
Microchip Technology - ATTINY85-15SZ Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor AVR

Core Size 8-Bit

Speed 16MHz

Connectivity USI

Peripherals Brown-out Detect/Reset, POR, PWM, WDT

Number of I/O 6

Program Memory Size 8KB (4K x 16)

Program Memory Type FLASH

EEPROM Size 512 x 8

RAM Size 512 x 8

Voltage - Supply (Vcc/Vdd) 2.7V ~ 5.5V

Data Converters A/D 4x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 125°C (TA)

Mounting Type Surface Mount

Package / Case 8-SOIC (0.209", 5.30mm Width)

Supplier Device Package 8-SOIC

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/attiny85-15sz

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/attiny85-15sz-4433687
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

4.3.8 Erase

To erase a byte, the address must be written to EEAR. If the EEPMn bits are 0b01, writing the EEPE (within four cycles after
EEMPE is written) will trigger the erase operation only (programming time is given in Table 19-1 on page 122). The EEPE bit
remains set until the erase operation completes. While the device is busy programming, it is not possible to do any other
EEPROM operations.

4.3.9 Write

To write a location, the user must write the address into EEAR and the data into EEDR. If the EEPMn bits are 0b10, writing
the EEPE (within four cycles after EEMPE is written) will trigger the write operation only (programming time is given in
Table 19-1 on page 122). The EEPE bit remains set until the write operation completes. If the location to be written has not
been erased before write, the data that is stored must be considered as lost. While the device is busy with programming, it is
not possible to do any other EEPROM operations.

The calibrated oscillator is used to time the EEPROM accesses. Make sure the oscillator frequency is within the
requirements described in Section 5.6.1 “Oscillator Calibration Register – OSCCAL” on page 24.

The following code examples show one assembly and one C function for erase, write, or atomic write of the EEPROM. The
examples assume that interrupts are controlled (e.g., by disabling interrupts globally) so that no interrupts will occur during
execution of these functions

Assembly Code Example

EEPROM_write:
; Wait for completion of previous write
sbic EECR,EEPE
rjmp EEPROM_write
; Set Programming mode
ldi r16, (0<<EEPM1)|(0<<EEPM0)
out EECR, r16
; Set up address (r17) in address register
out EEARL, r17
; Write data (r16) to data register
out EEDR,r16
; Write logical one to EEMWE
sbi EECR,EEMWE
; Start eeprom write by setting EEWE
sbi EECR,EEWE
ret

C Code Example

void EEPROM_write(unsigned char ucAddress, unsigned char ucData)
{

/* Wait for completion of previous write */
while(EECR & (1<<EEPE))
;
/* Set Programming mode */
EECR = (0<<EEPM1)|(0>>EEPM0)
/* Set up address and data registers */
EEARL = ucAddress;
EEDR = ucData;
/* Write logical one to EEMWE */
EECR |= (1<<EEMWE);
/* Start eeprom write by setting EEWE */
EECR |= (1<<EEWE);

}

ATtiny25/45/85 Automotive [DATASHEET]
7598J–AVR–12/14

16

9.2.1 Configuring the Pin

Each port pin consists of three register bits: DDxn, PORTxn, and PINxn. As shown in Section 9.4 “Register Description for
I/O-Ports” on page 53, the DDxn bits are accessed at the DDRx I/O address, the PORTxn bits at the PORTx I/O address,
and the PINxn bits at the PINx I/O address.

The DDxn bit in the DDRx register selects the direction of this pin. If DDxn is written logic one, Pxn is configured as an output
pin. If DDxn is written logic zero, Pxn is configured as an input pin.

If PORTxn is written logic one when the pin is configured as an input pin, the pull-up resistor is activated. To switch the
pull-up resistor off, PORTxn has to be written logic zero or the pin has to be configured as an output pin. The port pins are
tri-stated when reset condition becomes active, even if no clocks are running.

If PORTxn is written logic one when the pin is configured as an output pin, the port pin is driven high (one). If PORTxn is
written logic zero when the pin is configured as an output pin, the port pin is driven low (zero).

9.2.2 Toggling the Pin

Writing a logic one to PINxn toggles the value of PORTxn, independent on the value of DDRxn. Note that the SBI instruction
can be used to toggle one single bit in a port.

9.2.3 Switching Between Input and Output

When switching between tri-state ({DDxn, PORTxn} = 0b00) and output high ({DDxn, PORTxn} = 0b11), an intermediate
state with either pull-up enabled {DDxn, PORTxn} = 0b01) or output low ({DDxn, PORTxn} = 0b10) must occur. Normally, the
pull-up enabled state is fully acceptable, as a high-impedant environment will not notice the difference between a strong high
driver and a pull-up. If this is not the case, the PUD bit in the MCUCR Register can be set to disable all pull-ups in all ports.

Switching between input with pull-up and output low generates the same problem. The user must use either the tri-state
({DDxn, PORTxn} = 0b00) or the output high state ({DDxn, PORTxn} = 0b10) as an intermediate step.

Table 9-1 summarizes the control signals for the pin value.

Table 9-1. Port Pin Configurations

DDxn PORTxn PUD (in MCUCR) I/O Pull-up Comment

0 0 X Input No Tri-state (Hi-Z)

0 1 0 Input Yes Pxn will source current if ext. pulled low.

0 1 1 Input No Tri-state (Hi-Z)

1 0 X Output No Output low (sink)

1 1 X Output No Output high (source)
45ATtiny25/45/85 Automotive [DATASHEET]
7598J–AVR–12/14

The following code example shows how to set port B pins 0 and 1 high, 2 and 3 low, and define the port pins from 4 to 5 as
input with a pull-up assigned to port pin 4. The resulting pin values are read back again, but as previously discussed, a nop
instruction is included to be able to read back the value recently assigned to some of the pins.

