E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	21
Program Memory Size	32KB (11K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 10x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24hj32gp202-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.0 DEVICE OVERVIEW

- Note 1: This data sheet summarizes the features of the PIC24HJ32GP202/204 and PIC24HJ16GP304 devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the *"dsPIC33F/PIC24H Family Reference Manual"*. Please see the Microchip web site (www.microchip.com) for the latest dsPIC33F/PIC24H Family Reference Manual sections.
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

This document contains device-specific information for the following devices:

- PIC24HJ32GP202
- PIC24HJ32GP204
- PIC24HJ16GP304

Figure 1-1 shows a general block diagram of the core and peripheral modules in the PIC24HJ32GP202/204 and PIC24HJ16GP304 family of devices. Table 1-1 lists the functions of the various pins shown in the pinout diagrams.

3.0 CPU

- Note 1: This data sheet summarizes the features of the PIC24HJ32GP202/204 and PIC24HJ16GP304 family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Section 2. CPU" (DS70204) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip website (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The PIC24HJ32GP202/204 and PIC24HJ16GP304 CPU modules have a 16-bit (data) modified Harvard architecture with an enhanced instruction set and addressing modes. The CPU has a 24-bit instruction word with a variable length opcode field. The Program Counter (PC) is 23 bits wide and addresses up to 4M x 24 bits of user program memory space. The actual amount of program memory implemented varies by device. A single-cycle instruction prefetch mechanism is used to help maintain throughput and provides predictable execution. All instructions execute in a single cycle, with the exception of instructions that change the program flow, the double word move (MOV.D) instruction and the table instructions. Overhead-free, single-cycle program loop constructs are supported using the REPEAT instruction, which is interruptible at any time.

The PIC24HJ32GP202/204 and PIC24HJ16GP304 devices have sixteen, 16-bit working registers in the programmer's model. Each of the working registers can serve as a data, address or address offset register. The 16th working register (W15) operates as a software Stack Pointer (SP) for interrupts and calls.

The instruction set includes many addressing modes and is designed for optimum C compiler efficiency. For most instructions, the devices are capable of executing a data (or program data) memory read, a working register (data) read, a data memory write and a program (instruction) memory read per instruction cycle. As a result, three parameter instructions can be supported, allowing A + B = C operations to be executed in a single cycle.

A block diagram of the CPU is shown in Figure 3-1. The programmer's model for the PIC24HJ32GP202/204 and PIC24HJ16GP304 is shown in Figure 3-2.

3.1 Data Addressing Overview

The data space can be linearly addressed as 32K words or 64 Kbytes using an Address Generation Unit (AGU). The upper 32 Kbytes of the data space memory map can optionally be mapped into program space at any 16K program word boundary defined by the 8-bit Program Space Visibility Page register (PSVPAG). The program to data space mapping feature lets any instruction access program space as if it were data space.

The data space also includes 2 Kbytes of DMA RAM, which is primarily used for DMA data transfers, but this may be used as general purpose RAM.

3.2 Special MCU Features

The PIC24HJ32GP202/204 and PIC24HJ16GP304 devices feature a 17-bit by 17-bit, single-cycle multiplier. The multiplier can perform signed, unsigned and mixed-sign multiplication. Using a 17-bit by 17-bit multiplier for 16-bit by 16-bit multiplication makes mixed-sign multiplication possible.

The PIC24HJ32GP202/204 and PIC24HJ16GP304 devices support 16/16 and 32/16 integer divide operations. All divide instructions are iterative operations. They must be executed within a REPEAT loop, resulting in a total execution time of 19 instruction cycles. The divide operation can be interrupted during any of those 19 cycles without loss of data.

A multi-bit data shifter is used to perform up to a 16-bit, left or right shift in a single cycle.

