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"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade
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4.4.4.5 Scatter Gather DMA

In the case of scatter gather DMA, there are multiple 
noncontiguous sources or destinations that are required to 
effectively carry out an overall DMA transaction. For example, a 
packet may need to be transmitted off of the device and the 
packet elements, including the header, payload, and trailer, exist 
in various noncontiguous locations in memory. Scatter gather 
DMA allows the segments to be concatenated together by using 
multiple TDs in a chain. The chain gathers the data from the 
multiple locations. A similar concept applies for the reception of 
data onto the device. Certain parts of the received data may need 
to be scattered to various locations in memory for software 
processing convenience. Each TD in the chain specifies the 
location for each discrete element in the chain.

4.4.4.6 Packet Queuing DMA

Packet queuing DMA is similar to scatter gather DMA but 
specifically refers to packet protocols. With these protocols, 
there may be separate configuration, data, and status phases 
associated with sending or receiving a packet. 

For instance, to transmit a packet, a memory mapped 
configuration register can be written inside a peripheral, 
specifying the overall length of the ensuing data phase. The CPU 
can set up this configuration information anywhere in system 
memory and copy it with a simple TD to the peripheral. After the 
configuration phase, a data phase TD (or a series of data phase 
TDs) can begin (potentially using scatter gather). When the data 
phase TD(s) finish, a status phase TD can be invoked that reads 
some memory mapped status information from the peripheral 
and copies it to a location in system memory specified by the 
CPU for later inspection. Multiple sets of configuration, data, and 
status phase “subchains” can be strung together to create larger 
chains that transmit multiple packets in this way. A similar 
concept exists in the opposite direction to receive the packets.

4.4.4.7 Nested DMA

One TD may modify another TD, as the TD configuration space
is memory mapped similar to any other peripheral. For example,
a first TD loads a second TD’s configuration and then calls the
second TD. The second TD moves data as required by the
application. When complete, the second TD calls the first TD,
which again updates the second TD’s configuration. This
process repeats as often as necessary.

4.5  Interrupt Controller

The interrupt controller provides a mechanism for hardware 
resources to change program execution to a new address, 
independent of the current task being executed by the main 
code. The interrupt controller provides enhanced features not 
found on original 8051 interrupt controllers:

 Thirty two interrupt vectors

 Jumps directly to ISR anywhere in code space with dynamic 
vector addresses

Multiple sources for each vector

 Flexible interrupt to vector matching

 Each interrupt vector is independently enabled or disabled

 Each interrupt can be dynamically assigned one of eight 
priorities

 Eight level nestable interrupts

Multiple I/O interrupt vectors

 Software can send interrupts

 Software can clear pending interrupts

When an interrupt is pending, the current instruction is 
completed and the program counter is pushed onto the stack. 
Code execution then jumps to the program address provided by 
the vector. After the ISR is completed, a RETI instruction is 
executed and returns execution to the instruction following the 
previously interrupted instruction. To do this the RETI instruction 
pops the program counter from the stack.

If the same priority level is assigned to two or more interrupts, 
the interrupt with the lower vector number is executed first. Each 
interrupt vector may choose from three interrupt sources: Fixed 
Function, DMA, and UDB. The fixed function interrupts are direct 
connections to the most common interrupt sources and provide 
the lowest resource cost connection. The DMA interrupt sources 
provide direct connections to the two DMA interrupt sources 
provided per DMA channel. The third interrupt source for vectors 
is from the UDB digital routing array. This allows any digital signal 
available to the UDB array to be used as an interrupt source. 
Fixed function interrupts and all interrupt sources may be routed 
to any interrupt vector using the UDB interrupt source 
connections.

Figure 4-2 on page 21 represents typical flow of events when an 
interrupt triggered. Figure 4-3 on page 22 shows the interrupt 
structure and priority polling.
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Table 4-8.  Interrupt Vector Table

# Fixed Function DMA UDB

0 LVD phub_termout0[0] udb_intr[0]

1 Cache/ECC phub_termout0[1] udb_intr[1]

2 Reserved phub_termout0[2] udb_intr[2]

3 Sleep (Pwr Mgr) phub_termout0[3] udb_intr[3]

4 PICU[0] phub_termout0[4] udb_intr[4]

5 PICU[1] phub_termout0[5] udb_intr[5]

6 PICU[2] phub_termout0[6] udb_intr[6]

7 PICU[3] phub_termout0[7] udb_intr[7]

8 PICU[4] phub_termout0[8] udb_intr[8]

9 PICU[5] phub_termout0[9] udb_intr[9]

10 PICU[6] phub_termout0[10] udb_intr[10]

11 PICU[12] phub_termout0[11] udb_intr[11]

12 PICU[15] phub_termout0[12] udb_intr[12]

13 Comparators 
Combined

phub_termout0[13] udb_intr[13]

14 Reserved phub_termout0[14] udb_intr[14]

15 I2C phub_termout0[15] udb_intr[15]

16 Reserved phub_termout1[0] udb_intr[16]

17 Timer/Counter0 phub_termout1[1] udb_intr[17]

18 Timer/Counter1 phub_termout1[2] udb_intr[18]

19 Timer/Counter2 phub_termout1[3] udb_intr[19]

20 Timer/Counter3 phub_termout1[4] udb_intr[20]

21 USB SOF Int phub_termout1[5] udb_intr[21]

22 USB Arb Int phub_termout1[6] udb_intr[22]

23 USB Bus Int phub_termout1[7] udb_intr[23]

24 USB Endpoint[0] phub_termout1[8] udb_intr[24]

25 USB Endpoint Data phub_termout1[9] udb_intr[25]

26 Reserved phub_termout1[10] udb_intr[26]

27 LCD phub_termout1[11] udb_intr[27]

28 Reserved phub_termout1[12] udb_intr[28]

29 Decimator Int phub_termout1[13] udb_intr[29]

30 PHUB Error Int phub_termout1[14] udb_intr[30]

31 EEPROM Fault Int phub_termout1[15] udb_intr[31]
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5.  Memory

5.1  Static RAM

CY8C32 Static RAM (SRAM) is used for temporary data storage. 
Up to 8 KB of SRAM is provided and can be accessed by the 
8051 or the DMA controller. See Memory Map on page 26. 
Simultaneous access of SRAM by the 8051 and the DMA 
controller is possible if different 4-KB blocks are accessed.

5.2  Flash Program Memory 

Flash memory in PSoC devices provides nonvolatile storage for 
user firmware, user configuration data, bulk data storage, and 
optional ECC data. The main flash memory area contains up to 
64 KB of user program space. 

Up to an additional 8 KB of flash space is available for Error 
Correcting Codes (ECC). If ECC is not used this space can store 
device configuration data and bulk user data. User code may not 
be run out of the ECC flash memory section. ECC can correct 
one bit error and detect two bit errors per 8 bytes of firmware 
memory; an interrupt can be generated when an error is 
detected. 