Note: 1. For the assembly program, two temporary registers are used to minimize the time from pull-ups are set on pins
0, 1 and 4, until the direction bits are correctly set, defining bit 2 and 3 as low and redefining bits 0 and 1 as
strong high drivers.

9.2.5 Digital Input Enable and Sleep Modes

As shown in Figure 9-2, the digital input signal can be clamped to ground at the input of the schmitt-trigger. The signal
denoted SLEEP in the figure, is set by the MCU sleep controller in power-down mode, power-save mode, and standby mode
to avoid high power consumption if some input signals are left floating, or have an analog signal level close to VCC/2.

SLEEP is overridden for port pins enabled as external interrupt pins. If the external interrupt request is not enabled, SLEEP
is active also for these pins. SLEEP is also overridden by various other alternate functions as described in Section 9.3
“Alternate Port Functions” on page 48.

If a logic high level (“one”) is present on an asynchronous external interrupt pin configured as “interrupt on rising edge, falling
edge, or any logic change on pin” while the external interrupt is not enabled, the corresponding external interrupt flag will be
set when resuming from the above mentioned sleep mode, as the clamping in these sleep mode produces the requested
logic change.

9.2.6 Unconnected Pins

If some pins are unused, it is recommended to ensure that these pins have a defined level. Even though most of the digital
inputs are disabled in the deep sleep modes as described above, floating inputs should be avoided to reduce current
consumption in all other modes where the digital inputs are enabled (reset, active mode and idle mode).

The simplest method to ensure a defined level of an unused pin, is to enable the internal pull-up. In this case, the pull-up will
be disabled during reset. If low power consumption during reset is important, it is recommended to use an external pull-up or
pulldown. Connecting unused pins directly to VCC or GND is not recommended, since this may cause excessive currents if
the pin is accidentally configured as an output.

Assembly Code Example(1)

...
; Define pull-ups and set outputs high
; Define directions for port pins
ldi r16,(1<<PB4)|(1<<PB1)|(1<<PB0)
ldi r17,(1<<DDB3)|(1<<DDB2)|(1<<DDB1)|(1<<DDB0)
out PORTB,r16
out DDRB,r17
; Insert nop for synchronization
nop
; Read port pins
in r16,PINB
...

C Code Example

unsigned char i;
...
/* Define pull-ups and set outputs high */
/* Define directions for port pins */
PORTB = (1<<PB4)|(1<<PB1)|(1<<PB0);
DDRB = (1<<DDB3)|(1<<DDB2)|(1<<DDB1)|(1<<DDB0);
/* Insert nop for synchronization*/
_NOP();
/* Read port pins */
i = PINB;
...
47ATtiny25/45/85 Automotive [DATASHEET]
7598J–AVR–12/14

Table 9-2 summarizes the function of the overriding signals. The pin and port indexes from Figure 9-5 on page 48 are not
shown in the succeeding tables. The overriding signals are generated internally in the modules having the alternate function.

The following subsections shortly describe the alternate functions for each port, and relate the overriding signals to the
alternate function. Refer to the alternate function description for further details.

9.3.1 MCU Control Register – MCUCR

• Bit 6 – PUD: Pull-up Disable

When this bit is written to one, the pull-ups in the I/O ports are disabled even if the DDxn and PORTxn registers are
configured to enable the pull-ups ({DDxn, PORTxn} = 0b01). See Section 9.2.1 “Configuring the Pin” on page 45 for more
details about this feature.

Table 9-2. Generic Description of Overriding Signals for Alternate Functions

Signal Name Full Name Description

PUOE Pull-up Override Enable
If this signal is set, the pull-up enable is controlled by the PUOV signal. If
this signal is cleared, the pull-up is enabled when
{DDxn, PORTxn, PUD} = 0b010.

PUOV Pull-up override value
If PUOE is set, the pull-up is enabled/disabled when PUOV is set/cleared,
regardless of the setting of the DDxn, PORTxn, and PUD register bits.

DDOE
Data direction override
enable

If this signal is set, the output driver enable is controlled by the DDOV signal.
If this signal is cleared, the output driver is enabled by the DDxn register bit.

DDOV
Data direction override
value

If DDOE is set, the output driver is enabled/disabled when DDOV is
set/cleared, regardless of the setting of the DDxn register bit.

PVOE
Port value override
enable

If this signal is set and the output driver is enabled, the port value is
controlled by the PVOV signal. If PVOE is cleared, and the output driver is
enabled, the port value is controlled by the PORTxn register bit.

PVOV Port value override value
If PVOE is set, the port value is set to PVOV, regardless of the setting of the
PORTxn register bit.

PTOE
Port toggle override
enable

If PTOE is set, the PORTxn register bit is inverted.

DIEOE
Digital input enable
override enable

If this bit is set, the digital Input Enable is controlled by the DIEOV signal. If
this signal is cleared, the Digital Input Enable is determined by MCU state
(Normal mode, sleep mode).

DIEOV
Digital input enable
Override value

If DIEOE is set, the digital input is enabled/disabled when DIEOV is
set/cleared, regardless of the MCU state (Normal mode, sleep mode).

DI Digital input

This is the digital input to alternate functions. In the figure, the signal is
connected to the output of the schmitt-trigger but before the synchronizer.
Unless the digital input is used as a clock source, the module with the
alternate function will use its own synchronizer.

AIO Analog input/output
This is the analog input/output to/from alternate functions. The signal is
connected directly to the pad, and can be used bi-directionally.

Bit 7 6 5 4 3 2 1 0

BODS PUD SE SM1 SM0 BODSE ISC01 ISC00 MCUCR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
49ATtiny25/45/85 Automotive [DATASHEET]
7598J–AVR–12/14

10. External Interrupts

The external interrupts are triggered by the INT0 pin or any of the PCINT5..0 pins. Observe that, if enabled, the interrupts will
trigger even if the INT0 or PCINT5..0 pins are configured as outputs. This feature provides a way of generating a software
interrupt. Pin change interrupts PCI will trigger if any enabled PCINT5..0 pin toggles. The PCMSK register control which pins
contribute to the pin change interrupts. Pin change interrupts on PCINT5..0 are detected asynchronously. This implies that
these interrupts can be used for waking the part also from sleep modes other than idle mode.

The INT0 interrupts can be triggered by a falling or rising edge or a low level. This is set up as indicated in the specification
for the MCU control register – MCUCR. When the INT0 interrupt is enabled and is configured as level triggered, the interrupt
will trigger as long as the pin is held low. Note that recognition of falling or rising edge interrupts on INT0 requires the
presence of an I/O clock, described in Section 5.1 “Clock Systems and their Distribution” on page 19. Low level interrupt on
INT0 is detected asynchronously. This implies that this interrupt can be used for waking the part also from sleep modes other
than idle mode. The I/O clock is halted in all sleep modes except idle mode.

Note that if a level triggered interrupt is used for wake-up from power-down, the required level must be held long enough for
the MCU to complete the wake-up to trigger the level interrupt. If the level disappears before the end of the start-up time, the
MCU will still wake up, but no interrupt will be generated. The start-up time is defined by the SUT and CKSEL fuses as
described in Section 5. “System Clock and Clock Options” on page 19.

10.1 MCU Control Register – MCUCR

The external interrupt control register A contains control bits for interrupt sense control.

• Bits 1, 0 – ISC01, ISC00: Interrupt Sense Control 0 Bit 1 and Bit 0

The external interrupt 0 is activated by the external pin INT0 if the SREG I-flag and the corresponding interrupt mask are set.
The level and edges on the external INT0 pin that activate the interrupt are defined in Table 10-1. The value on the INT0 pin
is sampled before detecting edges. If edge or toggle interrupt is selected, pulses that last longer than one clock period will
generate an interrupt. Shorter pulses are not guaranteed to generate an interrupt. If low level interrupt is selected, the low
level must be held until the completion of the currently executing instruction to generate an interrupt.

10.2 General Interrupt Mask Register – GIMSK

• Bits 7, 4..0 – Res: Reserved Bits

These bits are reserved bits in the Atmel® ATtiny25/45/85 and will always read as zero.

Bit 7 6 5 4 3 2 1 0

BODS PUD SE SM1 SM0 BODSE ISC01 ISC00 MCUCR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 10-1. Interrupt 0 Sense Control

ISC01 ISC00 Description

0 0 The low level of INT0 generates an interrupt request.

0 1 Any logical change on INT0 generates an interrupt request.

1 0 The falling edge of INT0 generates an interrupt request.

1 1 The rising edge of INT0 generates an interrupt request.

Bit 7 6 5 4 3 2 1 0

– INT0 PCIE – – – – – GIMSK

Read/Write R R/W R/W R R R R R

Initial Value 0 0 0 0 0 0 0 0
ATtiny25/45/85 Automotive [DATASHEET]
7598J–AVR–12/14

54

The OCR0x registers are double buffered when using any of the pulse width modulation (PWM) modes. For the normal and
clear timer on compare (CTC) modes of operation, the double buffering is disabled. The double buffering synchronizes the
update of the OCR0x compare registers to either top or bottom of the counting sequence. The synchronization prevents the
occurrence of odd-length, non-symmetrical PWM pulses, thereby making the output glitch-free.

The OCR0x register access may seem complex, but this is not case. When the double buffering is enabled, the CPU has
access to the OCR0x buffer register, and if double buffering is disabled the CPU will access the OCR0x directly.

11.4.1 Force Output Compare

In non-PWM waveform generation modes, the match output of the comparator can be forced by writing a one to the force
output compare (FOC0x) bit. Forcing compare match will not set the OCF0x flag or reload/clear the timer, but the OC0x pin
will be updated as if a real compare match had occurred (the COM0x1:0 bits settings define whether the OC0x pin is set,
cleared or toggled).

11.4.2 Compare Match Blocking by TCNT0 Write

All CPU write operations to the TCNT0 register will block any compare match that occur in the next timer clock cycle, even
when the timer is stopped. This feature allows OCR0x to be initialized to the same value as TCNT0 without triggering an
interrupt when the Timer/Counter clock is enabled.

11.4.3 Using the Output Compare Unit

Since writing TCNT0 in any mode of operation will block all compare matches for one timer clock cycle, there are risks
involved when changing TCNT0 when using the output compare unit, independently of whether the Timer/Counter is running
or not. If the value written to TCNT0 equals the OCR0x value, the compare match will be missed, resulting in incorrect
waveform generation. Similarly, do not write the TCNT0 value equal to BOTTOM when the counter is down-counting.

The setup of the OC0x should be performed before setting the data direction register for the port pin to output. The easiest
way of setting the OC0x value is to use the force output compare (FOC0x) strobe bits in normal mode. The OC0x registers
keep their values even when changing between waveform generation modes.