3.4 CPU Control Registers

REGISTER 3-1: SR: CPU STATUS REGISTER

	5-1. SIX. C	100141001					
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
_	—	—	_	—	—	—	DC
bit 15							bit 8
R/W-0 ⁽¹⁾	R/W-0 ⁽²⁾	R/W-0 ⁽²⁾	R-0	R/W-0	R/W-0	R/W-0	R/W-0
	IPL<2:0> ⁽²⁾		RA	N	OV	Z	С
bit 7						1	bit (
Legend:							
C = Clear on	ly bit	R = Readable	e bit	U = Unimpler	nented bit, read	as '0'	
S = Set only	bit	W = Writable	bit	-n = Value at	POR		
'1' = Bit is se	t	'0' = Bit is clea	ared	x = Bit is unk	nown		
bit 15-9	Unimplemer	nted: Read as '	0'				
bit 8	DC: MCU AL	U Half Carry/Bo	orrow bit				
	-	out from the 4th sult occurred	low-order bit (for byte sized o	lata) or 8th low-	order bit (for wo	ord sized data
	•	-out from the 4 the result occur		oit (for byte siz	ed data) or 8th	low-order bit (for word size

bit 7-5	IPL<2:0>: CPU Interrupt Priority Level Status bits ⁽²⁾
---------	---

	<pre>111 = CPU Interrupt Priority Level is 7 (15), user interrupts disabled 110 = CPU Interrupt Priority Level is 6 (14) 101 = CPU Interrupt Priority Level is 5 (13) 100 = CPU Interrupt Priority Level is 4 (12) 011 = CPU Interrupt Priority Level is 3 (11) 010 = CPU Interrupt Priority Level is 2 (10) 001 = CPU Interrupt Priority Level is 1 (9) 000 = CPU Interrupt Priority Level is 0 (8)</pre>
bit 4	RA: REPEAT Loop Active bit
	1 = REPEAT loop in progress 0 = REPEAT loop not in progress
bit 3	N: MCU ALU Negative bit
	1 = Result was negative0 = Result was non-negative (zero or positive)
bit 2	OV: MCU ALU Overflow bit
	This bit is used for signed arithmetic (2's complement). It indicates an overflow of the magnitude which causes the sign bit to change state. 1 = Overflow occurred for signed arithmetic (in this arithmetic operation) 0 = No overflow occurred
bit 1	Z: MCU ALU Zero bit
	 1 = An operation which affects the Z bit has set it at some time in the past 0 = The most recent operation which affects the Z bit has cleared it (i.e., a non-zero result)
bit 0	C: MCU ALU Carry/Borrow bit
	 1 = A carry-out from the Most Significant bit (MSb) of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred
Note 1:	The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL if IPL<3> = 1. User interrupts are disabled when $IPL<3> = 1$.

2: The IPL<2:0> Status bits are read-only when the NSTDIS bit (INTCON1<15>) = 1.

TABLE 4-5: TIMER REGISTER MAP

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TMR1	0100								Timer1	Register								0000
PR1	0102								Period R	Register 1								FFFF
T1CON	0104	TON	_	TSIDL		_	_	_	_	_	TGATE	TCKP	S<1:0>	_	TSYNC	TCS	_	0000
TMR2	0106								Timer2	Register								0000
TMR3HLD	0108						Time	er3 Holding	Register (for	r 32-bit time	r operations	only)						xxxx
TMR3	010A								Timer3	Register								0000
PR2	010C								Period R	Register 2								FFFF
PR3	010E								Period R	Register 3								FFFF
T2CON	0110	TON	—	TSIDL	_	—	_	—	—	_	TGATE	TCKP	S<1:0>	T32	_	TCS	_	0000
T3CON	0112	TON	—	TSIDL	-		_	_	—	—	TGATE	TCKP	S<1:0>	—	_	TCS	_	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-6: INPUT CAPTURE REGISTER MAP

	•••••••••••••••••••••••••••••••••••••••																	
SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IC1BUF	0140								Input 1 Cap	ture Registe	r							xxxx
IC1CON	0142	_	_	ICSIDL	_	_	_	_	_	ICTMR	ICI<	:1:0>	ICOV	ICBNE		ICM<2:0>		0000
IC2BUF	0144								Input 2 Capt	ture Registe	r							xxxx
IC2CON	0146	_	_	ICSIDL	_	_	_	_	_	ICTMR	ICI<	:1:0>	ICOV	ICBNE		ICM<2:0>		0000
IC7BUF	0158								Input 7 Cap	ture Registe	r							xxxx
IC7CON	015A	_	_	ICSIDL	_	_	_	_	_	ICTMR	ICI<	1:0>	ICOV	ICBNE		ICM<2:0>		0000
IC8BUF	015C								Input 8Capt	ure Register								xxxx
IC8CON	015E	_	_	ICSIDL		_		_	_	ICTMR	ICI<	1:0>	ICOV	ICBNE		ICM<2:0>		0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-7: OUTPUT COMPARE REGISTER MAP