The CPU reads instructions located in flash through a cache 
controller. This improves instruction execution rate and reduces 
system power consumption by requiring less frequent flash 
access. The cache has 8 lines at 64 bytes per line for a total of 
512 bytes. It is fully associative, automatically controls flash 
power, and can be enabled or disabled. If ECC is enabled, the 
cache controller also performs error checking and correction, 
and interrupt generation.

Flash programming is performed through a special interface and 
preempts code execution out of flash. The flash programming 
interface performs flash erasing, programming and setting code 
protection levels. Flash in-system serial programming (ISSP), 
typically used for production programming, is possible through 
both the SWD and JTAG interfaces. In-system programming, 
typically used for bootloaders, is also possible using serial 
interfaces such as I2C, USB, UART, and SPI, or any 
communications protocol. 

5.3  Flash Security

All PSoC devices include a flexible flash-protection model that 
prevents access and visibility to on-chip flash memory. This 
prevents duplication or reverse engineering of proprietary code. 
Flash memory is organized in blocks, where each block contains 
256 bytes of program or data and 32 bytes of ECC or 
configuration data. A total of up to 256 blocks is provided on 
64-KB flash devices.

The device offers the ability to assign one of four protection 
levels to each row of flash. Table 5-1 lists the protection modes 
available. Flash protection levels can only be changed by 
performing a complete flash erase. The Full Protection and Field 
Upgrade settings disable external access (through a debugging 
tool such as PSoC Creator, for example). If your application 
requires code update through a boot loader, then use the Field 
Upgrade setting. Use the Unprotected setting only when no 
security is needed in your application. The PSoC device also 
offers an advanced security feature called Device Security which 
permanently disables all test, programming, and debug ports, 

protecting your application from external access (see the 
“Device Security” section on page 65). For more information 
about how to take full advantage of the security features in 
PSoC, see the PSoC 3 TRM.

Disclaimer 

Note the following details of the flash code protection features on 
Cypress devices.

Cypress products meet the specifications contained in their 
particular Cypress datasheets. Cypress believes that its family of 
products is one of the most secure families of its kind on the 
market today, regardless of how they are used. There may be 
methods, unknown to Cypress, that can breach the code 
protection features. Any of these methods, to our knowledge, 
would be dishonest and possibly illegal. Neither Cypress nor any 
other semiconductor manufacturer can guarantee the security of 
their code. Code protection does not mean that we are 
guaranteeing the product as “unbreakable.” 

Cypress is willing to work with the customer who is concerned 
about the integrity of their code. Code protection is constantly 
evolving. We at Cypress are committed to continuously 
improving the code protection features of our products.

5.4  EEPROM

PSoC EEPROM memory is a byte-addressable nonvolatile 
memory. The CY8C32 has up to 2 KB of EEPROM memory to 
store user data. Reads from EEPROM are random access at the 
byte level. Reads are done directly; writes are done by sending 
write commands to an EEPROM programming interface. CPU 
code execution can continue from flash during EEPROM writes. 
EEPROM is erasable and writeable at the row level. The 
EEPROM is divided into 128 rows of 16 bytes each. The factory 
default values of all EEPROM bytes are 0.

Because the EEPROM is mapped to the 8051 xdata space, the 
CPU cannot execute out of EEPROM. There is no ECC 
hardware associated with EEPROM. If ECC is required it must 
be handled in firmware.

It can take as much as 20 milliseconds to write to EEPROM or 
flash. During this time the device should not be reset, or 
unexpected changes may be made to portions of EEPROM or 
flash. Reset sources (see Section 6.3.1) include XRES pin, 
software reset, and watchdog; care should be taken to make 
sure that these are not inadvertently activated. In addition, the 
low voltage detect circuits should be configured to generate an 
interrupt instead of a reset.

Table 5-1.  Flash Protection

Protection
Setting Allowed Not Allowed

Unprotected External read and write 
+ internal read and write

–

Factory 
Upgrade

External write + internal 
read and write

External read

Field Upgrade Internal read and write External read and 
write

Full Protection Internal read External read and 
write + internal write
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I/O ports are linked to the CPU through the PHUB and are also 
available in the SFRs. Using the SFRs allows faster access to a 
limited set of I/O port registers, while using the PHUB allows boot 
configuration and access to all I/O port registers. 

Each SFR supported I/O port provides three SFRs:

 SFRPRTxDR sets the output data state of the port (where x is 
port number and includes ports 0 – 6, 12 and 15).

 The SFRPRTxSEL selects whether the PHUB PRTxDR 
register or the SFRPRTxDR controls each pin’s output buffer 
within the port. If a SFRPRTxSEL[y] bit is high, the 
corresponding SFRPRTxDR[y] bit sets the output state for that 
pin. If a SFRPRTxSEL[y] bit is low, the corresponding 
PRTxDR[y] bit sets the output state of the pin (where y varies 
from 0 to 7).

 The SFRPRTxPS is a read only register that contains pin state 
values of the port pins.

5.7.4  xdata Space

The 8051 xdata space is 24-bit, or 16 MB in size. The majority of 
this space is not “external”—it is used by on-chip components. 
See Table 5-5. External, that is, off-chip, memory can be 
accessed using the EMIF. See External Memory Interface on 
page 26.

6.  System Integration

6.1  Clocking System

The clocking system generates, divides, and distributes clocks 
throughout the PSoC system. For the majority of systems, no 
external crystal is required. The IMO and PLL together can 
generate up to a 50 MHz clock, accurate to ±2 percent over 
voltage and temperature. Additional internal and external clock 
sources allow each design to optimize accuracy, power, and 
cost. Any of the clock sources can be used to generate other 
clock frequencies in the 16-bit clock dividers and UDBs for 
anything the user wants, for example a UART baud rate 
generator. 

Clock generation and distribution is automatically configured 
through the PSoC Creator IDE graphical interface. This is based 
on the complete system’s requirements. It greatly speeds the 
design process. PSoC Creator allows you to build clocking 
systems with minimal input. You can specify desired clock 
frequencies and accuracies, and the software locates or builds a 
clock that meets the required specifications. This is possible 
because of the programmability inherent in PSoC. 

Key features of the clocking system include:

 Seven general purpose clock sources
 3- to 24-MHz IMO, ±2 percent at 3 MHz
 4- to 25-MHz external crystal oscillator (MHzECO)
 Clock doubler provides a doubled clock frequency output for 

the USB block, see USB Clock Domain on page 31
 DSI signal from an external I/O pin or other logic
 24- to 50- MHz fractional PLL sourced from IMO, MHzECO, 

or DSI
 1-kHz, 33-kHz, 100-kHz ILO for watchdog timer (WDT) and 

sleep timer
 32.768-kHz external crystal oscillator (kHzECO) for RTC

 IMO has a USB mode that auto locks to the USB bus clock 
requiring no external crystal for USB. (USB equipped parts only)

 Independently sourced clock in all clock dividers

 Eight 16-bit clock dividers for the digital system

 Four 16-bit clock dividers for the analog system

 Dedicated 16-bit divider for the bus clock

 Dedicated 4-bit divider for the CPU clock

 Automatic clock configuration in PSoC Creator

Table 5-5.  XDATA Data Address Map 

Address Range Purpose

0×00 0000 – 0×00 1FFF SRAM

0×00 4000 – 0×00 42FF Clocking, PLLs, and oscillators

0×00 4300 – 0×00 43FF Power management

0×00 4400 – 0×00 44FF Interrupt controller

0×00 4500 – 0×00 45FF Ports interrupt control

0×00 4700 – 0×00 47FF Flash programming interface

0×00 4800 – 0×00 48FF Cache controller

0×00 4900 – 0×00 49FF I2C controller

0×00 4E00 – 0×00 4EFF Decimator

0×00 4F00 – 0×00 4FFF Fixed timer/counter/PWMs

0×00 5000 – 0×00 51FF I/O ports control

0×00 5400 – 0×00 54FF External Memory Interface (EMIF) 
control registers

0×00 5800 – 0×00 5FFF Analog Subsystem interface

0×00 6000 – 0×00 60FF USB controller

0×00 6400 – 0×00 6FFF UDB Working Registers

0×00 7000 – 0×00 7FFF PHUB configuration

0×00 8000 – 0×00 8FFF EEPROM

0×01 0000 – 0×01 FFFF Digital Interconnect configuration

0×05 0220 – 0×05 02F0 Debug controller

0×08 0000 – 0×08 1FFF Flash ECC bytes

0×80 0000 – 0×FF FFFF External Memory Interface
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Figure 6-5. Power Mode Transitions

6.2.1.1 Active Mode 

Active mode is the primary operating mode of the device. When 
in active mode, the active configuration template bits control 
which available resources are enabled or disabled. When a 
resource is disabled, the digital clocks are gated, analog bias 
currents are disabled, and leakage currents are reduced as 
appropriate. User firmware can dynamically control subsystem 
power by setting and clearing bits in the active configuration 
template. The CPU can disable itself, in which case the CPU is 
automatically reenabled at the next wakeup event.

When a wakeup event occurs, the global mode is always 
returned to active, and the CPU is automatically enabled, 
regardless of its template settings. Active mode is the default 
global power mode upon boot. 

6.2.1.2 Alternate Active Mode

Alternate Active mode is very similar to Active mode. In alternate 
active mode, fewer subsystems are enabled, to reduce power 
consumption. One possible configuration is to turn off the CPU 
and flash, and run peripherals at full speed.

6.2.1.3 Sleep Mode 

Sleep mode reduces power consumption when a resume time of 
15 µs is acceptable. The wake time is used to ensure that the 
regulator outputs are stable enough to directly enter active 
mode.

6.2.1.4 Hibernate Mode 

In hibernate mode nearly all of the internal functions are 
disabled. Internal voltages are reduced to the minimal level to 
keep vital systems alive. Configuration state is preserved in 
hibernate mode and SRAM memory is retained. GPIOs 
configured as digital outputs maintain their previous values and 
external GPIO pin interrupt settings are preserved. The device 
can only return from hibernate mode in response to an external 
I/O interrupt. The resume time from hibernate mode is less than 
100 µs.

To achieve an extremely low current, the hibernate regulator has 
limited capacity. This limits the frequency of any signal present 
on the input pins - no GPIO should toggle at a rate greater than 
10 kHz while in hibernate mode. If pins must be toggled at a high 
rate while in a low power mode, use sleep mode instead.

6.2.1.5 Wakeup Events
Wakeup events are configurable and can come from an interrupt 
or device reset. A wakeup event restores the system to active 
mode. Firmware enabled interrupt sources include internally 
generated interrupts, power supervisor, central timewheel, and 
I/O interrupts. Internal interrupt sources can come from a variety 
of peripherals, such as analog comparators and UDBs. The 
central timewheel provides periodic interrupts to allow the 
system to wake up, poll peripherals, or perform real-time 
functions. Reset event sources include the external reset I/O pin 
(XRES), WDT, and Precision Reset (PRES). 

6.2.2  Boost Converter

Applications that use a supply voltage of less than 1.71 V, such
as solar panels or single cell battery supplies, may use the
on-chip boost converter to generate a minimum of 1.8 V supply
voltage. The boost converter may also be used in any system
that requires a higher operating voltage than the supply provides
such as driving 5.0 V LCD glass in a 3.3 V system. With the
addition of an inductor, Schottky diode, and capacitors, it
produces a selectable output voltage sourcing enough current to
operate the PSoC and other on-board components. 

The boost converter accepts an input voltage VBAT from 0.5 V to
3.6 V, and can start up with VBAT as low as 0.5 V. The converter
provides a user configurable output voltage of 1.8 to 5.0 V (VOUT)
in 100 mV increments. VBAT is typically less than VOUT; if VBAT is
greater than or equal to VOUT, then VOUT will be slightly less than
VBAT due to resistive losses in the boost converter. The block can
deliver up to 50 mA (IBOOST) depending on configuration to both
the PSoC device and external components. The sum of all
current sinks in the design including the PSoC device, PSoC I/O
pin loads, and external component loads must be less than the
IBOOST specified maximum current.

Four pins are associated with the boost converter: VBAT, VSSB,
VBOOST, and IND. The boosted output voltage is sensed at the
VBOOST pin and must be connected directly to the chip’s supply
inputs, VDDA, VDDD, and VDDIO, if used to power the PSoC
device. 

The boost converter requires four components in addition to
those required in a non-boost design, as shown in Figure 6-6 on
page 35. A 22-µF capacitor (CBAT) is required close to the VBAT
pin to provide local bulk storage of the battery voltage and
provide regulator stability. A diode between the battery and VBAT
pin should not be used for reverse polarity protection because
the diodes forward voltage drop reduces the VBAT voltage.
Between the VBAT and IND pins, an inductor of 4.7 µH, 10 µH,
or 22 µH is required. The inductor value can be optimized to
increase the boost converter efficiency based on input voltage,
output voltage, temperature, and current. Inductor size is
determined by following the design guidance in this section and
the electrical specifications. The inductor must be placed within
1 cm of the VBAT and IND pins and have a minimum saturation
current of 750 mA. Between the IND and VBOOST pins, place a
Schottky diode within 1 cm of the pins. This diode shall have a
forward current rating of at least 1.0 A and a reverse voltage of
at least 20 V. Connect a 22-µF bulk capacitor (CBOOST) close
to VBOOST to provide regulator output stability. It is important to
sum the total capacitance connected to the VBOOST pin and
ensure the maximum CBOOST specification is not exceeded. All
capacitors must be rated for a minimum of 10 V to minimize
capacitive losses due to voltage de-rating.

Active

Manual

Hibernate

Alternate 
Active

Sleep
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boost typically draws 250 µA in active mode and 25 µA in
standby mode. The boost operating modes must be used in
conjunction with chip power modes to minimize total power
consumption. Table 6-4 lists the boost power modes available in
different chip power modes.

6.2.2.1 Boost Firmware Requirements

To ensure boost inrush current is within specification at startup,
the Enable Fast IMO During Startup value must be unchecked
in the PSoC Creator IDE. The Enable Fast IMO During Startup
option is found in PSoC Creator in the design wide resources
(cydwr) file System tab. Un-checking this option configures the
device to run at 12 MHz vs 48 MHz during startup while
configuring the device. The slower clock speed results in
reduced current draw through the boost circuit.

6.2.2.2 Boost Design Process

Correct operation of the boost converter requires specific
component values determined for each designs unique
operating conditions. The CBAT capacitor, Inductor, Schottky
diode, and CBOOST capacitor components are required with the
values specified in the electrical specifications, Table 11-7 on
page 74. The only variable component value is the inductor
LBOOST which is primarily sized for correct operation of the boost
across operating conditions and secondarily for efficiency.
Additional operating region constraints exist for VOUT, VBAT, IOUT,
and TA. 

The following steps must be followed to determine boost
converter operating parameters and LBOOST value.

1. Choose desired VBAT, VOUT, TA, and IOUT operating condition 
ranges for the application.

2. Determine if VBAT and VOUT ranges fit the boost operating 
range based on the TA range over VBAT and VOUT chart, 
Figure 11-8 on page 74. If the operating ranges are not met, 
modify the operating conditions or use an external boost 
regulator.

3. Determine if the desired ambient temperature (TA) range fits 
the ambient temperature operating range based on the TA 
range over VBAT and VOUT chart, Figure 11-8 on page 74. If 
the temperature range is not met, modify the operating condi-
tions and return to step 2, or use an external boost regulator.

4. Determine if the desired output current (IOUT) range fits the 
output current operating range based on the IOUT range over 
VBAT and VOUT chart, Figure 11-9 on page 74. If the output 

current range is not met, modify the operating conditions and 
return to step 2, or use an external boost regulator.

5. Find the allowed inductor values based on the LBOOST values 
over VBAT and VOUT chart, Figure 11-10 on page 74.

6. Based on the allowed inductor values, inductor dimensions, 
inductor cost, boost efficiency, and VRIPPLE choose the 
optimum inductor value for the system. Boost efficiency and 
VRIPPLE typical values are provided in the Efficiency vs VBAT 
and VRIPPLE vs VBAT charts, Figure 11-11 on page 75 through 
Figure 11-14 on page 75. In general, if high efficiency and low 
VRIPPLE are most important, then the highest allowed inductor 
value should be used. If low inductor cost or small inductor 
size are most important, then one of the smaller allowed 
inductor values should be used. If the allowed inductor(s) 
efficiency, VRIPPLE, cost or dimensions are not acceptable for 
the application than an external boost regulator should be 
used.

6.3  Reset

CY8C32 has multiple internal and external reset sources 
available. The reset sources are:

 Power source monitoring – The analog and digital power 
voltages, VDDA, VDDD, VCCA, and VCCD are monitored in 
several different modes during power up, active mode, and 
sleep mode (buzzing). If any of the voltages goes outside 
predetermined ranges then a reset is generated. The monitors 
are programmable to generate an interrupt to the processor 
under certain conditions before reaching the reset thresholds.

 External – The device can be reset from an external source by 
pulling the reset pin (XRES) low. The XRES pin includes an 
internal pull-up to VDDIO1. VDDD, VDDA, and VDDIO1 must 
all have voltage applied before the part comes out of reset.

Watchdog timer – A watchdog timer monitors the execution of 
instructions by the processor. If the watchdog timer is not reset 
by firmware within a certain period of time, the watchdog timer 
generates a reset.

 Software – The device can be reset under program control. 

Figure 6-8. Resets

Table 6-4.  Chip and Boost Power Modes Compatibility

Chip Power Modes Boost Power Modes

Chip-active or alternate 
active mode 

Boost must be operated in its active 
mode.

Chip-sleep mode Boost can be operated in either active 
or standby mode. In boost standby 
mode, the chip must wake up periodi-
cally for boost active-mode refresh. 

Chip-hibernate mode Boost can be operated in its active 
mode. However, it is recommended not 
to use the boost in chip hibernate mode 
due to the higher current consumption 
in boost active mode.
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Figure 6-9. GPIO Block Diagram
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7.1.4  Designing with PSoC Creator

7.1.4.1 More Than a Typical IDE
A successful design tool allows for the rapid development and 
deployment of both simple and complex designs. It reduces or 
eliminates any learning curve. It makes the integration of a new 
design into the production stream straightforward. 
PSoC Creator is that design tool. 
PSoC Creator is a full featured Integrated Development 
Environment (IDE) for hardware and software design. It is 
optimized specifically for PSoC devices and combines a modern, 
powerful software development platform with a sophisticated 
graphical design tool. This unique combination of tools makes 
PSoC Creator the most flexible embedded design platform 
available.
Graphical design entry simplifies the task of configuring a 
particular part. You can select the required functionality from an 
extensive catalog of components and place it in your design. All 
components are parameterized and have an editor dialog that 
allows you to tailor functionality to your needs.
PSoC Creator automatically configures clocks and routes the I/O 
to the selected pins and then generates APIs to give the 
application complete control over the hardware. Changing the 
PSoC device configuration is as simple as adding a new 
component, setting its parameters, and rebuilding the project.
At any stage of development you are free to change the 
hardware configuration and even the target processor. To 
retarget your application (hardware and software) to new 
devices, even from 8- to 32-bit families, just select the new 
device and rebuild.
You also have the ability to change the C compiler and evaluate 
an alternative. Components are designed for portability and are 
validated against all devices, from all families, and against all 
supported tool chains. Switching compilers is as easy as editing 
the from the project options and rebuilding the application with 
no errors from the generated APIs or boot code. 

7.1.4.2 Component Catalog

The component catalog is a repository of reusable design 
elements that select device functionality and customize your 
PSoC device. It is populated with an impressive selection of 
content; from simple primitives such as logic gates and device 
registers, through the digital timers, counters and PWMs, plus 

analog components such as ADC and DAC, and communication 
protocols, such as I2C, and USB. See Example Peripherals on 
page 45 for more details about available peripherals. All content 
is fully characterized and carefully documented in datasheets 
with code examples, AC/DC specifications, and user code ready 
APIs. 

7.1.4.3 Design Reuse

The symbol editor gives you the ability to develop reusable 
components that can significantly reduce future design time. Just 
draw a symbol and associate that symbol with your proven 
design. PSoC Creator allows for the placement of the new 
symbol anywhere in the component catalog along with the 
content provided by Cypress. You can then reuse your content 
as many times as you want, and in any number of projects, 
without ever having to revisit the details of the implementation.

7.1.4.4 Software Development

Anchoring the tool is a modern, highly customizable user 
interface. It includes project management and integrated editors 
for C and assembler source code, as well the design entry tools.

