

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

•XFI

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	21
Program Memory Size	32KB (11K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 10x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN-S (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24hj32gp202t-i-mm

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.2.1 TANK CAPACITORS

On boards with power traces running longer than six inches in length, it is suggested to use a tank capacitor for integrated circuits including microcontrollers to supply a local power source. The value of the tank capacitor should be determined based on the trace resistance that connects the power supply source to the microcontroller, and the maximum current drawn by the microcontroller in the application. In other words, select the tank capacitor so that it meets the acceptable voltage sag at the device. Typical values range from 4.7 μ F to 47 μ F.

2.3 CPU Logic Filter Capacitor Connection (VCAP)

A low-ESR (< 5 Ohms) capacitor is required on the VCAP pin, which is used to stabilize the voltage regulator output voltage. The VCAP pin must not be connected to VDD, and must have a capacitor between 4.7 μ F and 10 μ F, 16V connected to ground. The type can be ceramic or tantalum. Refer to **Section 22.0** "**Electrical Characteristics**" for additional information.

The placement of this capacitor should be close to the VCAP. It is recommended that the trace length not exceed one-quarter inch (6 mm). Refer to **Section 19.2 "On-Chip Voltage Regulator"** for details.

2.4 Master Clear (MCLR) Pin

The $\overline{\text{MCLR}}$ pin provides for two specific device functions:

- · Device Reset
- Device programming and debugging

During device programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the MCLR pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R and C will need to be adjusted based on the application and PCB requirements.

For example, as shown in Figure 2-2, it is recommended that capacitor C is isolated from the MCLR pin during programming and debugging operations.

Place the components shown in Figure 2-2 within one-quarter inch (6 mm) from the MCLR pin.

EXAMPLE OF MCLR PIN CONNECTIONS

2.7 Oscillator Value Conditions on Device Start-up

If the PLL of the target device is enabled and configured for the device start-up oscillator, the maximum oscillator source frequency must be limited to \leq 8 MHz for start-up with PLL enabled. This means that if the external oscillator frequency is outside this range, the application must start-up in FRC mode first. The default PLL settings after a POR with an oscillator frequency outside this range will violate the device operating speed.

Once the device powers up, the application firmware can initialize the PLL SFRs, CLKDIV and PLLDBF to a suitable value, and then perform a clock switch to the Oscillator + PLL clock source. Note that clock switching must be enabled in the device Configuration word.

2.8 Configuration of Analog and Digital Pins During ICSP Operations

If MPLAB ICD 3 or MPLAB REAL ICE in-circuit emulator is selected as a debugger, it automatically initializes all of the A/D input pins (ANx) as "digital" pins, by setting all bits in the AD1PCFGL registers.

The bits in the registers that correspond to the A/D pins that are initialized by MPLAB ICD 3 or MPLAB REAL ICE in-circuit emulator, must not be cleared by the user application firmware; otherwise, communication errors will result between the debugger and the device.

If your application needs to use certain A/D pins as analog input pins during the debug session, the user application must clear the corresponding bits in the AD1PCFGL register during initialization of the ADC module.

When the MPLAB ICD 3 or MPLAB REAL ICE in-circuit emulator is used as a programmer, the user application firmware must correctly configure the AD1PCFGL register. Automatic initialization of this register is only done during debugger operation. Failure to correctly configure the register(s) will result in all A/D pins being recognized as analog input pins, resulting in the port value being read as a logic '0', which may affect user application functionality.

2.9 Unused I/Os

Unused I/O pins should be configured as outputs and driven to a logic low state.

Alternatively, connect a 1k to 10k resistor between Vss and the unused pins.

3.0 CPU

- Note 1: This data sheet summarizes the features of the PIC24HJ32GP202/204 and PIC24HJ16GP304 family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Section 2. CPU" (DS70204) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip website (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The PIC24HJ32GP202/204 and PIC24HJ16GP304 CPU modules have a 16-bit (data) modified Harvard architecture with an enhanced instruction set and addressing modes. The CPU has a 24-bit instruction word with a variable length opcode field. The Program Counter (PC) is 23 bits wide and addresses up to 4M x 24 bits of user program memory space. The actual amount of program memory implemented varies by device. A single-cycle instruction prefetch mechanism is used to help maintain throughput and provides predictable execution. All instructions execute in a single cycle, with the exception of instructions that change the program flow, the double word move (MOV.D) instruction and the table instructions. Overhead-free, single-cycle program loop constructs are supported using the REPEAT instruction, which is interruptible at any time.

