lowered without losing RAM data.

DC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions	
DO10	Vol	Output Low Voltage I/O Pins: 2x Sink Driver Pins - All pins not defined by 4x or 8x driver pins	_	_	0.4	V	Iol \leq 3 mA, Vdd = 3.3V	
		Output Low Voltage I/O Pins: 4x Sink Driver Pins - RA0, RA1, RB5, RB6, RB8, RB9, RB14	_	_	0.4	v	$\text{IOL} \leq 6 \text{ mA, VDD} = 3.3 \text{V}$	
		Output Low Voltage I/O Pins: 8x Sink Driver Pins - OSCO, CLKO, RA3	_	_	0.4	v	Iol \leq 10 mA, Vdd = 3.3V	
DO20	Vон	Output High Voltage I/O Pins: 2x Source Driver Pins - All pins not defined by 4x or 8x driver pins	2.4		_	V	Iol \geq -3 mA, Vdd = 3.3V	
		Output High Voltage I/O Pins: 4x Source Driver Pins - RA0, RA1, RB5, RB6, RB8, RB9, RB14	2.4	_	_	v	$IOL \geq -6 \ mA, \ VDD = 3.3 V$	
		Output High Voltage I/O Pins: 8x Source Driver Pins - OSCO, CLKO, RA3	2.4	_	_	V	IOL \ge -10 mA, VDD = 3.3V	
DO20A	Voн1	Output High Voltage I/O Pins: 2x Source Driver Pins - All pins not defined by 4x or 8x driver pins	1.5	_	_	V	$\begin{array}{l} \text{IOH} \geq \text{-6 mA, VDD} = 3.3 \text{V} \\ \text{See Note 1} \end{array}$	
			2.0	_	_		IOH ≥ -5 mA, VDD = 3.3V See Note 1	
			3.0	_	_		IOH ≥ -2 mA, VDD = 3.3V See Note 1	
		Output High Voltage 4x Source Driver Pins - RA0, RA1, RB5, RB6, RB8, RB9, RB14	1.5	_	_	V	Іон ≥ -12 mA, Voo = 3.3V See Note 1	
			2.0	_	_		Іон ≥ -11 mA, Vpd = 3.3V See Note 1	
			3.0	_	_		IOH ≥ -3 mA, VDD = 3.3V See Note 1	
		Output High Voltage 8x Source Driver Pins - OSCO, CLKO, RA3	1.5	_	_		IOH ≥ -16 mA, VDD = 3.3V See Note 1	
			2.0	_	_	V	IOH ≥ -12 mA, VDD = 3.3V See Note 1	
			3.0	—	_		IOH ≥ -4 mA, VDD = 3.3V See Note 1	

TABLE 22-10: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

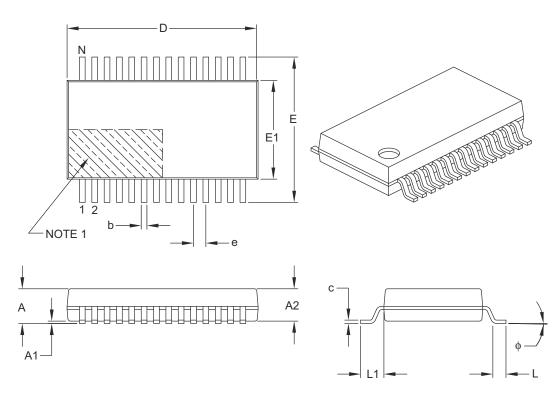
Note 1: Parameters are characterized, but not tested.

TABLE 22-21:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMERTIMING REQUIREMENTS


			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic	Min	Тур ⁽²⁾	Max	Units	Conditions	
SY10	TMCL	MCLR Pulse-Width (low) ⁽¹⁾	2	_	_	μS	-40°C to +85°C	
SY11	TPWRT	Power-up Timer Period ⁽¹⁾		2 4 16 32 64 128		ms	-40°C to +85°C User programmable	
SY12	TPOR	Power-on Reset Delay ⁽³⁾	3	10	30	μs	-40°C to +85°C	
SY13	Tioz	I/O High-Impedance from MCLR Low or Watchdog Timer Reset ⁽¹⁾	0.68	0.72	1.2	μS	_	
SY20	Twdt1	Watchdog Timer Time-out Period ⁽¹⁾	_	_	_	ms	See Section 19.4 "Watchdog Timer (WDT)" and LPRC specification F21a (Table 22-19).	
SY30	Tost	Oscillator Start-up Time	_	1024 Tosc	_	—	Tosc = OSC1 period	
SY35	TFSCM	Fail-Safe Clock Monitor Delay ⁽¹⁾	_	500	900	μS	-40°C to +85°C	

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.


3: These parameters are characterized by similarity, but are not tested in manufacturing.

NOTES:

28-Lead Plastic Shrink Small Outline (SS) – 5.30 mm Body [SSOP]

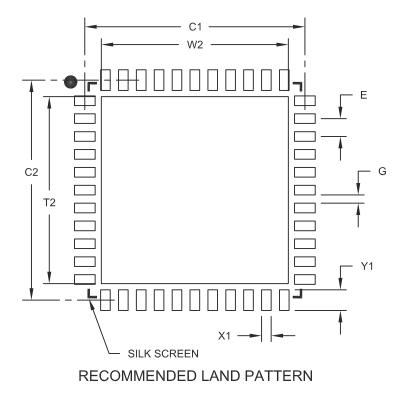
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS					
Dimensio	Dimension Limits			MAX		
Number of Pins	Ν	28				
Pitch	е	0.65 BSC				
Overall Height	Α			2.00		
Molded Package Thickness	A2	1.65	1.75	1.85		
Standoff	A1	0.05	-	_		
Overall Width	E	7.40	7.80	8.20		
Molded Package Width	E1	5.00	5.30	5.60		
Overall Length	D	9.90	10.20	10.50		
Foot Length	L	0.55	0.75	0.95		
Footprint	L1	1.25 REF				
Lead Thickness	с	0.09	-	0.25		
Foot Angle	ф	0°	4°	8°		
Lead Width	b	0.22	_	0.38		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.
 Dimensioning and tolerancing per ASME Y14.5M.


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-073B

44-Lead Plastic Quad Flat, No Lead Package (ML) – 8x8 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dimensior	MIN	NOM	MAX		
Contact Pitch	E	0.65 BSC			
Optional Center Pad Width	W2			6.80	
Optional Center Pad Length	T2			6.80	
Contact Pad Spacing	C1		8.00		
Contact Pad Spacing	C2		8.00		
Contact Pad Width (X44)	X1			0.35	
Contact Pad Length (X44)	Y1			0.80	
Distance Between Pads	G	0.25			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2103A

NOTES: