

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	35
Program Memory Size	32KB (11K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 13x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24hj32gp204t-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

4.4 Special Function Register Maps

TABLE 4-1: CPU CORE REGISTERS MAP

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
WREG0	0000								Working Re	gister 0								0000
WREG1	0002								Working Re	egister 1								0000
WREG2	0004								Working Re	gister 2								0000
WREG3	0006								Working Re	egister 3								0000
WREG4	8000								Working Re	gister 4								0000
WREG5	000A								Working Re	gister 5								0000
WREG6	000C								Working Re	gister 6								0000
WREG7	000E								Working Re	gister 7								0000
WREG8	0010								Working Re	gister 8								0000
WREG9	0012								Working Re	gister 9								0000
WREG10	0014		Working Register 10									0000						
WREG11	0016								Working Re	gister 11								0000
WREG12	0018								Working Re	gister 12								0000
WREG13	001A								Working Re	gister 13								0000
WREG14	001C								Working Re	gister 14								0000
WREG15	001E								Working Re	gister 15								0800
SPLIM	0020							Sta	ck Pointer Li	mit Register	-							xxxx
PCL	002E							Program	n Counter Lo	w Word Reg	gister							0000
PCH	0030	—	_	_	_	—	_	_	_			Progra	am Counter	High Byte R	egister			0000
TBLPAG	0032	—	_	_	_	—	_	_	_			Table	Page Addre	ss Pointer R	Register			0000
PSVPAG	0034	_	_	-	_	_	-	—	-		Progr	am Memor	y Visibility P	age Address	s Pointer R	egister		0000
RCOUNT	0036							Repe	eat Loop Cou	unter Regist	er							xxxx
SR	0042	_	_	_	_	_	_	_	DC	IPL2	IPL1	IPL0	RA	N	OV	Z	С	0000
CORCON	0044	_	_	-	_	—	—	—	—	_	—	—	_	IPL3	PSV	—	—	0000
DISICNT	0052	_	_		Disable Interrupts Counter Register								xxxx					

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

4.4.1 SOFTWARE STACK

In addition to its use as a working register, the W15 register is also used as a software Stack Pointer. The Stack Pointer always points to the first available free word and grows from lower to higher addresses. It pre-decrements for stack pops and post-increments for stack pushes, as shown in Figure 4-4. For a PC push during any CALL instruction, the MSB of the PC is zero-extended before the push, ensuring that the MSB is always clear.

Note:	A PC push during exception processing
	concatenates the SRL register to the MSB
	of the PC prior to the push.

The Stack Pointer Limit register (SPLIM) associated with the Stack Pointer sets an upper address boundary for the stack. SPLIM is uninitialized at Reset. Similarly, the Stack Pointer, SPLIM<0> is forced to '0' because all stack operations must be word aligned.

When an EA is generated using W15 as a source or destination pointer, the resulting address is compared with the value in SPLIM. If the contents of the Stack Pointer (W15) and the SPLIM register are equal and a push operation is performed, a stack error trap will not occur. The stack error trap will occur on a subsequent push operation. For example, to cause a stack error trap when the stack grows beyond address 0x1000 in RAM, initialize the SPLIM with the value 0x0FFE.

Similarly, a Stack Pointer underflow (stack error) trap is generated when the Stack Pointer address is found to be lesser than 0x0800. This prevents the stack from interfering with the Special Function Register (SFR) space.

A write to the SPLIM register should not be immediately followed by an indirect read operation using W15.

4.4.2 DATA RAM PROTECTION FEATURE

The PIC24H product family supports Data RAM protection features that enable segments of RAM to be protected when used in conjunction with Boot and Secure Code Segment Security. BSRAM (Secure RAM segment for BS) is accessible only from the Boot Segment Flash code when enabled. SSRAM (Secure RAM segment for RAM) is accessible only from the Secure Segment Flash code when enabled. See Table 4-1 for an overview of the BSRAM and SSRAM SFRs.

4.5 Instruction Addressing Modes

The addressing modes shown in Table 4-23 form the basis of the addressing modes optimized to support the specific features of individual instructions. The addressing modes provided in the MAC class of instructions differ from those in the other instruction types.

4.5.1 FILE REGISTER INSTRUCTIONS

Most file register instructions use a 13-bit address field (f) to directly address data present in the first 8192 bytes of data memory (Near Data Space). Most file register instructions employ a working register, W0, which is denoted as WREG in these instructions. The destination is typically either the same file register or WREG (with the exception of the MUL instruction), which writes the result to a register or register pair. The MOV instruction allows additional flexibility and can access the entire data space.

4.5.2 MCU INSTRUCTIONS

The three-operand MCU instructions are of the form:

Operand 3 = Operand 1 <function> Operand 2 where:

Operand 1 is always a working register (that is, the addressing mode can only be register direct), which is referred to as Wb.

Operand 2 can be a W register, fetched from data memory, or a 5-bit literal. The result location can be either a W register or a data memory location. The following addressing modes are supported by MCU instructions:

- Register Direct
- Register Indirect
- · Register Indirect Post-Modified
- Register Indirect Pre-Modified
- 5-bit or 10-bit Literal
- Note: Not all instructions support all the addressing modes given above. Individual instructions can support different subsets of these addressing modes.

4.6.2 DATA ACCESS FROM PROGRAM MEMORY USING TABLE INSTRUCTIONS

The TBLRDL and TBLWTL instructions offer a direct method to read or write the lower word of any address within the program space without going through data space. The TBLRDH and TBLWTH instructions are the only methods to read or write the upper 8 bits of a program space word as data.

The PC is incremented by 2 for each successive 24-bit program word. This allows program memory addresses to directly map to data space addresses. Program memory can thus be regarded as two 16 bit wide word address spaces, residing side by side, each with the same address range. TBLRDL and TBLWTL access the space that contains the least significant data word. TBLRDH and TBLWTH access the space that contains the upper data byte.

Two table instructions are provided to move byte or word sized (16-bit) data to and from program space. Both function as either byte or word operations.

• TBLRDL (Table Read Low): In Word mode, this instruction maps the lower word of the program space location (P<15:0>) to a data address (D<15:0>).

In Byte mode, either the upper or lower byte of the lower program word is mapped to the lower byte of a data address. The upper byte is selected when Byte Select is '1'; the lower byte is selected when it is '0'.

• TBLRDH (Table Read High): In Word mode, this instruction maps the entire upper word of a program address (P<23:16>) to a data address. Note that D<15:8>, the 'phantom byte', will always be '0'.

In Byte mode, this instruction maps the upper or lower byte of the program word to D<7:0> of the data address, as in the TBLRDL instruction. Note that the data will always be '0' when the upper 'Phantom' byte is selected (Byte Select = 1).

In a similar fashion, two table instructions, TBLWTH and TBLWTL, are used to write individual bytes or words to a program space address. The details of their operation are explained in **Section 5.0 "Flash Program Memory"**.

For all table operations, the area of program memory space to be accessed is determined by the Table Page register (TBLPAG). TBLPAG covers the entire program memory space of the device, including user and configuration spaces. When TBLPAG<7> = 0, the table page is located in the user memory space. When TBLPAG<7> = 1, the page is located in configuration space.