The PIC24HJ32GP202/204 and PIC24HJ16GP304 devices have sixteen, 16-bit working registers in the programmer's model. Each of the working registers can serve as a data, address or address offset register. The 16th working register (W15) operates as a software Stack Pointer (SP) for interrupts and calls.

The instruction set includes many addressing modes and is designed for optimum C compiler efficiency. For most instructions, the devices are capable of executing a data (or program data) memory read, a working register (data) read, a data memory write and a program (instruction) memory read per instruction cycle. As a result, three parameter instructions can be supported, allowing A + B = C operations to be executed in a single cycle.

A block diagram of the CPU is shown in Figure 3-1. The programmer's model for the PIC24HJ32GP202/204 and PIC24HJ16GP304 is shown in Figure 3-2.

3.1 Data Addressing Overview

The data space can be linearly addressed as 32K words or 64 Kbytes using an Address Generation Unit (AGU). The upper 32 Kbytes of the data space memory map can optionally be mapped into program space at any 16K program word boundary defined by the 8-bit Program Space Visibility Page register (PSVPAG). The program to data space mapping feature lets any instruction access program space as if it were data space.

The data space also includes 2 Kbytes of DMA RAM, which is primarily used for DMA data transfers, but this may be used as general purpose RAM.

3.2 Special MCU Features

The PIC24HJ32GP202/204 and PIC24HJ16GP304 devices feature a 17-bit by 17-bit, single-cycle multiplier. The multiplier can perform signed, unsigned and mixed-sign multiplication. Using a 17-bit by 17-bit multiplier for 16-bit by 16-bit multiplication makes mixed-sign multiplication possible.

The PIC24HJ32GP202/204 and PIC24HJ16GP304 devices support 16/16 and 32/16 integer divide operations. All divide instructions are iterative operations. They must be executed within a REPEAT loop, resulting in a total execution time of 19 instruction cycles. The divide operation can be interrupted during any of those 19 cycles without loss of data.

A multi-bit data shifter is used to perform up to a 16-bit, left or right shift in a single cycle.

3.3 CPU Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access										
	the product page using the link above,										
	enter this URL in your browser:										
	http://www.microchip.com/wwwproducts/										
	Devices.aspx?dDocName=en530271										

3.3.1 KEY RESOURCES

- Section 2. "CPU" (DS70204)
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
INTCON1	0080	NSTDIS	-	_	-	_	1	_	_		DIV0ERR	_	MATHERR	ADDRERR	STKERR	OSCFAIL	_	0000
INTCON2	0082	ALTIVT	DISI	—	_	_	_	—	_	_	—	_	_	_	INT2EP	INT1EP	INT0EP	0000
IFS0	0084	_	_	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF	T2IF	OC2IF	IC2IF	_	T1IF	OC1IF	IC1IF	INT0IF	0000
IFS1	0086	_	_	INT2IF	-	_	_	_	_	IC8IF	IC7IF	_	INT1IF	CNIF	_	MI2C1IF	SI2C1IF	0000
IFS4	008C	_	_	_	-	_	_	_	_	_	_	_	_	_	_	U1EIF	_	0000
IEC0	0094	_	_	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE	T2IE	OC2IE	IC2IE	_	T1IE	OC1IE	IC1IE	INT0IE	0000
IEC1	0096	—	_	INT2IE	_	_	_	—	_	IC8IE	IC7IE	_	INT1IE	CNIE	_	MI2C1IE	SI2C1IE	0000
IEC4	009C	—	_	—	_	_	_	—	_	_	—	_	_	_	_	U1EIE	—	0000
IPC0	00A4	—		T1IP<2:0>		_	(OC1IP<2:0	>	_		IC1IP<2:0>		_	11	NT0IP<2:0>	•	4444
IPC1	00A6	—		T2IP<2:0>		_	(OC2IP<2:0	>	_		IC2IP<2:0>		_	_	_	_	4440
IPC2	00A8	—	ι	J1RXIP<2:()>	_	Ş	SPI1IP<2:0)>	_	:	SPI1EIP<2:0)>	_		T3IP<2:0>		4444
IPC3	00AA	—	_	_	_	_	_	—	_	_		AD1IP<2:0	>	_	U	1TXIP<2:0	>	0044
IPC4	00AC	—		CNIP<2:0>	•	_	_	—	_	_		WI2C1IP<2:0)>	_	SI	2C1IP<2:0	>	4044
IPC5	00AE	—		IC8IP<2:0>	`	_		IC7IP<2:0	>	_	_	_	_	_	11	NT1IP<2:0>	•	4404
IPC7	00B2	—	_	_	_	_	_	—	_	_		INT2IP<2:0	>	_	_	_	_	0040
IPC16	00C4	—	_	_	_	_	—	—	_	_		U1EIP<2:0	>	_	_	_	_	0040
INTTREG	00E0		—	_	_		ILR<	3:0>		—			VE	CNUM<6:0>				0000

