

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

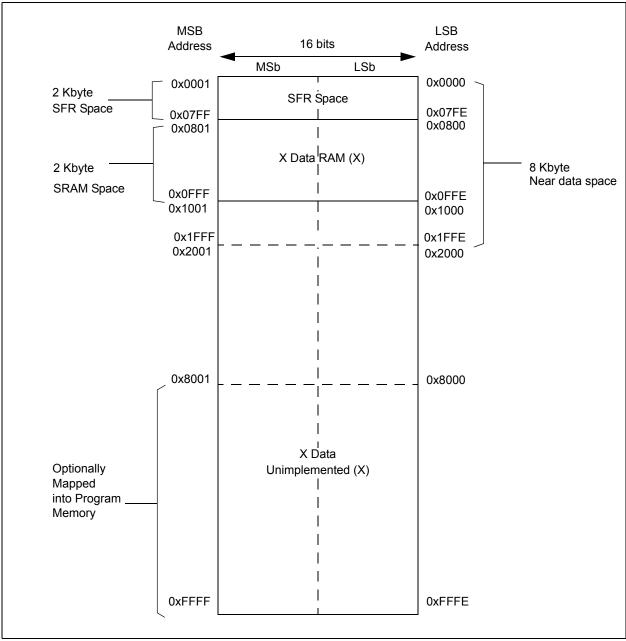
E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	35
Program Memory Size	32KB (11K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 13x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24hj32gp204-e-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.3 CPU Resources


Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access
	the product page using the link above,
	enter this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en530271

3.3.1 KEY RESOURCES

- Section 2. "CPU" (DS70204)
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

FIGURE 4-3: DATA MEMORY MAP FOR PIC24HJ32GP202/204 AND PIC24HJ16GP304 DEVICES WITH 2 KB RAM

4.3 Program Memory Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access
	the product page using the link above,
	enter this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en530271

4.3.1 KEY RESOURCES

- Section 4. "Program Memory" (DS70202)
- Code Samples
- Application Notes
- · Software Libraries
- Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

TABLE 4-23: FUNDAMENTAL ADDRESSING MODES SUPPORTED

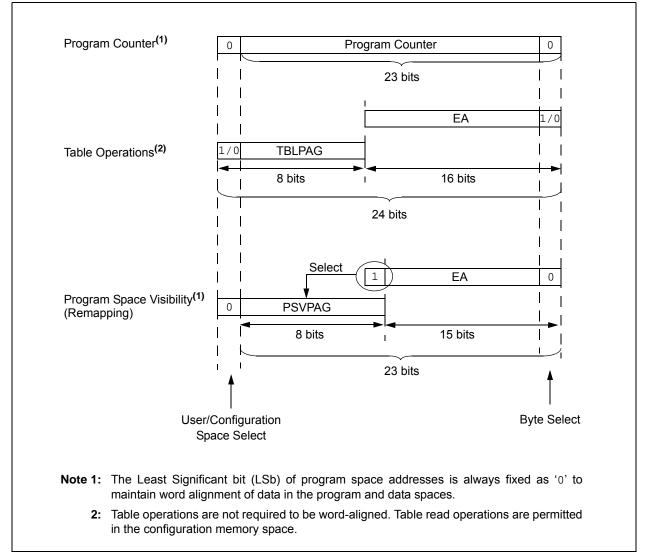
Addressing Mode	Description
File Register Direct	The address of the file register is specified explicitly.
Register Direct	The contents of a register are accessed directly.
Register Indirect	The contents of Wn forms the Effective Address (EA.)
Register Indirect Post-Modified	The contents of Wn forms the EA. Wn is post-modified (incremented or decremented) by a constant value.
Register Indirect Pre-Modified	Wn is pre-modified (incremented or decremented) by a signed constant value to form the EA.
Register Indirect with Register Offset (Register Indexed)	The sum of Wn and Wb forms the EA.
Register Indirect with Literal Offset	The sum of Wn and a literal forms the EA.

4.5.3 MOVE (MOV) INSTRUCTION

Move instructions provide a greater degree of addressing flexibility than the other instructions. In addition to the Addressing modes supported by most MCU instructions, MOV instructions also support Register Indirect with Register Offset Addressing mode. This is also referred to as Register Indexed mode.