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
OC1RS	0180							Output	Compare 1	Secondary I	Register							xxxx
OC1R	0182							0	utput Comp	are 1 Regist	er							xxxx
OC1CON	0184	_	OCSIDL OCFLT OCTSEL OCM<2:0>								0000							
OC2RS	0186							Output	Compare 2	Secondary F	Register							xxxx
OC2R	0188		Output Compare 2 Register								xxxx							
OC2CON	018A	_	OCSIDL OCFLT OCTSEL OCM<2:0> 0							0000								
Lanandi																		

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—		—		—	—
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
—		INT2IP<2:0>		—	—	—	—
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-7	Unimplemen	ted: Read as 'd)'				
bit 6-4	INT2IP<2:0>:	External Interr	upt 2 Priority	bits			
	111 = Interrup	ot is priority 7 (I	nighest priority	y interrupt)			
	•						

REGISTER 7-17: IPC7: INTERRUPT PRIORITY CONTROL REGISTER 7

bit 3-0 Unimplemented: Read as '0'

001 = Interrupt is priority 1 000 = Interrupt source is disabled

REGISTER 8-4: OSCTUN: FRC OSCILLATOR TUNING REGISTER⁽²⁾

			OILEATOR				
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—		—	—	—	—
bit 15							bit 8
		D 444.0	DMU O	DANO	DAALO	D 444.0	DAA/A
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	—			IUN	<5:0> ⁽¹⁾		
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-6	Unimplemen	ted: Read as '	0'				
bit 5-0	-	RC Oscillator 1					
bit 0 0		nter frequency	•	845 MHz)			
	•		0.07070 (7.0				
	•						
	•						
		nter frequency					
		nter frequency nter frequency					
		nter frequency		•			
	•		. 11.2070 (0.2	20 10112)			
	•						
	•						
		nter frequency					
	000000 = Ce	nter frequency	(7.37 MHZ nd	ominal)			

- **Note 1:** OSCTUN functionality has been provided to help customers compensate for temperature effects on the FRC frequency over a wide range of temperatures. The tuning step size is an approximation and is neither characterized nor tested.
 - 2: This register is reset only on a Power-on Reset (POR).

REGISTER 10-6: RPINR11: PERIPHERAL PIN SELECT INPUT REGISTER 11

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15					•		bit 8
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	—			OCFAR<4:0>		
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			bit	U = Unimple	mented bit, read	1 as '0'	
-n = Value at POR '1' = Bit is set				'0' = Bit is cle	eared	x = Bit is unk	nown

bit 15-5 Unimplemented: Read as '0'

bit 4-0

OCFAR<4:0>: Assign Output Capture A (OCFA) to the corresponding RPn pin

11111 = Input tied to Vss 11001 = Input tied to RP25

- •
- •

•

00001 = Input tied to RP1 00000 = Input tied to RP0

REGISTER 10-21: RPOR11: PERIPHERAL PIN SELECT OUTPUT REGISTER 11

U-0 U-0 U-0 R/W-0 R/W-0 — — — — — — — — — — — — — — — — — — —	-0 R/W-0 R/W-0 R/W-0 RP23R<4:0> bit 8
bit 15	bit 8
U-0 U-0 U-0 R/W-0 R/W-0	-0 R/W-0 R/W-0 R/W-0
	RP22R<4:0>
bit 7	bit 0
Legend:	

Legena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13 Unimplemented: Read as '0'

bit 12-8 **RP23R<4:0>:** Peripheral Output Function is Assigned to RP23 Output Pin (see Table 10-2 for peripheral function numbers)

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP22R<4:0>:** Peripheral Output Function is Assigned to RP22 Output Pin (see Table 10-2 for peripheral function numbers)

REGISTER 10-22: RPOR12: PERIPHERAL PIN SELECT OUTPUT REGISTER 12

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	_	_			RP25R<4:0	>		
bit 15							bit 8	
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	_	—	RP24R<4:0>					
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable b			bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown				