TABLE 4-4: INTERRUPT CONTROLLER REGISTER MAP

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-8: I2C1 REGISTER MAP

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
I2C1RCV	0200	_	_	-	-	-	—	-	_				Receive	Register				0000
I2C1TRN	0202	_	_	_	_	_	_	_	_				Transmit	Register				OOFF
I2C1BRG	0204	_	_	_	_	_	_	_				Baud Rat	te Generato	r Register				0000
I2C1CON	0206	I2CEN	_	I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
I2C1STAT	0208	ACKSTAT	TRSTAT	_	_	_	BCL	GCSTAT	ADD10	IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF	0000
I2C1ADD	020A	_	_	-	—		—					Address	Register					0000
I2C1MSK	020C	_	_		_	-	_		Address Mask Register 000								0000	

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-9: UART1 REGISTER MAP

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
U1MODE	0220	UARTEN	—	USIDL	IREN	RTSMD	—	UEN1	UEN0	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSE	L<1:0>	STSEL	0000
U1STA	0222	UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN	UTXBF	TRMT	URXIS	EL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U1TXREG	0224	_	_	_	_	-	_	_				UART	Transmit Re	gister				XXXX
U1RXREG	0226	_	_	_	_	-	_	_				UART	Receive Re	gister				0000
U1BRG	0228		Baud Rate Generator Prescaler 0000										0000					

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-10: SPI1 REGISTER MAP

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
SPI1STAT	0240	SPIEN	-	SPISIDL	—	—	—	—	-	_	SPIROV	-	-	—	-	SPITBF	SPIRBF	0000
SPI1CON1	0242		_	—	DISSCK	DISSDO	MODE16	SMP	CKE	SSEN	CKP	MSTEN		SPRE<2:0>		PPRE	<1:0>	0000
SPI1CON2	0244	FRMEN	SPIFSD	FRMPOL	—	—	_	—	—	_	—	_	—	_	—	FRMDLY	_	0000
SPI1BUF	0248		SPI1 Transmit and Receive Buffer Register 0										0000					

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

4.6 Interfacing Program and Data Memory Spaces

The device architecture uses a 24-bit-wide program space and a 16 bit wide data space. The architecture is also a modified Harvard scheme, which means that the data can also be present in the program space. To use this data successfully, it must be accessed in a way that preserves the alignment of information in both spaces.

Aside from normal execution, the architecture provides two methods by which program space can be accessed during operation:

- Using table instructions to access individual bytes or words anywhere in the program space
- Remapping a portion of the program space into the data space (Program Space Visibility)

Table instructions allow an application to read or write to small areas of the program memory. This capability makes the method ideal for accessing data tables that need to be updated periodically. It also allows access to all bytes of the program word. The remapping method allows an application to access a large block of data on a read-only basis, which is ideal for look ups from a large table of static data. The application can only access the least significant word of the program word.

4.6.1 ADDRESSING PROGRAM SPACE

Since the address ranges for the data and program spaces are 16 and 24 bits, respectively, a method is needed to create a 23-bit or 24-bit program address from 16-bit data registers. The solution depends on the interface method to be used.

For table operations, the 8-bit Table Page register (TBLPAG) is used to define a 32K word region within the program space. This is concatenated with a 16-bit EA to arrive at a full 24-bit program space address. In this format, the Most Significant bit of TBLPAG is used to determine if the operation occurs in the user memory (TBLPAG<7> = 0) or the configuration memory (TBLPAG<7> = 1).

For remapping operations, the 8-bit Program Space Visibility register (PSVPAG) is used to define a 16K word page in the program space. When the Most Significant bit of the EA is '1', PSVPAG is concatenated with the lower 15 bits of the EA to form a 23-bit program space address. Unlike table operations, this limits remapping operations strictly to the user memory area.

Table 4-24 and Figure 4-5 show how the program EA is created for table operations and remapping accesses from the data EA. Here, P<23:0> refers to a program space word, and D<15:0> refers to a data space word.

Access Type	Access		Program Space Address									
Access Type	Space	<23>	<22:16>	<15>	<14:1>	<0>						
Instruction Access	User	0		PC<22:1>		0						
(Code Execution)			x xxxx xxx0									
TBLRD/TBLWT	User	TB	LPAG<7:0>									
(Byte/Word Read/Write)		0xxx xxxx xxxx xxxx xxxx xxxx										
	Configuration	TB	LPAG<7:0>	Data EA<15:0>								
		1	xxx xxxx	xxxx x	xxx xxxx xxxx							
Program Space Visibility	User	0	PSVPAG<7	/:0>	Data EA<14:0> ⁽¹⁾							
(Block Remap/Read)		0	XXXX XXXX	۲.	XXX XXXX XXXX XXXX							

TABLE 4-24: PROGRAM SPACE ADDRESS CONSTRUCTION

Note 1: Data EA<15> is always '1' in this case, but is not used in calculating the program space address. Bit 15 of the address is PSVPAG<0>.

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
		T2IP<2:0>				OC2IP<2:0>	
bit 15	<u>.</u>						bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
_		IC2IP<2:0>		—	—	—	—
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimple	mented bit, rea	d as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15	Unimpleme	ented: Read as '	0'				
bit 14-12	T2IP<2:0>:	Timer2 Interrupt	Priority bits				
	111 = Interr	rupt is priority 7 (highest priori	ity interrupt)			
	•						
	•						
	001 = Interr 000 = Interr	rupt is priority 1 rupt source is dis	abled				
bit 11	Unimpleme	ented: Read as '	0'				
bit 10-8	OC2IP<2:0	>: Output Compa	are Channel	2 Interrupt Prio	rity bits		
	111 = Interr	rupt is priority 7 (highest priori	ity interrupt)			
	•						
	•						
	001 = Interr	rupt is priority 1					
	000 = Interr	upt source is dis	abled				
bit 7	Unimpleme	ented: Read as '	0'				
bit 6-4	IC2IP<2:0>	: Input Capture C	Channel 2 Int	errupt Priority b	oits		
	111 = Interr	rupt is priority 7 (highest priori	ity interrupt)			
	•						
	•						
	001 = Interr	rupt is priority 1					
	000 = Interr	upt source is dis	abled				
bit 3-0	Unimpleme	ented: Read as '	0'				

REGISTER 7-12: IPC1: INTERRUPT PRIORITY CONTROL REGISTER 1

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_		—	_	_	_	_	_
bit 15		•					bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_		AD1IP<2:0>		—		U1TXIP<2:0>	
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'	
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15-7	Unimplemen	ted: Read as '	0'				
bit 6-4	AD1IP<2:0>:	ADC1 Convers	sion Complete	e Interrupt Prio	rity bits		
	111 = Interrup	ot is priority 7 (highest priorit	y interrupt)			
	•						
	•						
	001 = Interrup	ot is priority 1					
	000 = Interrup	ot source is dis	abled				
bit 3	Unimplemen	ted: Read as '	0'				
bit 2-0	U1TXIP<2:0>	: UART1 Trans	smitter Interru	pt Priority bits			
	111 = Interrup	ot is priority 7 (highest priorit	y interrupt)			
	•						
	•						
	001 = Interrup	ot is priority 1					
	000 = Interrup	ot source is dis	abled				

REGISTER 7-14: IPC3: INTERRUPT PRIORITY CONTROL REGISTER 3

REGISTER 10-17: RPOR7: PERIPHERAL PIN SELECT OUTPUT REGISTER 7

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP15R<4:0>		
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP14R<4:0>		
bit 7		•					bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13 Unimplemented: Read as '0'

bit 12-8 **RP15R<4:0>:** Peripheral Output Function is Assigned to RP15 Output Pin (see Table 10-2 for peripheral function numbers)

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP14R<4:0>:** Peripheral Output Function is Assigned to RP14 Output Pin (see Table 10-2 for peripheral function numbers)

REGISTER 10-18: RPOR8: PERIPHERAL PIN SELECT OUTPUT REGISTER 8

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
—	—	—			RP17R<4:0>	>				
bit 15							bit 8			
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
—	—	—			RP16R<4:0>	>				
bit 7							bit 0			
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'						
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown			

bit 15-13 Unimplemented: Read as '0'

bit 12-8 **RP17R<4:0>:** Peripheral Output Function is Assigned to RP15 Output Pin (see Table 10-2 for peripheral function numbers)

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP16R<4:0>:** Peripheral Output Function is Assigned to RP14 Output Pin (see Table 10-2 for peripheral function numbers)

REGISTER 10-21: RPOR11: PERIPHERAL PIN SELECT OUTPUT REGISTER 11

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP23R<4:0>		
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	RP22R<4:0>				
bit 7							bit 0
Legend:							