Note:	For the MOV instructions, the addressing mode specified in the instruction can differ
	for the source and the destination EA.
	However, the 4-bit Wb (Register Offset)
	field is shared by both source and
	destination (but typically only used by
	one).

In summary, move instructions support the following addressing modes:


- Register Direct
- Register Indirect
- · Register Indirect Post-modified
- Register Indirect Pre-modified
- Register Indirect with Register Offset (Indexed)
- Register Indirect with Literal Offset
- 8-bit Literal
- 16-bit Literal

Note:	Not	all	instructions	support	all	the
	addr	essir	ng modes give	n above. I	ndivi	dual
	instr	uctio	ns may suppo	ort differen	t sub	sets
	of th	ese a	addressing mo	odes.		

4.5.4 OTHER INSTRUCTIONS

Besides the addressing modes outlined previously, some instructions use literal constants of various sizes. For example, BRA (branch) instructions use 16-bit signed literals to specify the branch destination directly, whereas the DISI instruction uses a 14-bit unsigned literal field. In some instructions, such as ADD Acc, the source of an operand or result is implied by the opcode itself. Certain operations, such as NOP, do not have any operands.

R/W-0	R-0	U-0	U-0	U-0	U-0	U-0	U-0	
ALTIVT	DISI	—	_	—	—	—	_	
bit 15							bit 8	
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	
—	_	—		—	INT2EP	INT1EP	INT0EP	
bit 7							bit (
Legend:								
R = Readabl	e bit	W = Writable	bit	U = Unimple	mented bit, rea	d as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unki	nown	
bit 15	ALTIVT: Enat	ole Alternate In	terrupt Vecto	r Table bit				
		nate vector tabl						
		dard (default) v						
bit 14		struction Statu						
		ruction is active	-					
h:+ 40 0		ruction is not a						
bit 13-3	-	ted: Read as '						
bit 2			•	t Polarity Selec	t bit			
		on negative edg						
bit 1	•			t Dolarity Soloo	+ hit			
DILI	INT1EP: External Interrupt 1 Edge Detect Polarity Select bit 1 = Interrupt on negative edge							
		on positive edg	•					
bit 0	•	1 0		t Polarity Selec	t bit			
		•	•					
	1 = Interrupt a	on negative edg	ne					

REGISTER 7-4: INTCON2: INTERRUPT CONTROL REGISTER 2

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	—	—	—		—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	U-0
—	—	_	—	—		U1EIE	—
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit				U = Unimplemented bit, read as '0'			
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			
bit 15-2 Unimplemented: Read as '0'							
bit 1	U1EIE: UART1 Error Interrupt Enable bit						
1 = Interrupt request enabled							
	0 = Interrupt request not enabled						

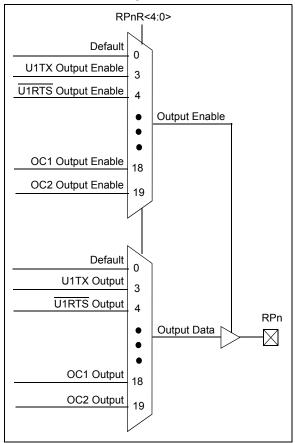
REGISTER 7-10: IEC4: INTERRUPT ENABLE CONTROL REGISTER 4

bit 0 Unimplemented: Read as '0'

TABLE 10-1:REMAPPABLE PERIPHERAL INPUTS⁽¹⁾

Input Name	Function Name	Register	Configuration Bits
External Interrupt 1	INT1	RPINR0	INT1R<4:0>
External Interrupt 2	INT2	RPINR1	INT2R<4:0>
Timer 2 External Clock	T2CK	RPINR3	T2CKR<4:0>
Timer 3 External Clock	T3CK	RPINR3	T3CKR<4:0>
Input Capture 1	IC1	RPINR7	IC1R<4:0>
Input Capture 2	IC2	RPINR7	IC2R<4:0>
Input Capture 7	IC7	RPINR10	IC7R<4:0>
Input Capture 8	IC8	RPINR10	IC8R<4:0>
Output Compare Fault A	OCFA	RPINR11	OCFAR<4:0>
UART 1 Receive	U1RX	RPINR18	U1RXR<4:0>
UART 1 Clear To Send	U1CTS	RPINR18	U1CTSR<4:0>
SPI 1 Data Input	SDI1	RPINR20	SDI1R<4:0>
SPI 1 Clock Input	SCK1IN	RPINR20	SCK1R<4:0>
SPI 1 Slave Select Input	SS1IN	RPINR21	SS1R<4:0>

FIGURE 10-3:


Note 1: Unless otherwise noted, all inputs use the Schmitt input buffers.

10.6.2.2 Output Mapping

In contrast to inputs, the outputs of the peripheral pin select options are mapped on the basis of the pin. In this case, a control register associated with a particular pin dictates the peripheral output to be mapped. The RPORx registers are used to control output mapping. Like the RPINRx registers, each register contains sets of 5-bit fields, with each set associated with one RPn pin (see Register 10-10 through Register 10-22). The value of the bit field corresponds to one of the peripherals, and that peripheral's output is mapped to the pin (see Table 10-2 and Figure 10-3).

The list of peripherals for output mapping also includes a null value of '00000' because of the mapping technique. This permits any given pin to remain unconnected from the output of any of the pin selectable peripherals.

MULTIPLEXING OF REMAPPABLE OUTPUT FOR RPn

10.9 Peripheral Pin Select Registers

The PIC24HJ32GP202/204 and PIC24HJ16GP304 devices implement 17 registers for remappable peripheral configuration:

- Input Remappable Peripheral Registers (9)
- Output Remappable Peripheral Registers (8)
- Note: Input and Output Register values can only be changed if the IOLOCK bit (OSC-CON<6>) = 0. See Section 10.6.3.1 "Control Register Lock" for a specific command sequence.

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1		
0-0	0-0		10/00-1	10/00-1	INT1R<4:0>		10/00-1		
	_				111111111111111111111111111111111111111		L : L :		
bit 15							bit 8		
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
—	_	—	—	_	—	—	—		
bit 7							bit C		
Legend:									
R = Readab	le bit	W = Writable	bit	it U = Unimplemented bit, read as '0'					
-n = Value a	t POR	'1' = Bit is set	et '0' = Bit is cleared		eared	x = Bit is unknown			
bit 15-13	Unimpleme	nted: Read as '	0'						
bit 12-8	-	: Assign Externa		(INTR1) to the	corresponding	RPn pin			
		ut tied to Vss		, , , , , , , , , , , , , , , , , , , ,	5	r			
		ut tied to RP25							
	•								
	•								
	•								
		ut tied to RP1 ut tied to RP0							

REGISTER 10-1: RPINR0: PERIPHERAL PIN SELECT INPUT REGISTER 0

bit 7-0	Unimplemented: Read as '0'

REGISTER 10-2: RPINR1: PERIPHERAL PIN SELECT INPUT REGISTER 1

U-0
bit 8
R/W-1
bit 0
nown

REGISTER 10-9: RPINR21: PERIPHERAL PIN SELECT INPUT REGISTER 21

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	—	_	—	—	—	_
bit 15	·						bit 8
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	—	—			SS1R<4:0>		
bit 7			•				bit 0
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-5	Unimplemen	ted: Read as '	0'				
bit 4-0	SS1R<4:0>: /	Assign SPI1 Sl	ave Select Inp	out (SS1IN) to	the correspondi	ng RPn pin	
	11111 = Inpu 11001 = Inpu						
	•						
	•						

00001 = Input tied to RP1

00000 = Input tied to RP0

REGISTER 10-10: RPOR0: PERIPHERAL PIN SELECT OUTPUT REGISTER 0

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP1R<4:0>		
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP0R<4:0>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13 Unimplemented: Read as '0'

bit 12-8 **RP1R<4:0>:** Peripheral Output Function is Assigned to RP1 Output Pin (see Table 10-2 for peripheral function numbers)

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP0R<4:0>:** Peripheral Output Function is Assigned to RP0 Output Pin (see Table 10-2 for peripheral function numbers)