FIGURE 4-6: ACCESSING PROGRAM MEMORY WITH TABLE INSTRUCTIONS

NOTES:

R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
NSTDIS	—	—	—	—	—	—	—	
bit 15							bit 8	
U-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	
—	DIV0ERR	—	MATHERR	ADDRERR	STKERR	OSCFAIL	—	
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'		
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown		
bit 15	NSTDIS: Inter	rrupt Nesting D	isable bit					
	1 = Interrupt nesting is disabled							
	0 = Interrupt nesting is enabled							
bit 14-7	Unimplement	ted: Read as '	D'					
bit 6	DIV0ERR: Ari	thmetic Error S	Status bit					
	1 = Math error 0 = Math error	r trap was caus r trap was not o	sed by a divide caused by a di	e by zero ivide by zero				
bit 5	Unimplement	ted: Read as '	D'	2				
bit 4	MATHERR: A	rithmetic Error	Status bit					
	1 = Math error	r trap has occu	irred					
	0 = Math error	r trap has not c	occurred					
bit 3	ADDRERR: A	ddress Error T	rap Status bit					
	1 = Address e	error trap has o	ccurred					
	0 = Address e	error trap has n	ot occurred					
bit 2	STKERR: Sta	ck Error Trap S	Status bit					
	1 = Stack error trap has occurred							
	0 = Stack error trap has not occurred							
DIT 1		cillator Failure	Trap Status b	IT				
	$\perp = Oscillator$ 0 = Oscillator	failure trap has	s occurred					
hit 0	Unimplement	ted: Read as '	n'					
	ennpionen							

REGISTER 7-3: INTCON1: INTERRUPT CONTROL REGISTER 1

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
—	—	—	_	—	—	—	_		
bit 15							bit 8		
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	U-0		
_	—	—	_	—	—	U1EIF	—		
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
-n = Value at POR '1' = Bit is set				'0' = Bit is cle	ared	x = Bit is unknown			
bit 15-2	Unimplemen	ted: Read as '	כ'						
bit 1	bit 1 U1EIF: UART1 Error Interrupt Flag Status bit								

REGISTER 7-7: IFS4: INTERRUPT FLAG STATUS REGISTER 4

0 = Interrupt request has not occurredbit 0Unimplemented: Read as '0'

1 = Interrupt request has occurred

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	
—	—	—	—	—	—		PLLDIV<8>	
bit 15							bit 8	
R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0	
			PLLDI	V<7:0>				
bit 7							bit 0	
Legend:								
R = Readable bit W = Writab			bit	U = Unimpler	nented bit, read	as '0'		
-n = Value at POR		'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown		
bit 15-9	Unimplemen	ted: Read as '	0'					
bit 8-0	PLLDIV<8:0>	PLL Feedbac	k Divisor bits	(also denoted	as 'M', PLL mul	tiplier)		
	111111111	= 513						
	•							
	•							
	•							
	000110000:	= 50 (default)						
	•							
	•							
	•							
		= 4 = 3						
	000000000	= 2						

REGISTER 8-3: PLLFBD: PLL FEEDBACK DIVISOR REGISTER⁽¹⁾

Note 1: This register is reset only on a Power-on Reset (POR).

10.2 Open-Drain Configuration

In addition to the PORT, LAT and TRIS registers for data control, some port pins can also be individually configured for either digital or open-drain output. This is controlled by the Open-Drain Control register, ODCx, associated with each port. Setting any of the bits configures the corresponding pin to act as an open-drain output.

The open-drain feature allows the generation of outputs higher than VDD (e.g., 5V) on any desired 5V tolerant pins by using external pull-up resistors. The maximum open-drain voltage allowed is the same as the maximum VIH specification.

See the **"Pin Diagrams"** section for the available pins and their functionality.

10.3 Configuring Analog Port Pins

The AD1PCFG and TRIS registers control the operation of the Analog-to-Digital (A/D) port pins. The port pins that are desired as analog inputs must have their corresponding TRIS bit set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) will be converted.

The AD1PCFGL register has a default value of 0x0000; therefore, all pins that share ANx functions are analog (not digital) by default.

When the PORT register is read, all pins configured as analog input channels will read as cleared (a low level).

Pins configured as digital inputs will not convert an analog input. Analog levels on any pin that is defined as a digital input (including the ANx pins) can cause the input buffer to consume current that exceeds the device specifications.