Legena.						
R = Readable bit W = Writable bit		U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15-13 Unimplemented: Read as '0'

bit 12-8 **RP23R<4:0>:** Peripheral Output Function is Assigned to RP23 Output Pin (see Table 10-2 for peripheral function numbers)

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP22R<4:0>:** Peripheral Output Function is Assigned to RP22 Output Pin (see Table 10-2 for peripheral function numbers)

REGISTER 10-22: RPOR12: PERIPHERAL PIN SELECT OUTPUT REGISTER 12

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—		—			RP25R<4:0>	>	
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—		—			RP24R<4:0>	>	
bit 7							bit 0
Legend:							
R = Readable bit W = Writable b			bit U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown			

bit 15-13 Unimplemented: Read as '0'

bit 12-8 **RP25R<4:0>:** Peripheral Output Function is Assigned to RP25 Output Pin (see Table 10-2 for peripheral function numbers)

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP24R<4:0>:** Peripheral Output Function is Assigned to RP24 Output Pin (see Table 10-2 for peripheral function numbers)

12.0 TIMER2/3 FEATURE

- Note 1: This data sheet summarizes the features of the PIC24HJ32GP202/204 and PIC24HJ16GP304 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Section 11. Timers" (DS70205) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip website (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

The Timer2/3 feature has 32-bit timers that can also be configured as two independent 16-bit timers with selectable operating modes.

As a 32-bit timer, the Timer2/3 feature permits operation in three modes:

- Two Independent 16-bit timers (Timer2 and Timer3) with all 16-bit operating modes (except Asynchronous Counter mode)
- Single 32-bit timer (Timer2/3)
- Single 32-bit synchronous counter (Timer2/3)

The Timer2/3 feature also supports:

- Timer gate operation
- Selectable Prescaler Settings
- Timer operation during Idle and Sleep modes
- · Interrupt on a 32-bit Period Register Match
- Time Base for Input Capture and Output Compare Modules (Timer2 and Timer3 only)
- ADC1 Event Trigger (Timer2/3 only)

Individually, all eight of the 16-bit timers can function as synchronous timers or counters. They also offer the features that are listed above, except for the event trigger. The operating modes and enabled features are determined by setting the appropriate bit(s) in the T2CON and T3CON registers. T2CON registers are shown in generic form in Register 12-1. T3CON registers are shown in Register 12-2.

For 32-bit timer/counter operation, Timer2 is the least significant word (lsw), and Timer3 is the most significant word (msw) of the 32-bit timers.

Note: For 32-bit operation, T3CON control bits are ignored. Only T2CON control bit is used for setup and control. Timer2 clock and gate inputs are used for the 32-bit timer modules, but an interrupt is generated with the Timer3 interrupt flags.

12.1 32-bit Operation

To configure the Timer2/3 feature for 32-bit operation:

- 1. Set the corresponding T32 control bit.
- 2. Select the prescaler ratio for Timer2 using the TCKPS<1:0> bits.
- 3. Set the Clock and Gating modes using the corresponding TCS and TGATE bits.
- 4. Load the timer period value. PR3 contains the most significant word of the value, while PR2 contains the least significant word.
- 5. Set the interrupt enable bit T3IE, if interrupts are required. Use the priority bits T3IP<2:0> to set the interrupt priority. While Timer2 controls the timer, the interrupt appears as a Timer3 interrupt.
- 6. Set the corresponding TON bit.

The timer value at any point is stored in the register pair TMR3:TMR2. TMR3 always contains the most significant word of the count, while TMR2 contains the least significant word.

To configure any of the timers for individual 16-bit operation:

- 1. Clear the T32 bit corresponding to that timer.
- Select the timer prescaler ratio using the TCKPS<1:0> bits.
- 3. Set the Clock and Gating modes using the TCS and TGATE bits.
- 4. Load the timer period value into the PRx register.
- 5. If interrupts are required, set the interrupt enable bit, TxIE. Use the priority bits, TxIP<2:0>, to set the interrupt priority.
- 6. Set the TON bit.

12.2 Timer2/3 Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access							
	the product page using the link above,							
	enter this URL in your browser:							
	http://www.microchip.com/wwwproducts/							
	Devices.aspx?dDocName=en530271							

12.2.1 KEY RESOURCES

- Section 11. "Timers" (DS70205)
- Code Samples
- Application Notes
- Software Libraries
- · Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

15.1 SPI Helpful Tips

- 1. In Frame mode, if there is a possibility that the master may not be initialized before the slave:
 - a) If FRMPOL (SPIxCON2<13>) = 1, use a pull-down resistor on SSx.
 - b) If FRMPOL = 0, use a pull-up resistor on $\frac{1}{SSx}$.