Project build control leverages compiler technology from top 
commercial vendors such as ARM® Limited, Keil™, and  
CodeSourcery (GNU). Free versions of Keil C51 and GNU C 
Compiler (GCC) for ARM, with no restrictions on code size or end 
product distribution, are included with the tool distribution. 
Upgrading to more optimizing compilers is a snap with support 
for the professional Keil C51 product and ARM RealView™ 
compiler.

7.1.4.5 Nonintrusive Debugging

With JTAG (4-wire) and SWD (2-wire) debug connectivity 
available on all devices, the PSoC Creator debugger offers full 
control over the target device with minimum intrusion. 
Breakpoints and code execution commands are all readily 
available from toolbar buttons and an impressive lineup of 
windows—register, locals, watch, call stack, memory and 
peripherals—make for an unparalleled level of visibility into the 
system.

PSoC Creator contains all the tools necessary to complete a 
design, and then to maintain and extend that design for years to 
come. All steps of the design flow are carefully integrated and 
optimized for ease-of-use and to maximize productivity.
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7.2  Universal Digital Block

The Universal Digital Block (UDB) represents an evolutionary 
step to the next generation of PSoC embedded digital peripheral 
functionality. The architecture in first generation PSoC digital 
blocks provides coarse programmability in which a few fixed 
functions with a small number of options are available. The new 
UDB architecture is the optimal balance between configuration 
granularity and efficient implementation. A cornerstone of this 
approach is to provide the ability to customize the devices digital 
operation to match application requirements.

To achieve this, UDBs consist of a combination of uncommitted 
logic (PLD), structured logic (Datapath), and a flexible routing 
scheme to provide interconnect between these elements, I/O 
connections, and other peripherals. UDB functionality ranges 
from simple self contained functions that are implemented in one 
UDB, or even a portion of a UDB (unused resources are 
available for other functions), to more complex functions that 
require multiple UDBs. Examples of basic functions are timers, 
counters, CRC generators, PWMs, dead band generators, and 
communications functions, such as UARTs, SPI, and I2C. Also, 
the PLD blocks and connectivity provide full featured general 
purpose programmable logic within the limits of the available 
resources. 

Figure 7-2. UDB Block Diagram

The main component blocks of the UDB are:

 PLD blocks – There are two small PLDs per UDB. These blocks 
take inputs from the routing array and form registered or 
combinational sum-of-products logic. PLDs are used to 
implement state machines, state bits, and combinational logic 
equations. PLD configuration is automatically generated from 
graphical primitives.

 Datapath Module – This 8-bit wide datapath contains structured 
logic to implement a dynamically configurable ALU, a variety 
of compare configurations and condition generation. This block 
also contains input/output FIFOs, which are the primary parallel 
data interface between the CPU/DMA system and the UDB.

 Status and Control Module – The primary role of this block is 
to provide a way for CPU firmware to interact and synchronize 
with UDB operation.

 Clock and Reset Module – This block provides the UDB clocks 
and reset selection and control.

7.2.1  PLD Module

The primary purpose of the PLD blocks is to implement logic 
expressions, state machines, sequencers, lookup tables, and 
decoders. In the simplest use model, consider the PLD blocks as 
a standalone resource onto which general purpose RTL is 
synthesized and mapped. The more common and efficient use 
model is to create digital functions from a combination of PLD 
and datapath blocks, where the PLD implements only the 
random logic and state portion of the function while the datapath 
(ALU) implements the more structured elements.

Figure 7-3. PLD 12C4 Structure

One 12C4 PLD block is shown in Figure 7-3. This PLD has 12 
inputs, which feed across eight product terms. Each product term 
(AND function) can be from 1 to 12 inputs wide, and in a given 
product term, the true (T) or complement (C) of each input can 
be selected. The product terms are summed (OR function) to 
create the PLD outputs. A sum can be from 1 to 8 product terms 
wide. The 'C' in 12C4 indicates that the width of the OR gate (in 
this case 8) is constant across all outputs (rather than variable 
as in a 22V10 device). This PLA like structure gives maximum 
flexibility and insures that all inputs and outputs are permutable 
for ease of allocation by the software tools. There are two 12C4 
PLDs in each UDB.
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7.2.3.2 Clock Generation

Each subcomponent block of a UDB including the two PLDs, the 
datapath, and Status and Control, has a clock selection and 
control block. This promotes a fine granularity with respect to 
allocating clocking resources to UDB component blocks and 
allows unused UDB resources to be used by other functions for 
maximum system efficiency.

7.3  UDB Array Description

Figure 7-7 shows an example of a 16 UDB array. In addition to 
the array core, there are a DSI routing interfaces at the top and 
bottom of the array. Other interfaces that are not explicitly shown 
include the system interfaces for bus and clock distribution. The 
UDB array includes multiple horizontal and vertical routing 
channels each comprised of 96 wires. The wire connections to 
UDBs, at horizontal/vertical intersection and at the DSI interface 
are highly permutable providing efficient automatic routing in 
PSoC Creator. Additionally the routing allows wire by wire 
segmentation along the vertical and horizontal routing to further 
increase routing flexibility and capability.

Figure 7-7. Digital System Interface Structure 

7.3.1  UDB Array Programmable Resources

Figure 7-8 shows an example of how functions are mapped into 
a bank of 16 UDBs. The primary programmable resources of the 
UDB are two PLDs, one datapath and one status/control register. 
These resources are allocated independently, because they 
have independently selectable clocks, and therefore unused 
blocks are allocated to other unrelated functions.

An example of this is the 8-bit Timer in the upper left corner of 
the array. This function only requires one datapath in the UDB, 
and therefore the PLD resources may be allocated to another 
function. A function such as a Quadrature Decoder may require 
more PLD logic than one UDB can supply and in this case can 
utilize the unused PLD blocks in the 8-bit Timer UDB. 
Programmable resources in the UDB array are generally 
homogeneous so functions can be mapped to arbitrary 
boundaries in the array.

Figure 7-8. Function Mapping Example in a Bank of UDBs

7.4  DSI Routing Interface Description

The DSI routing interface is a continuation of the horizontal and 
vertical routing channels at the top and bottom of the UDB array 
core. It provides general purpose programmable routing 
between device peripherals, including UDBs, I/Os, analog 
peripherals, interrupts, DMA and fixed function peripherals.

Figure 7-9 illustrates the concept of the digital system 
interconnect, which connects the UDB array routing matrix with 
other device peripherals. Any digital core or fixed function 
peripheral that needs programmable routing is connected to this 
interface.

Signals in this category include:

 Interrupt requests from all digital peripherals in the system.

 DMA requests from all digital peripherals in the system.

 Digital peripheral data signals that need flexible routing to I/Os.

 Digital peripheral data signals that need connections to UDBs.

 Connections to the interrupt and DMA controllers.

 Connection to I/O pins.

 Connection to analog system digital signals.
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Figure 7-9. Digital System Interconnect

Interrupt and DMA routing is very flexible in the CY8C32 
programmable architecture. In addition to the numerous fixed 
function peripherals that can generate interrupt requests, any 
data signal in the UDB array routing can also be used to generate 
a request. A single peripheral may generate multiple 
independent interrupt requests simplifying system and firmware 
design. Figure 7-10 shows the structure of the IDMUX 
(Interrupt/DMA Multiplexer).