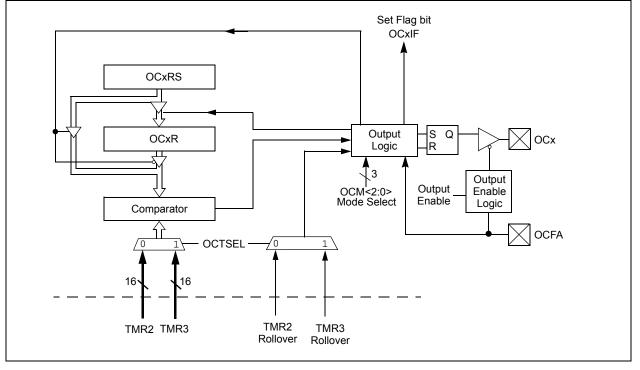
bit 15-13 Unimplemented: Read as '0'

bit 12-8 **RP25R<4:0>:** Peripheral Output Function is Assigned to RP25 Output Pin (see Table 10-2 for peripheral function numbers)

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP24R<4:0>:** Peripheral Output Function is Assigned to RP24 Output Pin (see Table 10-2 for peripheral function numbers)

14.0 OUTPUT COMPARE


- Note 1: This data sheet summarizes the features of the PIC24HJ32GP202/204 and PIC24HJ16GP304 family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Section 13. Output Compare" (DS70209) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip website (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Output Compare module can select either Timer2 or Timer3 for its time base. The module compares the value of the timer with the value of one or two compare registers depending on the operating mode selected. The state of the output pin changes when the timer value matches the compare register value. The Output Compare module generates either a single output pulse or a sequence of output pulses, by changing the state of the output pin on the compare match events. The Output Compare module can also generate interrupts on compare match events.

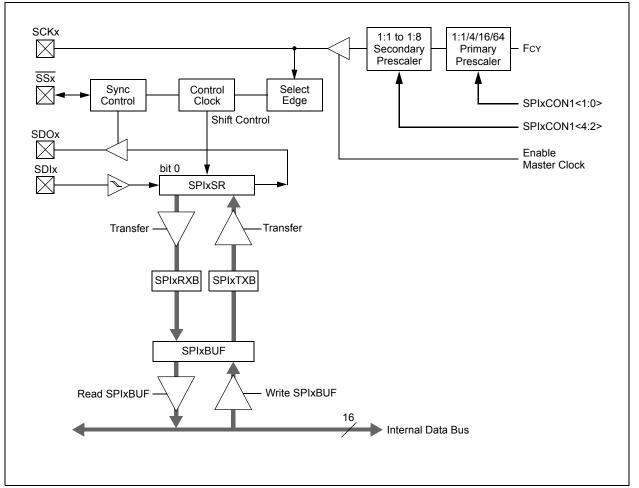
The Output Compare module has multiple operating modes:

- Active-Low One-Shot mode
- Active-High One-Shot mode
- Toggle mode
- Delayed One-Shot mode
- Continuous Pulse mode
- PWM mode without fault protection
- · PWM mode with fault protection

FIGURE 14-1: OUTPUT COMPARE MODULE BLOCK DIAGRAM

15.0 SERIAL PERIPHERAL INTERFACE (SPI)

- Note 1: This data sheet summarizes the features of the PIC24HJ32GP202/204 and PIC24HJ16GP304 family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Section 18. Serial Peripheral Interface (SPI)" (DS70206) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip website (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.


The Serial Peripheral Interface (SPI) module is a synchronous serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices can be serial EEPROMs, shift registers, display drivers, Analog-to-Digital Converters (ADCs), and so on. The SPI module is compatible with Motorola[®] SPI and SIOP.

Each SPI module consists of a 16-bit shift register, SPIxSR (where x = 1 or 2), used for shifting data in and out, and a buffer register, SPIxBUF. A control register, SPIxCON, configures the module. Additionally, a status register, SPIxSTAT, indicates status conditions.

The serial interface consists of these four pins:

- · SDIx (serial data input)
- · SDOx (serial data output)
- SCKx (shift clock input or output)
- SSx (active-low slave select)

In Master mode operation, SCK is a clock output. In Slave mode, it is a clock input.