Note:	This	insures	that	t the	first	fra	ame
	transn	nission	after	initializ	ation	is	not
	shifted						

- 2. In non-framed 3-wire mode, (i.e., not using SSx from a master):
 - a) If CKP (SPIxCON1<6>) = 1, always place a pull-up resistor on SSx.
 - b) If CKP = 0, always place a pull-down resistor on SSx.
- **Note:** This will insure that during power-up and initialization the master/slave will not lose sync due to an errant SCK transition that would cause the slave to accumulate data shift errors for both transmit and receive appearing as corrupted data.
- FRMEN (SPIxCON2<15>) = 1 and SSEN (SPIxCON1<7>) = 1 are exclusive and invalid. In Frame mode, SCKx is continuous and the Frame sync pulse is active on the SSx pin, which indicates the start of a data frame.
 - Note: Not all third-party devices support Frame mode timing. Refer to the SPI electrical characteristics for details.
- In Master mode only, set the SMP bit (SPIxCON1<9>) to a '1' for the fastest SPI data rate possible. The SMP bit can only be set at the same time or after the MSTEN bit (SPIxCON1<5>) is set.
- 5. To avoid invalid slave read data to the master, the user's master software must guarantee enough time for slave software to fill its write buffer before the user application initiates a master write/read cycle. It is always advisable to preload the SPIxBUF transmit register in advance of the next master transaction cycle. SPIxBUF is transferred to the SPI shift register and is empty once the data transmission begins.

15.2 SPI Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note: In the event you are not able to access the product page using the link above, enter this URL in your browser: http://www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en530271

15.2.1 KEY RESOURCES

- Section 18. "Serial Peripheral Interface (SPI)" (DS70206)
- Code Samples
- Application Notes
- · Software Libraries
- Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

REGISTER 15-2: SPIXCON1: SPIX CONTROL REGISTER 1 (CONTINUED)

- **Note 1:** The CKE bit is not used in the Framed SPI modes. Program this bit to '0' for the Framed SPI modes (FRMEN = 1).
 - 2: This bit must be cleared when FRMEN = 1.
 - 3: Do not set both Primary and Secondary prescalers to a value of 1:1.

REGISTER 16-1: I2CxCON: I2Cx CONTROL REGISTER (CONTINUED)

bit 5	ACKDT: Acknowledge Data bit (when operating as I ² C master, applicable during master receive) Value that will be transmitted when the software initiates an Acknowledge sequence. 1 = Send NACK during Acknowledge 0 = Send ACK during Acknowledge
bit 4	ACKEN: Acknowledge Sequence Enable bit (when operating as I ² C master, applicable during master receive)
	 1 = Initiate Acknowledge sequence on SDAx and SCLx pins and transmit ACKDT data bit. Hardware clear at end of master Acknowledge sequence 0 = Acknowledge sequence not in progress
bit 3	RCEN: Receive Enable bit (when operating as I^2C master)
	1 = Enables Receive mode for I^2C . Hardware clear at end of eighth bit of master receive data byte 0 = Receive sequence not in progress
bit 2	PEN: Stop Condition Enable bit (when operating as I ² C master)
	 1 = Initiate Stop condition on SDAx and SCLx pins. Hardware clear at end of master Stop sequence 0 = Stop condition not in progress
bit 1	RSEN: Repeated Start Condition Enable bit (when operating as I ² C master)
	 1 = Initiate Repeated Start condition on SDAx and SCLx pins. Hardware clear at end of master Repeated Start sequence
	0 = Repeated Start condition not in progress
bit 0	SEN: Start Condition Enable bit (when operating as I ² C master)
	 1 = Initiate Start condition on SDAx and SCLx pins. Hardware clear at end of master Start sequence 0 = Start condition not in progress