Be aware that the COM0x1:0 bits are not double buffered together with the compare value. Changing the COM0x1:0 bits will
take effect immediately.
59ATtiny25/45/85 Automotive [DATASHEET]
7598J–AVR–12/14

11.5 Compare Match Output Unit

The compare output mode (COM0x1:0) bits have two functions. The waveform generator uses the COM0x1:0 bits for
defining the output compare (OC0x) state at the next compare match. Also, the COM0x1:0 bits control the OC0x pin output
source. Figure 11-4 on page 60 shows a simplified schematic of the logic affected by the COM0x1:0 bit setting. The I/O
registers, I/O bits, and I/O pins in the figure are shown in bold. Only the parts of the general I/O port control registers (DDR
and PORT) that are affected by the COM0x1:0 bits are shown. When referring to the OC0x state, the reference is for the
internal OC0x register, not the OC0x pin. If a system reset occur, the OC0x register is reset to “0”.

Figure 11-4. Compare Match Output Unit, Schematic

The general I/O port function is overridden by the output compare (OC0x) from the waveform generator if either of the
COM0x1:0 bits are set. However, the OC0x pin direction (input or output) is still controlled by the data direction register
(DDR) for the port pin. The Data direction register bit for the OC0x pin (DDR_OC0x) must be set as output before the OC0x
value is visible on the pin. The port override function is independent of the waveform generation mode.

The design of the output compare pin logic allows initialization of the OC0x state before the output is enabled. Note that
some COM0x1:0 bit settings are reserved for certain modes of operation. See Section 11.8 “8-bit Timer/Counter Register
Description” on page 66

11.5.1 Compare Output Mode and Waveform Generation

The waveform generator uses the COM0x1:0 bits differently in normal, CTC, and PWM modes. For all modes, setting the
COM0x1:0 = 0 tells the waveform generator that no action on the OC0x register is to be performed on the next compare
match. For compare output actions in the non-PWM modes refer to Table 11-2 on page 66. For fast PWM mode, refer to
Table 11-3 on page 67, and for phase correct PWM refer to Table 11-4 on page 67.

A change of the COM0x1:0 bits state will have effect at the first compare match after the bits are written. For non-PWM
modes, the action can be forced to have immediate effect by using the FOC0x strobe bits.

D
AT

A
B

U
S

0

1

QD

COMnx1

COMnx0

FOCn

OCnx

Waveform
Generator

QD

PORT

QD

DDR

OCn
Pin

clkI/O
ATtiny25/45/85 Automotive [DATASHEET]
7598J–AVR–12/14

60

11.7 Timer/Counter Timing Diagrams

The Timer/Counter is a synchronous design and the timer clock (clkT0) is therefore shown as a clock enable signal in the
following figures. The figures include information on when interrupt flags are set. Figure 11-8 contains timing data for basic
Timer/Counter operation. The figure shows the count sequence close to the MAX value in all modes other than phase
correct PWM mode.

Figure 11-8. Timer/Counter Timing Diagram, no Prescaling

Figure 11-9 shows the same timing data, but with the prescaler enabled.

Figure 11-9. Timer/Counter Timing Diagram, with Prescaler (fclk_I/O/8)

Figure 11-10 shows the setting of OCF0B in all modes and OCF0A in all modes except CTC mode and PWM mode, where
OCR0A is TOP.

Figure 11-10. Timer/Counter Timing Diagram, Setting of OCF0x, with Prescaler (fclk_I/O/8)

MAX - 1

clkI/O

(clkI/O/1)

TCNTn

TOVn

clkTn

MAX BOTTOM BOTTOM + 1

MAX - 1

clkI/O

(clkI/O/8)

TCNTn

TOVn

clkTn

MAX BOTTOM BOTTOM + 1

OCRnx - 1

clkI/O

(clkI/O/8)

TCNTn

OCRnx

OCFnx

clkTn

OCRnx OCRnx + 1

OCRnx Value

OCRnx + 2
65ATtiny25/45/85 Automotive [DATASHEET]
7598J–AVR–12/14

Figure 13-2. Timer/Counter 1 Synchronization Register Block Diagram

Timer/Counter1 and the prescaler allow running the CPU from any clock source while the prescaler is operating on the fast
64MHz (or 32MHz in low speed mode) PCK clock in the asynchronous mode.

Note that the system clock frequency must be lower than one third of the PCK frequency. The synchronization mechanism of
the asynchronous Timer/Counter1 needs at least two edges of the PCK when the system clock is high. If the frequency of
the system clock is too high, it is a risk that data or control values are lost.

The following Figure 13-3 on page 76 shows the block diagram for Timer/Counter1.

OCR1A

IO Registers Timer/Counter1

8-bit Data Bus

Input Synchronization
Registers

Output Synchronization
Registers

OCR1B

OCR1C

TCCR1

GTCCR

TCNT1

OCF1A

OCF1B

TOV1

S

A

OCR1A_SI

OCR1B_SI

OCR1C_SI

TCCR1_SI

GTCCR_SI
TCNT1

TCNT1_SI

OCF1A_SI

OCF1B_SI

TOV1_SI

1/2 CK Delay 1/2 CK Delay1 CK Delay 1 CK Delay

TCNT_SO
TCNT1

OCF1A

OCF1B

TOV1

PCKE

CK

PCK

SYNC
MODE

ASYNC
MODE

OCF1A_SO

OCF1B_SO

TOV1_SO

1-2 CK Delay No Delay1 PCK Delay ~1 CK Delay

S

A

75ATtiny25/45/85 Automotive [DATASHEET]
7598J–AVR–12/14

Note that in PWM mode, writing to the output compare registers OCR1A or OCR1B, the data value is first transferred to a
temporary location. The value is latched into OCR1A or OCR1B when the Timer/Counter reaches OCR1C. This prevents the
occurrence of odd-length PWM pulses (glitches) in the event of an unsynchronized OCR1A or OCR1B. See Figure 13-5 for
an example.