Figure 7-10. Interrupt and DMA Processing in the IDMUX 

7.4.1  I/O Port Routing

There are a total of 20 DSI routes to a typical 8-bit I/O port, 16 
for data and four for drive strength control.

When an I/O pin is connected to the routing, there are two 
primary connections available, an input and an output. In 

conjunction with drive strength control, this can implement a 
bidirectional I/O pin. A data output signal has the option to be 
single synchronized (pipelined) and a data input signal has the 
option to be double synchronized. The synchronization clock is 
the master clock (see Figure 6-1). Normally all inputs from pins 
are synchronized as this is required if the CPU interacts with the 
signal or any signal derived from it. Asynchronous inputs have 
rare uses. An example of this is a feed through of combinational 
PLD logic from input pins to output pins.

Figure 7-11. I/O Pin Synchronization Routing

Figure 7-12. I/O Pin Output Connectivity 

There are four more DSI connections to a given I/O port to 
implement dynamic output enable control of pins. This 
connectivity gives a range of options, from fully ganged 8-bits 
controlled by one signal, to up to four individually controlled pins. 
The output enable signal is useful for creating tri-state 
bidirectional pins and buses.

Figure 7-13. I/O Pin Output Enable Connectivity
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7.7  I2C

PSoC includes a single fixed-function I2C peripheral. Additional 
I2C interfaces can be instantiated using Universal Digital Blocks 
(UDBs) in PSoC Creator, as required.

The I2C peripheral provides a synchronous two-wire interface 
designed to interface the PSoC device with a two-wire I2C serial 
communication bus. It is compatible[13] with I2C Standard-mode, 
Fast-mode, and Fast-mode Plus devices as defined in the NXP 
I2C-bus specification and user manual (UM10204). The I2C bus 
I/O may be implemented with GPIO or SIO in open-drain modes.

To eliminate the need for excessive CPU intervention and 
overhead, I2C specific support is provided for status detection 
and generation of framing bits. I2C operates as a slave, a master, 
or multimaster (Slave and Master)[14]. In slave mode, the unit 
always listens for a start condition to begin sending or receiving 
data. Master mode supplies the ability to generate the Start and 
Stop conditions and initiate transactions. Multimaster mode 
provides clock synchronization and arbitration to allow multiple 
masters on the same bus. If Master mode is enabled and Slave 
mode is not enabled, the block does not generate interrupts on 
externally generated Start conditions. I2C interfaces through the 
DSI routing and allows direct connections to any GPIO or SIO 
pins.

I2C provides hardware address detect of a 7-bit address without 
CPU intervention. Additionally the device can wake from 
low-power modes on a 7-bit hardware address match. If wakeup 
functionality is required, I2C pin connections are limited to one 
of two specific pairs of SIO pins. See descriptions of SCL and 
SDA pins in Pin Descriptions on page 12.

I2C features include:

 Slave and Master, Transmitter, and Receiver operation

 Byte processing for low CPU overhead

 Interrupt or polling CPU interface

 Support for bus speeds up to 1 Mbps 

 7 or 10-bit addressing (10-bit addressing requires firmware 
support)

 SMBus operation (through firmware support – SMBus 
supported in hardware in UDBs)

 7-bit hardware address compare

Wake from low-power modes on address match

Glitch filtering (active and alternate-active modes only)

Data transfers follow the format shown in Figure 7-16. After the 
START condition (S), a slave address is sent. This address is 7 
bits long followed by an eighth bit which is a data direction bit 
(R/W) - a 'zero' indicates a transmission (WRITE), a 'one' 
indicates a request for data (READ). A data transfer is always 
terminated by a STOP condition (P) generated by the master. 

Figure 7-16. I2C Complete Transfer Timing

7.7.1  External Electrical Connections 

As Figure 7-17 shows, the I2C bus requires external pull-up
resistors (RP). These resistors are primarily determined by the
supply voltage, bus speed, and bus capacitance. For detailed

information on how to calculate the optimum pull-up resistor
value for your design, we recommend using the UM10204
I2C-bus specification and user manual Rev 6, or newer, available
from the NXP website at www.nxp.com.

Notes
13. The I2C peripheral is non-compliant with the NXP I2C specification in the following areas: analog glitch filter, I/O VOL/IOL, I/O hysteresis. The I2C Block has a digital 

glitch filter (not available in sleep mode). The Fast-mode minimum fall-time specification can be met by setting the I/Os to slow speed mode. See the I/O Electrical 
Specifications in “Inputs and Outputs” section on page 76 for details.

14. Fixed-block I2C does not support undefined bus conditions, nor does it support Repeated Start in Slave mode. These conditions should be avoided, or the UDB-based 
I2C component should be used instead.
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9.2  Serial Wire Debug Interface

The SWD interface is the preferred alternative to the JTAG 
interface. It requires only two pins instead of the four or five 
needed by JTAG. SWD provides all of the programming and 
debugging features of JTAG at the same speed. SWD does not 
provide access to scan chains or device chaining. The SWD 
clock frequency can be up to 1/3 of the CPU clock frequency.

SWD uses two pins, either two of the JTAG pins (TMS and TCK) 
or the USBIO D+ and D– pins. The USBIO pins are useful for in 
system programming of USB solutions that would otherwise 
require a separate programming connector. One pin is used for 
the data clock and the other is used for data input and output.

SWD can be enabled on only one of the pin pairs at a time. This 
only happens if, within 8 μs (key window) after reset, that pin pair 

(JTAG or USB) receives a predetermined acquire sequence of 
1s and 0s. If the NVL latches are set for SWD (see Section 5.5), 
this sequence need not be applied to the JTAG pin pair. The 
acquire sequence must always be applied to the USB pin pair.

SWD is used for debugging or for programming the flash 
memory. 

The SWD interface can be enabled from the JTAG interface or 
disabled, allowing its pins to be used as GPIO. Unlike JTAG, the 
SWD interface can always be reacquired on any device during 
the key window. It can then be used to reenable the JTAG 
interface, if desired. When using SWD or JTAG pins as standard 
GPIO, make sure that the GPIO functionality and PCB circuits do 
not interfere with SWD or JTAG use.