P.0 HSC		11.0	11.0	11.0				
	TDOTAT	0-0	0-0	0-0				
ACKSTAT	IRSTAL	_	_	_	BCL	GCSTAT	ADD 10	
DIL 15							DILO	
R/C-0 HS	R/C-0 HS	R-0 HSC	R/C-0 HSC	R/C-0 HSC	R-0 HSC	R-0 HSC	R-0 HSC	
IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF	
bit 7			1				bit 0	
Legend:		U = Unimplen	nented bit, rea	ad as 'O'				
R = Readable	bit	W = Writable	bit	HS = Set in h	ardware	HSC = Hardwa	are set/cleared	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	iown	
bit 15	 ACKSTAT: Acknowledge Status bit (when operating as I²C master, applicable to master transmit operation) 1 = NACK received from slave 0 = ACK received from slave Hardware set or clear at end of slave Acknowledge. 							
bit 14	TRSTAT: Tran1 = Master tra0 = Master traHardware set	nsmit Status bit Insmit is in pro Insmit is not in at beginning o	: (when opera gress (8 bits - progress f master trans	ting as l ² C ma ⊦ ACK) smission. Hard	ster, applicable ware clear at er	to master trans	smit operation) nowledge.	
bit 13-11	Unimplement	ted: Read as '	0'					
bit 10	BCL: Master I	Bus Collision E	Detect bit					
	1 = A bus colli 0 = No collisio Hardware set	ision has been on at detection of	detected dur	ing a master o	peration			
bit 9	GCSTAT: Ger	neral Call Statu	is bit					
	1 = General ca 0 = General ca Hardware set	all address wa all address wa when address	s received s not received matches gen	d eral call addre	ss. Hardware cl	ear at Stop det	ection.	
bit 8	ADD10: 10-bi	t Address Stat	us bit					
	1 = 10-bit add 0 = 10-bit add Hardware set	ress was mato ress was not r at match of 2n	hed natched d byte of mat	ched 10-bit ad	dress. Hardwar	e clear at Stop	detection.	
bit 7	IWCOL: Write	Collision Dete	ect bit		0			
	1 = An attemp 0 = No collisio Hardware set	ot to write the l on at occurrence	2CxTRN regis	ster failed beca CxTRN while b	use the I ² C mo usy (cleared by	dule is busy software).		
bit 6	I2COV: Recei	ve Overflow Fl	ag bit					
	 1 = A byte was received while the I2CxRCV register is still holding the previous byte 0 = No overflow Hardware set at attempt to transfer I2CxRSR to I2CxRCV (cleared by software). 							
bit 5	D_A: Data/Ad	dress bit (whe	n operating a	s I ² C slave)				
	1 = Indicates f 0 = Indicates f Hardware clea	that the last by that the last by ar at device ad	te received w te received w dress match.	as data as device add Hardware set	ress by reception of	slave byte.		
bit 4	P: Stop bit							
	1 = Indicates f 0 = Stop bit wa Hardware set	that a Stop bit as not detecte or clear when	has been dete d last Start, Repeat	ected last ed Start or Sto	p detected.			