Figure 13-5. Effects of Unsynchronized OCR Latching

During the time between the write and the latch operation, a read from OCR1A or OCR1B will read the contents of the
temporary location. This means that the most recently written value always will read out of OCR1A or OCR1B.

When OCR1A or OCR1B contain $00 or the top value, as specified in OCR1C register, the output PB1(OC1A) or
PB3(OC1B) is held low or high according to the settings of COM1A1/COM1A0. This is shown in Table 13-5 on page 83.

Table 13-4. Compare Mode Select in PWM Mode

COM11 COM10 Effect on Output Compare Pins

0 0
OC1x not connected.

OC1x not connected.

0 1
OC1x cleared on compare match. Set whenTCNT1 = $01.

OC1x set on compare match. Cleared when TCNT1 = $00.

1 0
OC1x cleared on compare match. Set when TCNT1 = $01.

OC1x not connected.

1 1
OC1x Set on compare match. Cleared when TCNT1= $01.

OC1x not connected.

Table 13-5. PWM Outputs OCR1x = $00 or OCR1C, x = A or B

COM1x1 COM1x0 OCR1x Output OC1x Output OC1x

0 1 $00 L H

0 1 OCR1C H L

1 0 $00 L Not connected.

1 0 OCR1C H Not connected.

1 1 $00 H Not connected.

1 1 OCR1C L Not connected.

Compare Value changes

Compare Value

PMW Output OC1x

Synchronized OC1x Latch

Counter Value

Compare Value changes

Compare Value

PMW Output OC1x

Unsynchronized OC1x Latch Glitch

Counter Value
83ATtiny25/45/85 Automotive [DATASHEET]
7598J–AVR–12/14

In PWM mode, the timer overflow flag - TOV1 is set when the TCNT1 counts to the OCR1C value and the TCNT1 is reset to
$00. The timer overflow interrupt1 is executed when TOV1 is set provided that timer overflow interrupt and global interrupts
are enabled. This also applies to the timer output compare flags and interrupts.

The frequency of the PWM will be timer clock 1 frequency divided by (OCR1C value + 1). See the following equation:

Resolution shows how many bit is required to express the value in the OCR1C register. It is calculated by following equation

ResolutionPWM = log2(OCR1C + 1).

Table 13-6. Timer/Counter1 Clock Prescale Select in the Asynchronous Mode

PWM Frequency Clock Selection CS13..CS10 OCR1C RESOLUTION

20kHz PCK/16 0101 199 7.6

30kHz PCK/16 0101 132 7.1

40kHz PCK/8 0100 199 7.6

50kHz PCK/8 0100 159 7.3

60kHz PCK/8 0100 132 7.1

70kHz PCK/4 0011 228 7.8

80kHz PCK/4 0011 199 7.6

90kHz PCK/4 0011 177 7.5

100kHz PCK/4 0011 159 7.3

110kHz PCK/4 0011 144 7.2

120kHz PCK/4 0011 132 7.1

130kHz PCK/2 0010 245 7.9

140kHz PCK/2 0010 228 7.8

150kHz PCK/2 0010 212 7.7

160kHz PCK/2 0010 199 7.6

170kHz PCK/2 0010 187 7.6

180kHz PCK/2 0010 177 7.5

190kHz PCK/2 0010 167 7.4

200kHz PCK/2 0010 159 7.3

250kHz PCK 0001 255 8.0

300kHz PCK 0001 212 7.7

350kHz PCK 0001 182 7.5

400kHz PCK 0001 159 7.3

450kHz PCK 0001 141 7.1

500kHz PCK 0001 127 7.0

fPWM

fTCK1

OCR1C + 1()
---------------------------------=
ATtiny25/45/85 Automotive [DATASHEET]
7598J–AVR–12/14

84

The following code demonstrates how to use the USI module as a SPI master with maximum speed (fsck = fck/4):
SPITransfer_Fast:

sts USIDR,r16
ldi r16,(1<<USIWM0)|(0<<USICS0)|(1<<USITC)
ldi r17,(1<<USIWM0)|(0<<USICS0)|(1<<USITC)|(1<<USICLK)

sts USICR,r16; MSB
sts USICR,r17
sts USICR,r16
sts USICR,r17
sts USICR,r16
sts USICR,r17
sts USICR,r16
sts USICR,r17
sts USICR,r16
sts USICR,r17
sts USICR,r16
sts USICR,r17
sts USICR,r16
sts USICR,r17
sts USICR,r16; LSB
sts USICR,r17

lds r16,USIDR
ret

15.2.3 SPI Slave Operation Example

The following code demonstrates how to use the USI module as a SPI slave:
init:

ldi r16,(1<<USIWM0)|(1<<USICS1)
sts USICR,r16

...
SlaveSPITransfer:

sts USIDR,r16
ldi r16,(1<<USIOIF)
sts USISR,r16

SlaveSPITransfer_loop:
lds r16, USISR
sbrs r16, USIOIF
rjmp SlaveSPITransfer_loop
lds r16,USIDR
ret

The code is size optimized using only eight instructions (+ ret). The code example assumes that the DO is configured as
output and USCK pin is configured as input in the DDR register. The value stored in register r16 prior to the function is called
is transferred to the master device, and when the transfer is completed the data received from the master is stored back into
the r16 register.

Note that the first two instructions is for initialization only and needs only to be executed once.These instructions sets
three-wire mode and positive edge shift register clock. The loop is repeated until the USI counter overflow flag is set.
91ATtiny25/45/85 Automotive [DATASHEET]
7598J–AVR–12/14

16. Analog Comparator

The analog comparator compares the input values on the positive pin AIN0 and negative pin AIN1. When the voltage on the
positive pin AIN0 is higher than the voltage on the negative pin AIN1, the analog comparator output, ACO, is set. The
comparator can trigger a separate interrupt, exclusive to the analog comparator. The user can select interrupt triggering on
comparator output rise, fall or toggle. A block diagram of the comparator and its surrounding logic is shown in Figure 16-1.

Figure 16-1. Analog Comparator Block Diagram(2)

Notes: 1. See Table 16-2 on page 100.

2. Refer to Figure 1 on page 2 and Table 9-5 on page 52 for analog comparator pin placement.

16.1 ADC Control and Status Register B – ADCSRB

• Bit 6 – ACME: Analog Comparator Multiplexer Enable

When this bit is written logic one and the ADC is switched off (ADEN in ADCSRA is zero), the ADC multiplexer selects the
negative input to the analog comparator. When this bit is written logic zero, AIN1 is applied to the negative input of the
analog comparator. For a detailed description of this bit, see Section 16.3 “Analog Comparator Multiplexed Input” on page
100.

16.2 Analog Comparator Control and Status Register – ACSR

• Bit 7 – ACD: Analog Comparator Disable

When this bit is written logic one, the power to the analog comparator is switched off. This bit can be set at any time to turn
off the analog comparator.

This will reduce power consumption in Active and idle mode. When changing the ACD bit, the analog comparator interrupt
must be disabled by clearing the ACIE bit in ACSR. Otherwise an interrupt can occur when the bit is changed.

Bandgap
Reference

Interrupt
Select

AIN0

VCC

ACIS1

ADC Multiplexer
Output(1)

ACIS0

ACIE

Analog
Comparator
IRQ

ACI

ACO

ACBG

ACME
ADEN

ACD

+

-

AIN1

Bit 7 6 5 4 3 2 1 0

BIN ACME IPR – – ADTS2 ADTS1 ADTS0 ADCSRB

Read/Write R R/W R R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

ACD ACBG ACO ACI ACIE – ACIS1 ACIS0 ACSR

Read/Write R/W R/W R R/W R/W R R/W R/W

Initial Value 0 0 N/A 0 0 0 0 0
ATtiny25/45/85 Automotive [DATASHEET]
7598J–AVR–12/14

98

20. Memory Programming

This section describes the different methods for programming the Atmel® ATtiny25/45/85 memories.

20.1 Program And Data Memory Lock Bits

The ATtiny25/45/85 provides two lock bits which can be left unprogrammed (“1”) or can be programmed (“0”) to obtain the
additional security listed in Table 20-2. The lock bits can only be erased to “1” with the chip erase command.

Program memory can be read out via the debugWIRE interface when the DWEN fuse is programmed, even if the lock bits
are set. Thus, when lock bit security is required, should always debugWIRE be disabled by clearing the DWEN fuse.

Table 20-1. Lock Bit Byte(1)

Lock Bit Byte Bit No Description Default Value

7 – 1 (unprogrammed)

6 – 1 (unprogrammed)

5 – 1 (unprogrammed)

4 – 1 (unprogrammed)

3 – 1 (unprogrammed)

2 – 1 (unprogrammed)

LB2 1 Lock bit 1 (unprogrammed)

LB1 0 Lock bit 1 (unprogrammed)

Note: 1. “1” means unprogrammed, “0” means programmed

Table 20-2. Lock Bit Protection Modes(1)(2)

Memory Lock Bits Protection Type

LB Mode LB2 LB1

1 1 1 No memory lock features enabled.

2 1 0
Further programming of the flash and EEPROM is disabled in high-voltage
and serial programming mode. The fuse bits are locked in both serial and
high-voltage programming mode(1). debugWire is disabled.

3 0 0
Further programming and verification of the flash and EEPROM is disabled in
high-voltage and serial programming mode. The fuse bits are locked in both
serial and high-voltage programming mode(1). debugWire is disabled.

Notes: 1. Program the fuse bits before programming the LB1 and LB2.

2. “1” means unprogrammed, “0” means programmed
123ATtiny25/45/85 Automotive [DATASHEET]
7598J–AVR–12/14

The status of the fuse bits is not affected by chip erase. Note that the fuse bits are locked if lock bit1 (LB1) is programmed.
program the fuse bits before programming the lock bits.

20.2.1 Latching of Fuses

The fuse values are latched when the device enters programming mode and changes of the fuse values will have no effect
until the part leaves programming mode. This does not apply to the EESAVE fuse which will take effect once it is
programmed. The fuses are also latched on power-up in normal mode.

20.3 Signature Bytes

All Atmel® microcontrollers have a three-byte signature code which identifies the device. This code can be read in both serial
and high-voltage programming mode, also when the device is locked. The three bytes reside in a separate address space.

20.3.1 ATtiny25 Signature Bytes

1. 0x000: 0x1E (indicates manufactured by Atmel).

2. 0x001: 0x91 (indicates 2KB flash memory).

3. 0x002: 0x08 (indicates ATtiny25 device when 0x001 is 0x91).

20.3.2 ATtiny45 Signature Bytes

1. 0x000: 0x1E (indicates manufactured by Atmel).

2. 0x001: 0x92 (indicates 4KB flash memory).

3. 0x002: 0x06 (indicates ATtiny45 device when 0x001 is 0x92).

20.3.3 ATtiny85 Signature Bytes

1. 0x000: 0x1E (indicates manufactured by Atmel).

2. 0x001: 0x93 (indicates 8KB flash memory).

3. 0x002: 0x0B (indicates ATtiny85 device when 0x001 is 0x93).

20.4 Calibration Byte

Signature area of the Atmel ATtiny25/45/85 has one byte of calibration data for the internal RC oscillator. This byte resides in
the high byte of address 0x000. During reset, this byte is automatically written into the OSCCAL register to ensure correct
frequency of the calibrated RC oscillator.

Table 20-5. Fuse Low Byte

Fuse Low Byte Bit No Description Default Value

CKDIV8(1) 7 Divide clock by 8 0 (unprogrammed)

CKOUT(2) 6 Clock output enable 1 (unprogrammed)

SUT1 5 Select start-up time 1 (unprogrammed)(3)

SUT0 4 Select start-up time 0 (programmed)(3)

CKSEL3 3 Select clock source 0 (programmed)(4)

CKSEL2 2 Select clock source 0 (programmed)(4)

CKSEL1 1 Select clock source 1 (unprogrammed)(4)

CKSEL0 0 Select clock source 0 (programmed)(4)

Notes: 1. See Section 5.10 “System Clock Prescaler” on page 26 for details.

2. The CKOUT fuse allows the system clock to be output on PORTB4.
See “Section 5.9 “Clock Output Buffer” on page 26 for details.

3. The default value of SUT1..0 results in maximum start-up time for the default clock source.
See Table 5-7 on page 23 for details.

4. The default setting of CKSEL1..0 results in internal RC oscillator at 8.0MHz. See Table 5-6 on page 23 for
details.
125ATtiny25/45/85 Automotive [DATASHEET]
7598J–AVR–12/14

Figure 20-2. Serial Programming Waveforms

Table 20-9. Minimum Wait Delay Before Writing the Next Flash or EEPROM Location

Symbol Minimum Wait Delay

tWD_FLASH 4.5ms

tWD_EEPROM 4.0ms

tWD_ERASE 4.0ms

tWD_FUSE 4.5ms

Table 20-10. Serial Programming Instruction Set

Instruction

Instruction Format

OperationByte 1 Byte 2 Byte 3 Byte4

Programming enable 1010 1100 0101 0011 xxxx xxxx xxxx xxxx
Enable serial programming after
RESET goes low.

Chip erase 1010 1100 100x xxxx xxxx xxxx xxxx xxxx Chip erase EEPROM and flash.

Read program memory 0010 H000 0000 000a bbbb bbbb oooo oooo
Read H (high or low) data o from
program memory at word address
a:b.

Load program memory page 0100 H000 000x xxxx xxxb bbbb iiii iiii

Write H (high or low) data i to
program memory page at word
address b. Data low byte must be
loaded before data high byte is
applied within the same address.

Write program memory page 0100 1100 0000 000a bbxx xxxx xxxx xxxx
Write Program memory page at
address a:b.

Read EEPROM memory 1010 0000 000x xxxx xxbb bbbb oooo oooo
Read data o from EEPROM memory
at address b.

Write EEPROM memory 1100 0000 000x xxxx xxbb bbbb iiii iiii
Write data i to EEPROM memory at
address b.

Load EEPROM memory
page (Page access)

1100 0001 0000 0000 0000 00bb iiii iiii
Load data i to EEPROM memory
page buffer. After data is loaded,
program EEPROM page.

Write EEPROM memory
Page (page access)

1100 0010 00xx xxxx xxbb bb00 xxxx xxxx Write EEPROM page at address b.

Read lock bits 0101 1000 0000 0000 xxxx xxxx xxoo oooo
Read Lock bits. “0” = programmed,
“1” = unprogrammed. See Table 20-1
on page 123 for details.

Note: a = address high bits, b = address low bits, H = 0 – Low byte, 1 – high byte, o = data out, i = data in, x = don’t
care

Serial Data Input
(MOSI)

Serial Data Output
(MISO)

Serial Clock Input
(SCK)

Sample

MSB LSB

MSB LSB
ATtiny25/45/85 Automotive [DATASHEET]
7598J–AVR–12/14

128

Table 20-16. High-voltage Serial Programming Instruction Set for ATtiny25/45/85

Instruction

Instruction Format

Operation RemarksInstr.1/5 Instr.2/6 Instr.3 Instr.4

Chip erase
SDI
SII
SDO

0_1000_0000_00
0_0100_1100_00
x_xxxx_xxxx_xx

0_0000_0000_00
0_0110_0100_00
x_xxxx_xxxx_xx

0_0000_0000_00
0_0110_1100_00
x_xxxx_xxxx_xx

Wait after Instr.3 until SDO
goes high for the chip erase
cycle to finish.

Load “write
flash”
command

SDI
SII
SDO

0_0001_0000_00
0_0100_1100_00
x_xxxx_xxxx_xx

Enter flash programming
code.

Load flash
page buffer

SDI
SII
SDO

0_ bbbb_bbbb _00
0_0000_1100_00
x_xxxx_xxxx_xx

0_eeee_eeee_00
0_0010_1100_00
x_xxxx_xxxx_xx

0_dddd_dddd_00
0_0011_1100_00
x_xxxx_xxxx_xx

0_0000_0000_00
0_0111_1101_00
x_xxxx_xxxx_xx

Repeat after Instr. 1 - 5 until
the entire page buffer is filled
or until all data within the
page is filled. See note 1.

SDI
SII
SDO

0_0000_0000_00
0_0111_1100_00
x_xxxx_xxxx_xx

 Instr 5.