FIGURE 15-1: SPI MODULE BLOCK DIAGRAM

R/W-0	R/W-0	R/W-0	U-0	R/W-0 HC	R/W-0	R-0	R-1	
UTXISEL1	UTXINV	UTXISEL0		UTXBRK	UTXEN ⁽¹⁾	UTXBF	TRMT	
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R-1	R-0	R-0	R/C-0	R-0	
URXIS	EL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	
bit 7							bit 0	
								
Legend:		HC = Hardwa				r only bit		
R = Readable		W = Writable	bit	-	mented bit, read			
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	IOWN	
bit 15,13 bit 14	11 = Reserve 10 = Interrupt transmit 01 = Interrupt operatio 00 = Interrupt at least of UTXINV: Tran <u>If IREN = 0:</u> 1 = UxTX Idle <u>If IREN = 1:</u>	d; do not use when a charac buffer become when the last ns are complet when a charac one character c nsmit Polarity Ir e state is '0'	cter is transfe s empty character is s ed cter is transfe pen in the tra oversion bit	hifted out of the	bits nsmit Shift Regi e Transmit Shift nsmit Shift Regi	Register; all tra	ansmit	
		coded UxTX Id						
bit 12	-	ted: Read as '						
bit 11	1 = Send Syr cleared b	ansmit Break bi nc Break on ne: ny hardware up ak transmission	kt transmissio	า	llowed by twelve	e '0' bits, follow	ed by Stop bit;	
bit 10	 UTXEN: Transmit Enable bit⁽¹⁾ 1 = Transmit enabled, UxTX pin controlled by UARTx 0 = Transmit disabled, any pending transmission is aborted and buffer is reset. UxTX pin controlled by port 							
bit 9	UTXBF: Transmit Buffer Full Status bit (read-only) 1 = Transmit buffer is full 0 = Transmit buffer is not full, at least one more character can be written							
bit 8	 TRMT: Transmit Shift Register Empty bit (read-only) 1 = Transmit Shift Register is empty and transmit buffer is empty (the last transmission has completed 0 = Transmit Shift Register is not empty, a transmission is in progress or queued 							
bit 7-6	 0 = Transmit Shift Register is not empty, a transmission is in progress or queued URXISEL<1:0>: Receive Interrupt Mode Selection bits 11 = Interrupt is set on UxRSR transfer making the receive buffer full (i.e., has 4 data characters) 10 = Interrupt is set on UxRSR transfer making the receive buffer 3/4 full (i.e., has 3 data characters) 0x = Interrupt is set when any character is received and transferred from the UxRSR to the receive buffer. Receive buffer has one or more characters 							

REGISTER 17-2: UxSTA: UARTx STATUS AND CONTROL REGISTER

Note 1: Refer to **Section 17. "UART**" (DS70188) in the *"dsPIC33F/PIC24H Family Reference Manual"* for information on enabling the UART module for transmit operation.

REGISTER 17-2: UxSTA: UARTx STATUS AND CONTROL REGISTER (CONTINUED)

bit 5	ADDEN: Address Character Detect bit (bit 8 of received data = 1)
	 1 = Address Detect mode enabled. If 9-bit mode is not selected, this does not take effect 0 = Address Detect mode disabled
bit 4	RIDLE: Receiver Idle bit (read-only)
	1 = Receiver is Idle0 = Receiver is active
bit 3	PERR: Parity Error Status bit (read-only)
	1 = Parity error has been detected for the current character (character at the top of the receive FIFO)0 = Parity error has not been detected
bit 2	FERR: Framing Error Status bit (read-only)
	1 = Framing error has been detected for the current character (character at the top of the receive FIFO)
	0 = Framing error has not been detected
bit 1	OERR: Receive Buffer Overrun Error Status bit (read/clear only)
	1 = Receive buffer has overflowed
	0 = Receive buffer has not overflowed. Clearing a previously set OERR bit (1 \rightarrow 0 transition) will reset the receiver buffer and the UxRSR to the empty state
bit 0	URXDA: Receive Buffer Data Available bit (read-only)
	 1 = Receive buffer has data, at least one more character can be read 0 = Receive buffer is empty

Note 1: Refer to **Section 17. "UART**" (DS70188) in the *"dsPIC33F/PIC24H Family Reference Manual"* for information on enabling the UART module for transmit operation.