10.4 I/O Port Write/Read Timing

One instruction cycle is required between a port direction change or port write operation and a read operation of the same port. Typically this instruction would be a NOP. Examples are shown in Example 10-1 and Example 10-2. This also applies to PORT bit operations, such as BSET PORTB, # RB0, which are single cycle read-modify-write. All PORT bit operations, such as MOV PORTB, W0 or BSET PORTB, # RBx, read the pin and *not* the latch.

10.5 Input Change Notification

The input change notification function of the I/O ports allows the PIC24HJ32GP202/204 and PIC24HJ16GP304 devices to generate interrupt requests to the processor in response to a change-of-state on selected input pins. This feature can detect input change-of-states even in Sleep mode, when the clocks are disabled. Depending on the device pin count, up to 31 external signals (CNx pin) can be selected (enabled) for generating an interrupt request on a change-of-state.

Four control registers are associated with the CN module. The CNEN1 and CNEN2 registers contain the interrupt enable control bits for each of the CN input pins. Setting any of these bits enables a CN interrupt for the corresponding pins.

Each CN pin also has a weak pull-up connected to it. The pull-ups act as a current source connected to the pin, and eliminate the need for external resistors when push button or keypad devices are connected. The pull-ups are enabled separately using the CNPU1 and CNPU2 registers, which contain the control bits for each of the CN pins. Setting any of the control bits enables the weak pull-ups for the corresponding pins.

Note: Pull-ups on change notification pins should always be disabled when the port pin is configured as a digital output.

EXAMPLE 10-1: PORT WRITE/READ EXAMPLE

MOV	OxFF00, WO	; Configure PORTB<15:8> as inputs
MOV	W0, TRISBB	; and PORTB<7:0> as outputs
NOP		; Delay I cycle
btss	PORTB, #13	; Next Instruction

EXAMPLE 10-2: PORT BIT OPERATIONS

Incorrect:					
BSET	PORTB,	#RB1	;Set	PORTB <rb1></rb1>	high
BSET	PORTB,	#RB6	;Set	PORTB <rb6></rb6>	high
Correct:					
BSET	PORTB,	#RB1	;Set	PORTB <rb1></rb1>	high
NOP					
BSET	PORTB,	#RB6	;Set	PORTB <rb6></rb6>	high
NOP					
Preferred:					
BSET	LATB, I	LATB1	;Set	PORTB <rb1></rb1>	high
BSET	LATB, I	LATB6	;Set	PORTB <rb6></rb6>	high

REGISTER 10-6: RPINR11: PERIPHERAL PIN SELECT INPUT REGISTER 11

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15					•		bit 8
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	—	OCFAR<4:0>				
bit 7							bit 0
Legend:							
R = Readable	= Readable bit W = Writable bit U = Unimplemented bit, read as '0'						
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			

bit 15-5 Unimplemented: Read as '0'