R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0			
FRMEN	SPIFSD	FRMPOL		—		—	—			
bit 15	bit 15									
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	U-0			
—	_	—	_	—	—	FRMDLY	—			
bit 7							bit 0			
Legend:										
R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, rea	d as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkno	own			
bit 15		med SPIx Supp								
		SPIx support en SPIx support dis		in used as fram	ne sync pulse i	nput/output)				
bit 14		••		ntral hit						
DIL 14		me Sync Pulse nc pulse input (
		nc pulse input (,							
bit 13	,	ame Sync Puls	()							
		nc pulse is activ	-							
	0 = Frame sy	nc pulse is activ	ve-low							
bit 12-2	12-2 Unimplemented: Read as '0'									
bit 1	FRMDLY: Frame Sync Pulse Edge Select bit									
	1 = Frame sync pulse coincides with first bit clock									
	•	nc pulse preced								
bit 0	Unimplemen	ted: This bit m	ust not be se	t to '1' by the us	ser application					

REGISTER 15-3: SPIxCON2: SPIx CONTROL REGISTER 2

REGISTER 17-1: UxMODE: UARTx MODE REGISTER (CONTINUED)

bit 4	URXINV: Receive Polarity Inversion bit
	1 = UxRX Idle state is '0' 0 = UxRX Idle state is '1'
bit 3	BRGH: High Baud Rate Enable bit
	 1 = BRG generates 4 clocks per bit period (4x baud clock, High-Speed mode) 0 = BRG generates 16 clocks per bit period (16x baud clock, Standard mode)
bit 2-1	PDSEL<1:0>: Parity and Data Selection bits
	 11 = 9-bit data, no parity 10 = 8-bit data, odd parity 01 = 8-bit data, even parity 00 = 8-bit data, no parity
bit 0	STSEL: Stop Bit Selection bit
	1 = Two Stop bits 0 = One Stop bit

- **Note 1:** Refer to **Section 17. "UART"** (DS70188) in the *"dsPIC33F/PIC24H Family Reference Manual"* for information on enabling the UART module for receive or transmit operation.
 - 2: This feature is only available for the 16x BRG mode (BRGH = 0).

NOTES:

TABLE 22-13: INTERNAL VOLTAGE REGULATOR SPECIFICATIONS

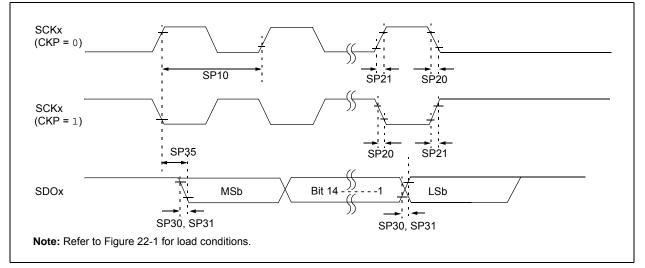
(unless o	Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended								
Param No.	Symbol Characteristics Min Ivo Max Units Comments								
	— CEFC External Filter Capacitor 4.7 10 — μF Capacitor must be low series resistance (< 5 ohms)								

Note 1: Typical VCAP voltage = 2.5V when $VDD \ge VDDMIN$.

TABLE 22-21:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMERTIMING REQUIREMENTS

AC CHA	AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic	Min Typ ⁽²⁾ Max Units				Conditions		
SY10	TMCL	MCLR Pulse-Width (low) ⁽¹⁾	2	_	_	μS	-40°C to +85°C		
SY11	TPWRT	Power-up Timer Period ⁽¹⁾		2 4 16 32 64 128		ms	-40°C to +85°C User programmable		
SY12	TPOR	Power-on Reset Delay ⁽³⁾	3	10	30	μS	-40°C to +85°C		
SY13	Tioz	I/O High-Impedance from MCLR Low or Watchdog Timer Reset ⁽¹⁾	0.68	0.72	1.2	μS	—		
SY20	Twdt1	Watchdog Timer Time-out Period ⁽¹⁾	_	_	_	ms	See Section 19.4 "Watchdog Timer (WDT) " and LPRC specification F21a (Table 22-19).		
SY30	Tost	Oscillator Start-up Time	_	1024 Tosc	_	—	Tosc = OSC1 period		
SY35	TFSCM	Fail-Safe Clock Monitor Delay ⁽¹⁾	_	500	900	μS	-40°C to +85°C		

Note 1: These parameters are characterized but not tested in manufacturing.