Bit Field	Register	RTSP Effect	Description
ICS<1:0>	FICD	Immediate	ICD Communication Channel Select bits 11 = Communicate on PGEC1 and PGED1 10 = Communicate on PGEC2 and PGED2 01 = Communicate on PGEC3 and PGED3 00 = Reserved, do not use

TABLE 19-2: CONFIGURATION BITS DESCRIPTION (CONTINUED)

TABLE 22-8:	DC CHARACTERISTICS: DOZE CURRENT (IDOZE)

DC CHARACTERI	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$						
Parameter No. ⁽³⁾ Typical ⁽²⁾ Max			Doze Ratio	Units		Co	nditions
Doze Current (IDO	ze) ⁽¹⁾						
DC73a	41	51	1:2	mA			
DC73f	20	28	1:64	mA	-40°C	3.3V	40 MIPS
DC73g	19	24	1:128	mA			
DC70a	40	46	1:2	mA		3.3V	40 MIPS
DC70f	18	20	1:64	mA	+25°C		
DC70g	18	20	1:128	mA			
DC71a	40	46	1:2	mA			
DC71f	18	25	1:64	mA	+85°C	3.3V	40 MIPS
DC71g	18	20	1:128	mA			
DC72a	39	55	1:2	mA			40 MIPS
DC72f	18	30	1:64	mA	+125°C	3.3V	
DC72g	18	25	1:128	mA			

Note 1: IDOZE is primarily a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDOZE measurements are as follows:

 Oscillator is configured in EC mode and external clock active, OSC1 is driven with external square wave from rail-to-rail with overshoot/undershoot < 250 mV

- · CLKO is configured as an I/O input pin in the Configuration word
- All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD, WDT and FSCM are disabled
- · CPU, SRAM, program memory and data memory are operational
- No peripheral modules are operating; however, every peripheral is being clocked (defined PMDx bits are set to zero and unimplemented PMDx bits are set to one)
- CPU executing while(1) statement
- JTAG is disabled
- 2: Data in the "Typ" column is at 3.3V, +25°C unless otherwise stated.

DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$				
Param No.	Symbol	Characteristic	Min Typ ⁽¹⁾ Max Units Conditions				
DI60a	licl	Input Low Injection Current	0	_	_5 ^(5,8)	mA	All pins except VDD, VSS, AVDD, AVSS, MCLR, VCAP, SOSCI, SOSCO, and RB14
DI60b	Іісн	Input High Injection Current	0	_	+5(6,7,8)	mA	All pins except VDD, VSS, AVDD, AVSS, MCLR, VCAP, SOSCI, SOSCO, RB14, and digital 5V-tolerant designated pins
DI60c	∑lict	Total Input Injection Current (sum of all I/O and control pins)	-20 ⁽⁹⁾		+20 ⁽⁹⁾	mA	Absolute instantaneous sum of all \pm input injection currents from all I/O pins (IICL + IICH) $\leq \sum$ IICT

TABLE 22-9: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS (CONTINUED)

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

- **3:** Negative current is defined as current sourced by the pin.
- 4: See the "Pin Diagrams" section for a list of digital-only and analog pins.
- 5: VIL source < (Vss 0.3). Characterized but not tested.

6: Non-5V tolerant pins VIH source > (VDD + 0.3), 5V tolerant pins VIH source > 5V or devices with USB, "D+" and "D-" VIH source > (VUSB + 0.3). Characterized but not tested.