Load flash
high address
and program
page

SDI
SII
SDO

0_0000_000a_00
0_0001_1100_00
x_xxxx_xxxx_xx

0_0000_0000_00
0_0110_0100_00
x_xxxx_xxxx_xx

0_0000_0000_00
0_0110_1100_00
x_xxxx_xxxx_xx

Wait after Instr 3 until SDO
goes high. Repeat Instr. 2 - 3
for each loaded flash page
until the entire flash or all
data is programmed. Repeat
Instr. 1 for a new 256 byte
page. See note 1.

Load “read
flash”
command

SDI
SII
SDO

0_0000_0010_00
0_0100_1100_00
x_xxxx_xxxx_xx

Enter flash read mode.

Read flash
low and high
bytes

SDI
SII
SDO

0_bbbb_bbbb_00
0_0000_1100_00
x_xxxx_xxxx_xx

0_0000_000a_00
0_0001_1100_00
x_xxxx_xxxx_xx

0_0000_0000_00
0_0110_1000_00
x_xxxx_xxxx_xx

0_0000_0000_00
0_0110_1100_00
q_qqqq_qqqx_xx

Repeat Instr. 1, 3 - 6 for each
new address. Repeat Instr. 2
for a new 256 byte page.

SDI
SII
SDO

0_0000_0000_00
0_0111_1000_00
x_xxxx_xxxx_xx

0_0000_0000_00
0_0111_1100_00
p_pppp_pppx_xx

Instr 5 - 6.

Load “write
EEPROM”
command

SDI
SII
SDO

0_0001_0001_00
0_0100_1100_00
x_xxxx_xxxx_xx

Enter EEPROM
programming mode.

Load
EEPROM
page buffer

SDI
SII
SDO

0_00bb_bbbb_00
0_0000_1100_00
x_xxxx_xxxx_xx

0_eeee_eeee_00
0_0010_1100_00
x_xxxx_xxxx_xx

0_0000_0000_00
0_0110_1101_00
x_xxxx_xxxx_xx

0_0000_0000_00
0_0110_1100_00
x_xxxx_xxxx_xx

Repeat Instr. 1 - 4 until the
entire page buffer is filled or
until all data within the page
is filled. See note 2.

Program
EEPROM
page

SDI
SII
SDO

0_0000_0000_00
0_0110_0100_00
x_xxxx_xxxx_xx

0_0000_0000_00
0_0110_1100_00
x_xxxx_xxxx_xx

Wait after Instr. 2 until SDO
goes high. Repeat Instr. 1 - 2
for each loaded EEPROM
page until the entire
EEPROM or all data is
programmed.

Note: a = address high bits, b = address low bits, d = data in high bits, e = data in low bits, p = data out high bits,
q = data out low bits,
x = don’t care, 1 = lock Bit1, 2 = lock bit2, 3 = CKSEL0 fuse, 4 = CKSEL1 fuse, 5 = SUT0 fuse, 6 = SUT1 fuse,
7 = CKDIV8, fuse, 8 = WDTON fuse, 9 = EESAVE fuse, A = SPIEN fuse, B = RSTDISBL fuse,
C = BODLEVEL0 fuse, D= BODLEVEL1 fuse, E = MONEN fuse, F = SPMEN fuse

Notes: 1. For page sizes less than 256 words, parts of the address (bbbb_bbbb) will be parts of the page address.

2. For page sizes less than 256 bytes, parts of the address (bbbb_bbbb) will be parts of the page address.

3. The EEPROM is written page-wise. But only the bytes that are loaded into the page are actually written to the
EEPROM. Page-wise EEPROM access is more efficient when multiple bytes are to be written to the same
page. Note that auto-erase of EEPROM is not available in high-voltage serial programming, only in SPI
programming.
ATtiny25/45/85 Automotive [DATASHEET]
7598J–AVR–12/14

134

Figure 22-27. I/O Pin Input Hysteresis versus VCC

Figure 22-28. Reset Input Threshold Voltage versus VCC (VIH, Reset Pin Read As '1')

Figure 22-29. Reset Input Threshold Voltage versus VCC (VIL, Reset Pin Read As '0')

85°C
125°C

25°C
-40°C

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

0.5

0.2

0.3

0.4

0.8

0.6

0.7

0.1

0

Th
re

sh
ol

d

85°C
125°C

25°C
-40°C

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

2.5

1

1.5

2

0.5

0

Th
re

sh
ol

d

85°C
125°C

25°C
-40°C

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

2.5

1

1.5

2

0.5

0

Th
re

sh
ol

d

153ATtiny25/45/85 Automotive [DATASHEET]
7598J–AVR–12/14

22.9 Current Consumption of Peripheral Units

Figure 22-39. Brownout Detector Current versus VCC

Figure 22-40. Analog Comparator Current versus VCC

85°C
125°C

25°C
-40°C

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

10

15

35

5

25

30

20

0

I C
C
 (µ

A
)

85°C
125°C

150°C

25°C

-40°C

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

VCC (V)

100

150

350

50

250

300

200

0

I C
C
 (µ

A
)

ATtiny25/45/85 Automotive [DATASHEET]
7598J–AVR–12/14

158

Figure 22-43. Reset Pulse Width versus VCC

22.11 Analog to Digital Converter

Figure 22-44. Analog to Digital Converter Differential Mode OFFSET versus VCC

85°C
125°C

25°C
-40°C

1000

1500

500

2500

2000

0

Pu
ls

e
w

id
th

 (n
s)

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

-40 -30 -20 -10 10 20 30 40 50 60 70 80 90 100 110 1200

Temperature (°C)

-2

0.5

-1

-0.5

0

1

2

1.5

-1.5

LS
B Diff x1

Diff x20
ATtiny25/45/85 Automotive [DATASHEET]
7598J–AVR–12/14

160