2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

3: These parameters are characterized by similarity, but are not tested in manufacturing.

TABLE 22-28: SPIx MAXIMUM DATA/CLOCK RATE SUMMARY

AC CHARAG	CTERISTICS		$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Maximum Data Rate	Master Transmit Only (Half-Duplex)	Master Transmit/Receive (Full-Duplex)	Slave Transmit/Receive (Full-Duplex)	CKE	СКР	SMP		
15 MHz	Table 22-29	—	_	0,1	0,1	0,1		
9 MHz	_	Table 22-30	—	1	0,1	1		
9 MHz	—	Table 22-31	—	0	0,1	1		
15 MHz	—	—	Table 22-32	1	0	0		
11 MHz	—	—	Table 22-33	1	1	0		
15 MHz	_	_	Table 22-34	0	1	0		
11 MHz	_	_	Table 22-35	0	0	0		

FIGURE 22-9: SPIX MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY CKE = 0) TIMING CHARACTERISTICS

TABLE 22-33:SPIX SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0) TIMING
REQUIREMENTS

АС СНА	AC CHARACTERISTICS			$\begin{array}{ll} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions		
SP70	TscP	Maximum SCK Input Frequency	—	_	11	MHz	See Note 3		
SP72	TscF	SCKx Input Fall Time	—	_	_	ns	See parameter DO32 and Note 4		
SP73	TscR	SCKx Input Rise Time	—			ns	See parameter DO31 and Note 4		
SP30	TdoF	SDOx Data Output Fall Time	_	Ι	_	ns	See parameter DO32 and Note 4		
SP31	TdoR	SDOx Data Output Rise Time	_		_	ns	See parameter DO31 and Note 4		
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	—		
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30		_	ns	—		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	_	_	ns	—		
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	_	_	ns	—		
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow$ to SCKx \uparrow or SCKx Input	120	Ι	—	ns	—		
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance ⁽⁴⁾	10	—	50	ns	—		
SP52	TscH2ssH TscL2ssH	SSx after SCKx Edge	1.5 TCY + 40	_		ns	See Note 4		
SP60	TssL2doV	SDOx Data Output Valid after SSx Edge	—	—	50	ns	—		

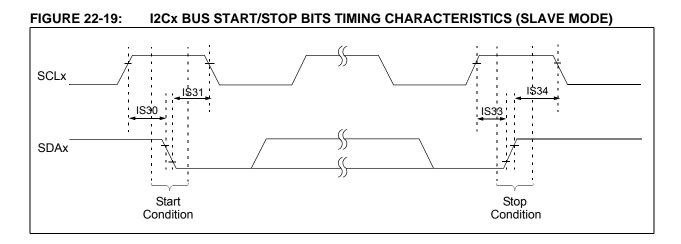
Note 1: These parameters are characterized, but are not tested in manufacturing.

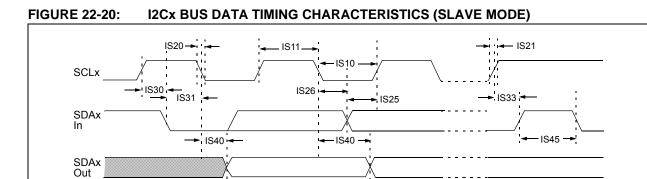
2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

3: The minimum clock period for SCKx is 91 ns. Therefore, the SCK clock generated by the Master must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