Figure 9-2. SWD Interface Connections between PSoC 3 and Programmer

VSSD, VSSA

VDDD, VDDA, VDDIO0, VDDIO1, VDDIO2, VDDIO3 
1, 2, 3

SWDCK (P1[1] or P15[7])

SWDIO (P1[0] or P15[6])

XRES or P1[2]  3, 4

GND
GND

SWDCK

SWDIO

XRES

Host Programmer PSoC 3
VDD

 1  The voltage levels of the Host Programmer and the PSoC 3 voltage domains involved in Programming    
    should be the same. XRES pin (XRES_N or P1[2]) is  powered by VDDIO1. The USB SWD pins are 
    powered by VDDD.  So for Programming using the USB SWD pins with XRES pin, the VDDD, VDDIO1 of 
   PSoC 3 should be at the same voltage level as Host VDD. Rest of PSoC 3 voltage domains ( VDDA, VDDIO0,  
    VDDIO2, VDDIO3) need not be at the same voltage level as host Programmer.   The Port 1 SWD pins are   
   powered by VDDIO1.  So VDDIO1 of PSoC 3 should be at same voltage level as host VDD for Port 1 SWD  
   programming. Rest of PSoC 3 voltage domains ( VDDD,  VDDA, VDDIO0, VDDIO2, VDDIO3) need not be at the same  
   voltage level as host Programmer.

2  Vdda must be greater than or equal to all other power supplies (Vddd, Vddio’s) in PSoC 3.

3  For Power cycle mode Programming, XRES pin is not required. But the Host programmer must have  
   the capability to toggle power (Vddd, Vdda, All Vddio’s) to PSoC 3. This may typically require external   
   interface circuitry to toggle power which will depend on the programming setup. The power supplies can  
   be brought up in any sequence, however, once stable, VDDA must be greater than or equal to all other   
   supplies.

 4  P1[2] will be configured as XRES by default only for 48-pin devices (without dedicated XRES pin). For  
   devices with dedicated XRES pin, P1[2] is GPIO pin by default. So use P1[2] as Reset pin only for 48-
   pin devices, but use dedicated XRES pin for rest of devices.

VDD
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11.2  Device Level Specifications

Specifications are valid for –40 °C  TA  85 °C and TJ  100 °C, except where noted. Specifications are valid for 1.71 V to 5.5 V, 
except where noted.

11.2.1  Device Level Specifications 

Table 11-2.  DC Specifications

Parameter Description Conditions Min Typ[22] Max Units

VDDA
Analog supply voltage and input to analog 
core regulator Analog core regulator enabled 1.8 – 5.5 V

VDDA
Analog supply voltage, analog regulator 
bypassed Analog core regulator disabled 1.71 1.8 1.89 V

VDDD Digital supply voltage relative to VSSD Digital core regulator enabled
1.8 – VDDA

[18]

V
– – VDDA + 0.1[24]

VDDD
Digital supply voltage, digital regulator 
bypassed Digital core regulator disabled 1.71 1.8 1.89 V

VDDIO
[19] I/O supply voltage relative to VSSIO

1.71 – VDDA
[18] V

– – VDDA + 0.1[24]

VCCA
Direct analog core voltage input (Analog 
regulator bypass) Analog core regulator disabled 1.71 1.8 1.89 V

VCCD
Direct digital core voltage input (Digital 
regulator bypass) Digital core regulator disabled 1.71 1.8 1.89 V

IDD [20, 21]

Active Mode

Only IMO and CPU clock enabled. CPU 
executing simple loop from instruction 
buffer.

VDDX = 2.7 V – 5.5 V;
FCPU = 6 MHz[23]

T = –40 °C – 1.2 2.9

mA

T = 25 °C – 1.2 3.1

T = 85 °C – 4.9 7.7

IMO enabled, bus clock and CPU clock 
enabled. CPU executing program from 
flash.

VDDX = 2.7 V – 5.5 V;
FCPU = 3 MHz[23]

T = –40 °C – 1.3 2.9

T = 25 °C – 1.6 3.2

T = 85 °C – 4.8 7.5

VDDX = 2.7 V – 5.5 V;
FCPU = 6 MHz

T = –40 °C – 2.1 3.7

T = 25 °C – 2.3 3.9

T = 85 °C – 5.6 8.5

VDDX = 2.7 V – 5.5 V;
FCPU = 12 MHz[23]

T = –40 °C – 3.5 5.2

T = 25 °C – 3.8 5.5

T = 85 °C – 7.1 9.8

VDDX = 2.7 V – 5.5 V;
FCPU = 24 MHz[23]

T = –40 °C – 6.3 8.1

T = 25 °C – 6.6 8.3

T = 85 °C – 10 13

VDDX = 2.7 V – 5.5 V;
FCPU = 48 MHz[23]

T = –40 °C – 11.5 13.5

T = 25 °C – 12 14

T = 85 °C – 15.5 18.5

Notes
18. The power supplies can be brought up in any sequence however once stable VDDA must be greater than or equal to all other supplies.
19. The VDDIO supply voltage must be greater than the maximum voltage on the associated GPIO pins. Maximum voltage on GPIO pin VDDIO  VDDA.
20. Total current for all power domains: digital (IDDD), analog (IDDA), and I/Os (IDDIO0, 1, 2, 3). Boost not included. All I/Os floating.
21. The current consumption of additional peripherals that are implemented only in programmed logic blocks can be found in their respective datasheets, available in 

PSoC Creator, the integrated design environment. To estimate total current, find the CPU current at the frequency of interest and add peripheral currents for your 
particular system from the device datasheet and component datasheets.

22. VDDX = 3.3 V.
23. Based on device characterizations (Not production tested).
24. Guaranteed by design, not production tested.
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Figure 11-8. TA range over VBAT  and VOUT Figure 11-9. IOUT range over VBAT and VOUT

Figure 11-10. LBOOST values over VBAT and VOUT

Table 11-7.  Recommended External Components for Boost Circuit

Parameter Description Conditions Min Typ Max Units

LBOOST Boost inductor 4.7 µH nominal 3.7 4.7 5.7 µH

10 µH nominal 8.0 10.0 12.0 µH

22 µH nominal 17.0 22.0 27.0 µH

CBOOST Total capacitance sum of 
VDDD, VDDA, VDDIO

[34]
17.0 26.0 31.0 µF

CBAT Battery filter capacitor 17.0 22.0 27.0 µF

IF Schottky diode average 
forward current

1.0 – – A

VR Schottky reverse voltage 20.0 – – V

Note
34. Based on device characterization (Not production tested).
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Figure 11-20. SIO Output Rise and Fall Times, Fast Strong 
Mode, VDDIO = 3.3 V, 25 pF Load

Figure 11-21. SIO Output Rise and Fall Times, Slow Strong 
Mode, VDDIO = 3.3 V, 25 pF Load

Fsioout

SIO output operating frequency

2.7 V < VDDIO < 5.5 V, Unregu-
lated output (GPIO) mode, fast 
strong drive mode

90/10% VDDIO into 25 pF – – 33 MHz

1.71 V < VDDIO < 2.7 V, Unregu-
lated output (GPIO) mode, fast 
strong drive mode

90/10% VDDIO into 25 pF – – 16 MHz

3.3 V < VDDIO < 5.5 V, Unregu-
lated output (GPIO) mode, slow 
strong drive mode

90/10% VDDIO into 25 pF – – 5 MHz

1.71 V < VDDIO < 3.3 V, Unregu-
lated output (GPIO) mode, slow 
strong drive mode

90/10% VDDIO into 25 pF – – 4 MHz

2.7 V < VDDIO < 5.5 V, Regulated 
output mode, fast strong drive 
mode

Output continuously switching 
into 25 pF

– – 20 MHz

1.71 V < VDDIO < 2.7 V, Regulated 
output mode, fast strong drive 
mode

Output continuously switching 
into 25 pF

– – 10 MHz

1.71 V < VDDIO < 5.5 V, Regulated 
output mode, slow strong drive 
mode

Output continuously switching 
into 25 pF

– – 2.5 MHz

Fsioin
SIO input operating frequency

1.71 V < VDDIO < 5.5 V 90/10% VDDIO – – 33 MHz

Table 11-12.  SIO AC Specifications (continued)

Parameter Description Conditions Min Typ Max Units
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11.4.3  USBIO

For operation in GPIO mode, the standard range for VDDD applies, see Device Level Specifications  on page 68.