bit 4-0

OCFAR<4:0>: Assign Output Capture A (OCFA) to the corresponding RPn pin

11111 = Input tied to Vss 11001 = Input tied to RP25

- •
- •

•

00001 = Input tied to RP1 00000 = Input tied to RP0

R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
ADRC	_	—			SAMC<4:0>(1)				
bit 15							bit 8			
			B 4 · · · ·	B 4 · · · ·		- // · · · ·				
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
hit 7			ADCS<	:7:0>(=)			bit (
							Dit C			
Legend:										
R = Reada	ıble bit	W = Writable b	oit	U = Unimplemented bit, read as '0'						
-n = Value at POR		'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown			
bit 15	ADRC: AI	DC Conversion Cloo	ck Source bit							
	1 = ADC i	nternal RC clock								
hit 11 10	0 = CIOCK	aenved from syster	n ciock							
DIL 14-13	SAMC -4.	Unimplemented: Read as '0'								
DIL 12-0	11111 = 3									
	•									
	•									
	•									
	00001 = 1 00000 = 0	I Tad) Tad								
bit 7-0	ADCS<7:	0>: ADC Conversio	n Clock Seled	ct bits ⁽²⁾						
	11111111	1 = Reserved								
	•									
	•									
	•									
	•	- Record								
	01000000	$1 = \text{Tcy} \cdot (\text{ADCS} < 7)$:0> + 1) = 64	• TCY = TAD						
	•		- / -							
	•									
	•									
	0000010	$= \text{Tcy} \cdot (\text{ADCS} < 7)$:0> + 1) = 3 ·	TCY = TAD						
	00000001	$1 = TCY \cdot (ADCS < 7)$	(0> + 1) = 2.	TCY = TAD						
		$J = ICT \cdot (ADCS<7)$.0~ + 1) = 1 •	ICT - TAD						

AD4CONS, ADC4 CONTROL DECISTED S

2: This bit is not used if AD1CON3<15> (ADRC) = 1.

REGISTER 18-6: AD1CSSL: ADC1 INPUT SCAN SELECT REGISTER LOW⁽¹⁾

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	—	CSS12	CSS11	CSS10	CSS9	CSS8
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CSS7	CSS6	CSS5	CSS4	CSS3	CSS2	CSS1	CSS0
bit 7		•	•			•	bit 0
• •							

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13 Unimplemented: Read as '0'

bit 12-0 CSS<12:0>: ADC Input Scan Selection bits

1 = Select ANx for input scan

- 0 = Skip ANx for input scan
- **Note 1:** On devices without 13 analog inputs, all AD1CSSL bits can be selected by the user application. However, inputs selected for scan without a corresponding input on device converts VREFL.
 - **2:** CSSx = ANx, where x = 0 through 12.

REGISTER 18-7: AD1PCFGL: ADC1 PORT CONFIGURATION REGISTER LOW^(1,2,3)

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	—	PCFG12	PCFG11	PCFG10	PCFG9	PCFG8
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PCFG7	PCFG6	PCFG5	PCFG4	PCFG3	PCFG2	PCFG1	PCFG0
bit 7							bit 0
Legend:							

3							
R = Readable bit W = Writable bit		U = Unimplemented bit, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 15-13 Unimplemented: Read as '0'

bit 12-0 **PCFG<12:0>:** ADC Port Configuration Control bits

1 = Port pin in Digital mode, port read input enabled, ADC input multiplexer connected to AVss

0 = Port pin in Analog mode, port read input disabled, ADC samples pin voltage

Note 1: On devices without 13 analog inputs, all PCFG bits are R/W by user software. However, the PCFG bits are ignored on ports without a corresponding input on device.

- **2:** PCFGx = ANx, where x = 0 through 12.
- **3:** The PCFGx bits have no effect if the ADC module is disabled by setting ADxMD bit in the PMDx register. In this case, all port pins multiplexed with ANx will be in Digital mode.