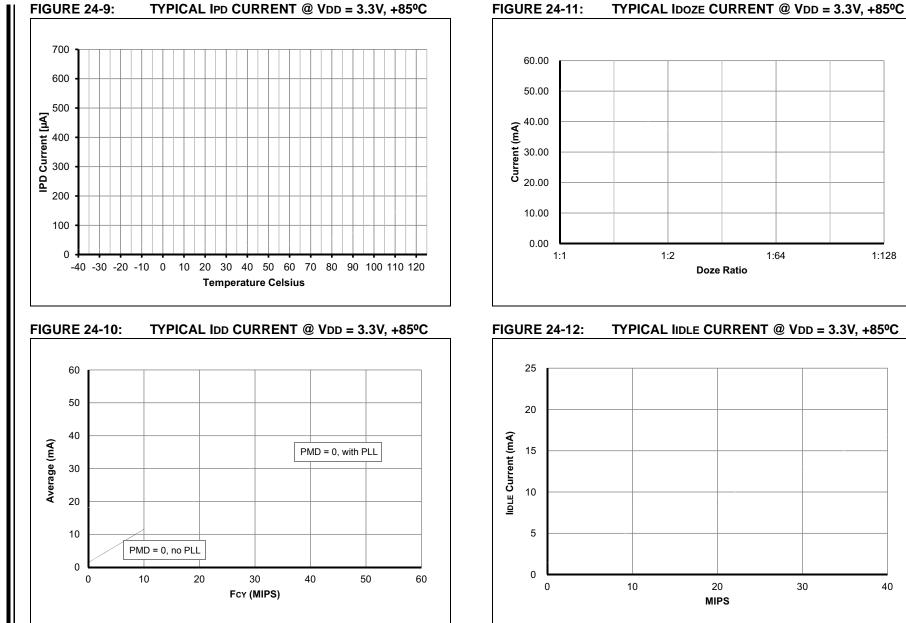
- 7: Digital 5V tolerant pins cannot tolerate any "positive" input injection current from input sources > 5V.
- 8: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.
- **9:** Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted provided the mathematical "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. Characterized but not tested.

TABLE 23-15: ADC MODULE SPECIFICATIONS

AC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le T_A \le +150^{\circ}C$ for High Temperature						
Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions	
Reference Inputs								
HAD08	IREF	Current Drain	_	250 —	600 50	μΑ μΑ	ADC operating, See Note 1 ADC off, See Note 1	

Note 1: These parameters are not characterized or tested in manufacturing.

2: These parameters are characterized, but are not tested in manufacturing.


TABLE 23-16: ADC MODULE SPECIFICATIONS (12-BIT MODE)⁽³⁾

	AC TERISTICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature						
Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions	
	ADO	C Accuracy (12-bit Mode) – Meas	urement	ts with Ex	ternal V	/REF+/VREF- ⁽¹⁾	
HAD20a	Nr	Resolution ⁽³⁾	1	2 data bi	ts	bits	—	
HAD21a	INL	Integral Nonlinearity	-2	_	+2	LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 3.6V	
HAD22a	DNL	Differential Nonlinearity	> -1	—	< 1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V	
HAD23a	Gerr	Gain Error	-2	—	10	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V	
HAD24a	EOFF	Offset Error	-3	—	5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V	
	AD	C Accuracy (12-bit Mode	e) – Meas	uremen	ts with In	ternal V	/REF+/VREF- ⁽¹⁾	
HAD20a	Nr	Resolution ⁽³⁾	1	2 data bi	ts	bits	—	
HAD21a	INL	Integral Nonlinearity	-2		+2	LSb	VINL = AVSS = 0V, AVDD = 3.6V	
HAD22a	DNL	Differential Nonlinearity	> -1	—	< 1	LSb	VINL = AVSS = 0V, AVDD = 3.6V	
HAD23a	Gerr	Gain Error	2		20	LSb	VINL = AVSS = 0V, AVDD = 3.6V	
HAD24a	EOFF	Offset Error	2		10	LSb	VINL = AVSS = 0V, AVDD = 3.6V	
		Dynamic I	Performa	nce (12	-bit Mode) ⁽²⁾		
HAD33a	Fnyq	Input Signal Bandwidth	—	_	200	kHz	—	

Note 1: These parameters are characterized, but are tested at 20 ksps only.

2: These parameters are characterized by similarity, but are not tested in manufacturing.

3: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.

1:128

40

44-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIM	ETERS		
Dimension	MIN	NOM	MAX	
Contact Pitch	E		0.80 BSC	
Contact Pad Spacing	C1		11.40	
Contact Pad Spacing	C2		11.40	
Contact Pad Width (X44)	X1			0.55
Contact Pad Length (X44)	Y1			1.50
Distance Between Pads	G	0.25		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2076A

Revision D (June 2009)

This revision includes minor typographical and formatting changes throughout the data sheet text.

Global changes include:

- Changed all instances of OSCI to OSC1 and OSCO to OSC2
- Changed all instances of PGCx/EMUCx and PGDx/EMUDx (where x = 1, 2, or 3) to PGECx and PGEDx

Changed all instances of VDDCORE and VDDCORE/VCAP to VCAP/VDDCORE

All other major changes are referenced by their respective section in the following table.