AC CHA	RACTER	ISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)					
				Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Param No.	Symbol	Characteristic ⁽³⁾		Min ⁽¹⁾	Мах	Units	Conditions		
IM10	TLO:SCL	Clock Low Time	100 kHz mode	Tcy/2 (BRG + 1)		μS			
			400 kHz mode	Tcy/2 (BRG + 1)	_	μS	_		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	_	μS	_		
IM11	THI:SCL	Clock High Time	100 kHz mode	Tcy/2 (BRG + 1)		μS	_		
		-	400 kHz mode	Tcy/2 (BRG + 1)		μS	_		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)		μS	—		
IM20	TF:SCL	SDAx and SCLx	100 kHz mode		300	ns	CB is specified to be		
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF		
			1 MHz mode ⁽²⁾	—	100	ns			
IM21	TR:SCL	SDAx and SCLx	100 kHz mode	_	1000	ns	CB is specified to be		
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF		
			1 MHz mode ⁽²⁾	_	300	ns			
IM25	TSU:DAT	Data Input	100 kHz mode	250	—	ns	_		
		Setup Time	400 kHz mode	100	_	ns			
			1 MHz mode ⁽²⁾	40	_	ns	-		
IM26	THD:DAT	Data Input	100 kHz mode	0	_	μS	_		
		Hold Time	400 kHz mode	0	0.9	μS			
			1 MHz mode ⁽²⁾	0.2	_	μS			
IM30	TSU:STA	Start Condition	100 kHz mode	Tcy/2 (BRG + 1)	_	μS	Only relevant for		
		Setup Time	400 kHz mode	Tcy/2 (BRG + 1)	_	μS	Repeated Start		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	—	μS	condition		
IM31	THD:STA	Start Condition	100 kHz mode	Tcy/2 (BRG + 1)	—	μS	After this period the		
		Hold Time	400 kHz mode	Tcy/2 (BRG + 1)	—	μS	first clock pulse is		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	—	μS	generated		
IM33	Tsu:sto	Stop Condition	100 kHz mode	Tcy/2 (BRG + 1)	—	μS	_		
		Setup Time	400 kHz mode	Tcy/2 (BRG + 1)	—	μS			
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	_	μS			
IM34	THD:STO	Stop Condition	100 kHz mode	Tcy/2 (BRG + 1)	_	ns	—		
		Hold Time	400 kHz mode	Tcy/2 (BRG + 1)	_	ns			
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	_	ns			
IM40	TAA:SCL	Output Valid	100 kHz mode	_	3500	ns	_		
		From Clock	400 kHz mode	—	1000	ns	—		
			1 MHz mode ⁽²⁾	—	400	ns	—		
IM45	TBF:SDA	Bus Free Time	100 kHz mode	4.7	—	μs	Time the bus must be		
			400 kHz mode	1.3	—	μs	free before a new		
			1 MHz mode ⁽²⁾	0.5	—	μs	transmission can start		
IM50	Св	Bus Capacitive L	oading	—	400	pF	—		
IM51	TPGD	Pulse Gobbler de	lay	65	390	ns	See Note 4		


TABLE 22-36: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE)


Note 1: BRG is the value of the I²C Baud Rate Generator. Refer to Section 19. "Inter-Integrated Circuit (I²C[™])" (DS70195) in the "dsPIC33F/PIC24H Family Reference Manual".

2: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

3: These parameters are characterized by similarity, but are not tested in manufacturing.

4: Typical value for this parameter is 130 ns.

TABLE 22-42: ADC CONVERSION (10-BIT MODE) TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic	Min.	Typ ⁽¹⁾	Max.	Units	Conditions	
		Cloc	k Parame	ters				
AD50	TAD	ADC Clock Period ⁽¹⁾	76	_	_	ns	—	
AD51	tRC	ADC Internal RC Oscillator Period ⁽¹⁾	-	250	—	ns	_	
	Conversion Rate							
AD55	tCONV	Conversion Time ⁽¹⁾	_	12 Tad	_	_	—	
AD56	FCNV	Throughput Rate ⁽¹⁾	—	—	1.1	Msps	—	
AD57	TSAMP	Sample Time ⁽¹⁾	2.0 Tad	—	—	_	—	
		Timin	g Param	eters				
AD60	tPCS	Conversion Start from Sample Trigger ⁽¹⁾	2.0 Tad		3.0 Tad		Auto-Convert Trigger not selected	
AD61	tpss	Sample Start from Setting Sample (SAMP) bit ⁽¹⁾	2.0 Tad	—	3.0 Tad	_	_	
AD62	tcss	Conversion Completion to Sample Start (ASAM = 1) ⁽¹⁾	—	0.5 Tad	—	_	—	
AD63	tdpu	Time to Stabilize Analog Stage from ADC Off to ADC On ⁽¹⁾	—	_	20	μS	—	

Note 1: These parameters are characterized but not tested in manufacturing.

2: Because the sample caps will eventually lose charge, clock rates below 10 kHz can affect linearity performance, especially at elevated temperatures.