			Standard Operating Conditions: 3.0V to 3.6V						
DC CHA	RACTER	ISTICS	Operatin	ig tempe	erature	-40°C ⊴ -40°C ≤ -40°C ≤	≤ TA ≤ +85°C for Industrial ≤ TA ≤ +125°C for Extended		
Param.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions		
		Output Low Voltage I/O Pins: 2x Sink Driver Pins - All pins not defined by 4x or 8x driver pins	_	_	0.4	V	Iol \leq 3 mA, Vdd = 3.3V		
DO10	Vol	Output Low Voltage I/O Pins: 4x Sink Driver Pins - RA0, RA1, RB5, RB6, RB8, RB9, RB14	_	_	0.4	V	$IOL \leq 6$ mA, VDD = 3.3V		
		Output Low Voltage I/O Pins: 8x Sink Driver Pins - OSCO, CLKO, RA3		_	0.4	V	Iol \leq 10 mA, Vdd = 3.3V		
		Output High Voltage I/O Pins: 2x Source Driver Pins - All pins not defined by 4x or 8x driver pins	2.4	_	_	V	$\text{IOL} \geq -3 \text{ mA, VDD} = 3.3 \text{V}$		
DO20	Vон	Output High Voltage I/O Pins: 4x Source Driver Pins - RA0, RA1, RB5, RB6, RB8, RB9, RB14	2.4	_	_	V	$\text{IOL} \geq \text{-6 mA, VDD} = 3.3\text{V}$		
		Output High Voltage I/O Pins: 8x Source Driver Pins - OSCO, CLKO, RA3	2.4	_	_	V	Iol \geq -10 mA, VDD = 3.3V		
		Output High Voltage I/O Pins: 2x Source Driver Pins - All pins not defined by 4x or 8x driver pins	1.5	_	_		IOH ≥ -6 mA, VDD = 3.3V See Note 1		
			2.0	_	_	V	IOH ≥ -5 mA, VDD = 3.3V See Note 1		
			3.0	_	_		IOH ≥ -2 mA, VDD = 3.3V See Note 1		
		Output High Voltage 4x Source Driver Pins - RA0,	1.5	—	—		IOH ≥ -12 mA, VDD = 3.3V See Note 1		
DO20A	Vон1	RA1, RB5, RB6, RB8, RB9, RB14	2.0	_	_	V	IOH ≥ -11 mA, VDD = 3.3V See Note 1		
			3.0	-	_		IOH ≥ -3 mA, VDD = 3.3V See Note 1		
		Output High Voltage 8x Source Driver Pins - OSCO,	1.5	_	_		IoH ≥ -16 mA, VDD = 3.3V See Note 1		
		CLKO, RA3	2.0	_	_	V	IOH ≥ -12 mA, VDD = 3.3V See Note 1		
			3.0	_			$\begin{array}{l} \text{IOH} \geq \text{-4 mA, VDD} = 3.3 \text{V} \\ \text{See Note 1} \end{array}$		

TABLE 22-10: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

Note 1: Parameters are characterized, but not tested.

FIGURE 22-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING CHARACTERISTICS

FIGURE 22-12: SPIx MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1) TIMING CHARACTERISTICS

TABLE 22-31:SPIX MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1) TIMING
REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial						
					-40	$^{\circ}C \leq TA \leq$	+125°C for Extended		
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Мах	Units	Conditions		
SP10	TscP	Maximum SCK Frequency	_	—	9	MHz	-40°C to +125°C and see Note 3		
SP20	TscF	SCKx Output Fall Time	—	—		ns	See parameter DO32 and Note 4		
SP21	TscR	SCKx Output Rise Time	—	—		ns	See parameter DO31 and Note 4		
SP30	TdoF	SDOx Data Output Fall Time	_	_		ns	See parameter DO32 and Note 4		
SP31	TdoR	SDOx Data Output Rise Time	—	_	_	ns	See parameter DO31 and Note 4		
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	—		
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	_		ns			
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	—	_	ns	—		
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	_	—	ns	_		

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

3: The minimum clock period for SCKx is 111 ns. The clock generated in Master mode must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

FIGURE 22-13: SPIx SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0) TIMING CHARACTERISTICS

ADC CONVERSION (10-BIT MODE) TIMING CHARACTERISTICS **FIGURE 22-22:**

ADC CONVERSION (10-BIT MODE) TIMING CHARACTERISTICS (CHPS<1:0> = 01, **FIGURE 22-23:** SIMSAM = 0, ASAM = 1, SSRC<2:0> = 111, SAMC<4:0> = 00001)