TABLE 25-3: MAJOR SECTION UPDATES

Section Name	Update Description
"High-Performance, 16-bit Microcontrollers"	Added Note 2 to the 28-Pin QFN-S and 44-Pin QFN pin diagrams, which references pin connections to Vss.
Section 8.0 "Oscillator Configuration"	Updated the Oscillator System Diagram (see Figure 8-1).
	Added Note 1 to the Oscillator Tuning (OSCTUN) register (see Register 8-4).
Section 10.0 "I/O Ports"	Removed Table 10-1 and added reference to pin diagrams for I/O pin availability and functionality.
Section 15.0 "Serial Peripheral Interface (SPI)"	Added Note 2 to the SPIx Control Register 1 (see Register 15-2).
Section 17.0 "Universal Asynchronous Receiver Transmitter (UART)"	Updated the UTXINV bit settings in the UxSTA register and added Note 1 (see Register 17-2).
Section 22.0 "Electrical Characteristics"	Updated the Min value for parameter DC12 (RAM Retention Voltage) and added Note 4 to the DC Temperature and Voltage Specifications (see Table 22-4).
	Updated the Min value for parameter DI35 (see Table 22-20).
	Updated AD08 and added reference to Note 2 for parameters AD05a, AD06a, and AD08a (see Table 22-34).

INDEX

Α	
A/D Converter	
Initialization	
Key Features	
AC Characteristics	211, 247
ADC Module	
ADC Module (10-bit Mode)	
ADC Module (12-bit Mode)	
Internal RC Accuracy	
Load Conditions	
ADC Module	
ADC11 Register Map	34, 36, 37
Alternate Interrupt Vector Table (AIVT)	
Arithmetic Logic Unit (ALU)	
Assembler	
MPASM Assembler	

В

Block Diagrams	
16-bit Timer1 Module	127
A/D Module	166, 167
Connections for On-Chip Voltage Regulator	183
Device Clock	89, 91
Input Capture	
Output Compare	141
PIC24H	10
PIC24H CPU Core	18
PLL	91
Reset System	
Shared Port Structure	105
SPI	145
Timer2 (16-bit)	132
Timer2/3 (32-bit)	132
UART	159
Watchdog Timer (WDT)	

С

C Compilers	
MPLAB C18	196
Clock Switching	
Enabling	
Sequence	
Code Examples	
Erasing a Program Memory Page	51
Initiating a Programming Sequence	
Loading Write Buffers	52
Port Write/Read	106
PWRSAV Instruction Syntax	
Code Protection	179, 185
Configuration Bits	179
Description (Table)	180
Configuration Register Map	179
Configuring Analog Port Pins	106
CPU	
Control Register	21
CPU Clocking System	
Options	
Selection	
Customer Change Notification Service	
Customer Notification Service	
Customer Support	
D	
Data Address Space	27

Alignment Memory Map for PIC24H Devices with 8 KBs RAM	. 28
Near Data Space Software Stack	
Width	
DC and AC Characteristics	
Graphs and Tables	253
DC Characteristics	
Doze Current (IDOZE)	
High Temperature	
I/O Pin Input Specifications I/O Pin Output Specifications	
Idle Current (IDOZE)	
Idle Current (IDLE)	
Operating Current (IDD)	
Operating MIPS vs. Voltage	
Power-Down Current (IPD)	
Power-down Current (IPD)	
Program Memory	
Temperature and Voltage	
Temperature and Voltage Specifications	
Thermal Operating Conditions	
Development Support	195
E	
Electrical Characteristics	199
AC	
Equations	
Device Operating Frequency	
Errata	6
F	
- Flash Program Memory	17
Control Registers	
Operations	
Programming Algorithm	
RTSP Operation	
Table Instructions	. 47
Flexible Configuration	179
н	
	~
High Temperature Electrical Characteristics	243
1	
I/O Ports	105
Parallel I/O (PIO)	105
Write/Read Timing	
² C	
Addresses	
Operating Modes	
Registers	153
² C Module	22
I2C1 Register Map In-Circuit Debugger	
In-Circuit Debugger	
In-Circuit Serial Programming (ICSP)	186
Input Capture	100
Registers	139
Input Change Notification	
Instruction Addressing Modes	
File Register Instructions	. 40
Fundamental Modes Supported	
MCU Instructions	
Move and Accumulator Instructions	. 41