REGISTER 16-2: I2CxSTAT: I2Cx STATUS REGISTER

Base Instr #	Assembly Mnemonic	Assembly Syntax		Description	# of Words	# of Cycles	Status Flags Affected
1	ADD	ADD f f		f = f + WREG	1	1	C,DC,N,OV,Z
		ADD f,WREG W		WREG = f + WREG	1	1	C,DC,N,OV,Z
		ADD	#lit10,Wn	Wd = lit10 + Wd	1	1	C,DC,N,OV,Z
		ADD	Wb,Ws,Wd	Wd = Wb + Ws	1	1	C,DC,N,OV,Z
		ADD	Wb,#lit5,Wd	Wd = Wb + lit5	1	1	C,DC,N,OV,Z
2	ADDC	ADDC	f	f = f + WREG + (C)	1	1	C,DC,N,OV,Z
		ADDC	f,WREG	WREG = f + WREG + (C)	1	1	C,DC,N,OV,Z
		ADDC	#lit10,Wn	Wd = lit10 + Wd + (C)	1	1	C,DC,N,OV,Z
		ADDC	Wb,Ws,Wd	Wd = Wb + Ws + (C)	1	1	C,DC,N,OV,Z
		ADDC	Wb,#lit5,Wd	Wd = Wb + lit5 + (C)	1	1	C,DC,N,OV,Z
3	AND	AND	f	f = f .AND. WREG	1	1	N,Z
		AND	f,WREG	WREG = f .AND. WREG	1	1	N,Z
		AND	#lit10,Wn	Wd = lit10 .AND. Wd	1	1	N,Z
		AND	Wb,Ws,Wd	Wd = Wb .AND. Ws	1	1	N,Z
		AND	Wb,#lit5,Wd	Wd = Wb .AND. lit5	1	1	N,Z
4	ASR	ASR	f	f = Arithmetic Right Shift f	1	1	C,N,OV,Z
		ASR	f,WREG	WREG = Arithmetic Right Shift f	1	1	C,N,OV,Z
		ASR	Ws,Wd	Wd = Arithmetic Right Shift Ws	1	1	C,N,OV,Z
		ASR	Wb,Wns,Wnd	Wnd = Arithmetic Right Shift Wb by Wns	1	1	N,Z
		ASR	Wb,#lit5,Wnd	Wnd = Arithmetic Right Shift Wb by lit5	1	1	N,Z
5	BCLR	BCLR	f,#bit4	Bit Clear f	1	1	None
		BCLR	Ws,#bit4	Bit Clear Ws	1	1	None
6	BRA	BRA	C,Expr	Branch if Carry	1	1 (2)	None
		BRA	GE,Expr	Branch if greater than or equal	1	1 (2)	None
		BRA	GEU, Expr	Branch if unsigned greater than or equal	1	1 (2)	None
		BRA	GT,Expr	Branch if greater than	1	1 (2)	None
		BRA	GTU, Expr	Branch if unsigned greater than	1	1 (2)	None
		BRA	LE, Expr	Branch if less than or equal	1	1 (2)	None
		BRA	LEU, Expr	Branch if unsigned less than or equal	1	1 (2)	None
		BRA	LT,Expr	Branch if less than	1	1 (2)	None
		BRA	LTU, Expr	Branch if unsigned less than	1	1 (2)	None
		BRA	N,Expr	Branch if Negative	1	1 (2)	None
		BRA	NC,Expr	Branch if Not Carry	1	1 (2)	None
		BRA	NN,Expr	Branch if Not Negative	1	1 (2)	None
		BRA	NZ,Expr	Branch if Not Zero	1	1 (2)	None
		BRA	Expr	Branch Unconditionally	1	2	None
		BRA	Z,Expr	Branch if Zero	1	1 (2)	None
		BRA	Wn	Computed Branch	1	2	None
7	BSET	BSET	f,#bit4	Bit Set f	1	1	None
		BSET	Ws,#bit4	Bit Set Ws	1	1	None
8	BSW	BSW.C	Ws,Wb	Write C bit to Ws <wb></wb>	1	1	None
		BSW.Z	Ws,Wb	Write Z bit to Ws <wb></wb>	1	1	None
9	BTG	BTG	f,#bit4	Bit Toggle f	1	1	None
		BTG	Ws,#bit4	Bit Toggle Ws	1	1	None
10	BTSC	BTSC	f,#bit4	Bit Test f, Skip if Clear	1	1 (2 or 3)	None
		BTSC	Ws,#bit4	Bit Test Ws, Skip if Clear	1	1 (2 or 3)	None
11	BTSS	BTSS	f,#bit4	Bit Test f, Skip if Set	1	1 (2 or 3)	None
		BTSS	Ws,#bit4	Bit Test Ws, Skip if Set	1	1 (2 or 3)	None

TABLE 20-2: INSTRUCTION SET OVERVIEW

FIGURE 22-6: INPUT CAPTURE (CAPx) TIMING CHARACTERISTICS

TABLE 22-25: INPUT CAPTURE TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Character	ristic ⁽¹⁾	Min	Мах	Units	Conditions	
IC10	TccL	ICx Input Low Time	No Prescaler	0.5 Tcy + 20	_	ns	—	
			With Prescaler	10	_	ns		
IC11	TccH	ICx Input High Time	No Prescaler	0.5 Tcy + 20	—	ns	—	
			With Prescaler	10	—	ns		
IC15	TccP	ICx Input Period		(Tcy + 40)/N	_	ns	N = prescale value (1, 4, 16)	
Note 1:	These p	arameters are charact	erized but not teste	d in manufacturin	g.			

OUTPUT COMPARE MODULE (OCx) TIMING CHARACTERISTICS FIGURE 22-7:

TABLE 22-26: OUTPUT COMPARE MODULE TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Max	Units	Conditions	
OC10	TccF	OCx Output Fall Time	—		_	ns	See parameter D032	
OC11	TccR	OCx Output Rise Time	—	_	_	ns	See parameter D031	

Note 1: These parameters are characterized but not tested in manufacturing.

28-Lead Plastic Quad Flat, No Lead Package (MM) – 6x6x0.9 mm Body [QFN-S] with 0.40 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units			
Dimensio	on Limits	MIN	NOM	MAX
Number of Pins	Ν		28	
Pitch	е		0.65 BSC	
Overall Height	Α	0.80	0.90	1.00
Standoff	A1	0.00	0.02	0.05
Contact Thickness	A3	0.20 REF		
Overall Width	Е		6.00 BSC	
Exposed Pad Width	E2	3.65	3.70	4.70
Overall Length	D		6.00 BSC	
Exposed Pad Length	D2	3.65	3.70	4.70
Contact Width	b	0.23	0.38	0.43
Contact Length	L	0.30	0.40	0.50
Contact-to-Exposed Pad	К	0.20	-	-

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-124B