TABLE 22-42: ADC CONVERSION (10-BIT MODE) TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$						
Param No.	Symbol	Characteristic	Min.	Typ ⁽¹⁾	Max.	Units	Conditions		
		Cloc	k Parame	ters					
AD50	TAD	ADC Clock Period ⁽¹⁾	76	_	_	ns	—		
AD51	tRC	ADC Internal RC Oscillator Period ⁽¹⁾	—	250	Ι	ns	—		
Conversion Rate									
AD55	tCONV	Conversion Time ⁽¹⁾	—	12 Tad	-	—	—		
AD56	FCNV	Throughput Rate ⁽¹⁾	—	-	1.1	Msps	—		
AD57	TSAMP	Sample Time ⁽¹⁾	2.0 TAD		_	—	—		
		Timin	g Parame	eters					
AD60	tPCS	Conversion Start from Sample Trigger ⁽¹⁾	2.0 Tad		3.0 Tad	_	Auto-Convert Trigger not selected		
AD61	tpss	Sample Start from Setting Sample (SAMP) bit ⁽¹⁾	2.0 Tad	_	3.0 Tad		_		
AD62	tcss	Conversion Completion to Sample Start (ASAM = 1) ⁽¹⁾	—	0.5 Tad	—	_	_		
AD63	tdpu	Time to Stabilize Analog Stage from ADC Off to ADC On ⁽¹⁾	—	_	20	μS	_		

Note 1: These parameters are characterized but not tested in manufacturing.

2: Because the sample caps will eventually lose charge, clock rates below 10 kHz can affect linearity performance, especially at elevated temperatures.

AC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature								
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Max	Units	Conditions			
HSP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	_	35	ns	_			
HSP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	25	_	_	ns	_			
HSP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	25	_	—	ns	_			
HSP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance	15	_	55	ns	See Note 2			

TABLE 23-12: SPIX MODULE SLAVE MODE (CKE = 0) TIMING REQUIREMENTS

Note 1: These parameters are characterized but not tested in manufacturing.

2: Assumes 50 pF load on all SPIx pins.

TABLE 23-13: SPIX MODULE SLAVE MODE (CKE = 1) TIMING REQUIREMENTS

AC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature								
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Max	Units	Conditions			
HSP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—		35	ns	—			
HSP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	25		—	ns	_			
HSP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	25		_	ns	_			
HSP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance	15		55	ns	See Note 2			
HSP60	TssL2doV	<u>SDO</u> x Data Output Valid after SSx Edge			55	ns	_			

Note 1: These parameters are characterized but not tested in manufacturing.

2: Assumes 50 pF load on all SPIx pins.

TABLE 23-14: INTERNAL RC ACCURACY

AC CH	ARACTERISTICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$ for Extended							
Param No.	Characteristic	Min	Тур	Max	Units	Conditions			
	LPRC @ 32.768 kHz ^(1,2)								
HF21	LPRC	-70	—	+70	%	$-40^\circ C \le T A \le +150^\circ C$	VDD = 3.0-3.6V		

Note 1: Change of LPRC frequency as VDD changes.

2: LPRC accuracy impacts the Watchdog Timer Time-out Period (TWDT1). See Section 19.4 "Watchdog Timer (WDT)" for more information.

25.2 Package Details

28-Lead Skinny Plastic Dual In-Line (SP) – 300 mil Body [SPDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	INCHES			
Dimension	n Limits	MIN	NOM	MAX	
Number of Pins	N		28		
Pitch	е		.100 BSC		
Top to Seating Plane	Α	—	-	.200	
Molded Package Thickness	A2	.120	.135	.150	
Base to Seating Plane	A1	.015	-	—	
Shoulder to Shoulder Width	E	.290	.310	.335	
Molded Package Width	E1	.240	.285	.295	
Overall Length	D	1.345	1.365	1.400	
Tip to Seating Plane	L	.110	.130	.150	
Lead Thickness	С	.008	.010	.015	
Upper Lead Width	b1	.040	.050	.070	
Lower Lead Width	b	.014	.018	.022	
Overall Row Spacing §	eB	_	_	.430	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-070B