Table 11-13.  SIO Comparator Specifications[42]

Parameter Description Conditions Min Typ Max Units

Vos Offset voltage VDDIO = 2 V – – 68 mV

VDDIO = 2.7 V – – 72

VDDIO = 5.5 V – – 82

TCVos Offset voltage drift with temp – – 250 μV/°C

CMRR Common mode rejection ratio VDDIO = 2 V 30 – – dB

VDDIO = 2.7 V 35 – –

VDDIO = 5.5 V 40 – –

Tresp Response time – – 30 ns

Table 11-14.  USBIO DC Specifications

Parameter Description Conditions Min Typ Max Units

Rusbi USB D+ pull-up resistance With idle bus 0.900 – 1.575 k

Rusba USB D+ pull-up resistance While receiving traffic 1.425 – 3.090  k

Vohusb Static output high 15 k ±5% to Vss, internal pull-up 
enabled

2.8 – 3.6 V

Volusb Static output low 15 k ±5% to Vss, internal pull-up 
enabled

– – 0.3 V

Vohgpio Output voltage high, GPIO mode IOH = 4 mA, VDDD  3 V 2.4 – – V

Volgpio Output voltage low, GPIO mode IOL = 4 mA, VDDD  3 V – – 0.3 V

Vdi Differential input sensitivity |(D+)–(D–)| – – 0.2 V

Vcm Differential input common mode 
range

– 0.8 – 2.5 V

Vse Single ended receiver threshold – 0.8 – 2 V

Rps2 PS/2 pull-up resistance In PS/2 mode, with PS/2 pull-up 
enabled

3 – 7 k

Rext
External USB series resistor In series with each USB pin 21.78 

(–1%)
22 22.22 

(+1%)


Zo USB driver output impedance Including Rext 28 – 44 

CIN USB transceiver input capacitance – – – 20 pF

IIL
[42] Input leakage current (absolute 

value)
25 °C, VDDD = 3.0 V – – 2 nA

Note
42. Based on device characterization (Not production tested).
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11.5  Analog Peripherals

Specifications are valid for –40 °C  TA  85 °C and TJ  100 °C, except where noted. Specifications are valid for 1.71 V to 5.5 V, 
except where noted.

11.5.1  Delta-sigma ADC

Unless otherwise specified, operating conditions are:

Operation in continuous sample mode

 fclk = 6.144 MHz 

 Reference = 1.024 V internal reference bypassed on P3.2 or P0.3

 Unless otherwise specified, all charts and graphs show typical values

Table 11-19.  12-bit Delta-sigma ADC DC Specifications

Parameter Description Conditions Min Typ Max Units

Resolution 8 – 12 bits

Number of channels, single ended – –
No. of 
GPIO –

Number of channels, differential Differential pair is formed using a 
pair of GPIOs. – – No. of 

GPIO/2 –

Monotonic Yes – – – –

Ge Gain error Buffered, buffer gain = 1, Range = 
±1.024 V, 25 °C – – ±0.2 %

Gd Gain drift Buffered, buffer gain = 1, Range = 
±1.024 V

– – 50 ppm/°
C

Vos Input offset voltage Buffered, 12-bit mode – – ±0.1 mV

TCVos Temperature coefficient, input offset 
voltage

Buffer gain = 1, 12-bit, 
Range = ±1.024 V

– – 1 µV/°C

Input voltage range, single ended[45] VSSA – VDDA V

Input voltage range, differential unbuf-
fered[45] VSSA – VDDA V

Input voltage range, differential, 
buffered[45] VSSA – VDDA – 1 V

INL12 Integral non linearity[45] Range = ±1.024 V, unbuffered – – ±1 LSB

DNL12 Differential non linearity[45] Range = ±1.024 V, unbuffered – – ±1 LSB

INL8 Integral non linearity[45] Range = ±1.024 V, unbuffered – – ±1 LSB

DNL8 Differential non linearity[45] Range = ±1.024 V, unbuffered – – ±1 LSB

Rin_Buff ADC input resistance Input buffer used 10 – – M

Rin_ADC12 ADC input resistance Input buffer bypassed, 12 bit, 
Range = ±1.024 V

– 148[46] – k

Rin_ExtRef ADC external reference input resistance – 70[46, 47] – k

Vextref
ADC external reference input voltage, see 
also internal reference in Voltage 
Reference on page 86

Pins P0[3], P3[2] 0.9 – 1.3 V

Current Consumption

IDD_12 IDDA + IDDD current consumption, 12 bit[45] 192 ksps, unbuffered – – 1.95 mA

IBUFF Buffer current consumption[45] – – 2.5 mA

Notes
45. Based on device characterization (not production tested).
46. By using switched capacitors at the ADC input an effective input resistance is created. Holding the gain and number of bits constant, the resistance is proportional to 

the inverse of the clock frequency. This value is calculated, not measured. For more information see the Technical Reference Manual.
47. Recommend an external reference device with an output impedance <100 Ω, for example, the LM185/285/385 family. A 1-µF capacitor is recommended. For more 

information, see AN61290 - PSoC® 3 and PSoC 5LP Hardware Design Considerations.

http://www.cypress.com/?rID=43337


PSoC® 3: CY8C32 Family Data Sheet

Document Number: 001-56955 Rev. *Y Page 88 of 128

Figure 11-26. IDAC INL vs Input Code, Range = 255 µA, 
Source Mode

Figure 11-27. IDAC INL vs Input Code, Range = 255 µA, Sink 
Mode

IDD Operating current, code = 0 Low speed mode, source mode, 
range = 31.875 µA

– 44 100 µA

Low speed mode, source mode, 
range = 255 µA,

– 33 100 µA

Low speed mode, source mode, 
range = 2.04 mA

– 33 100 µA

Low speed mode, sink mode, 
range = 31.875 µA

– 36 100 µA

Low speed mode, sink mode, 
range = 255 µA

– 33 100 µA

Low speed mode, sink mode, 
range = 2.04 mA

– 33 100 µA

High speed mode, source mode, 
range = 31.875 µA

– 310 500 µA

High speed mode, source mode, 
range = 255 µA

– 305 500 µA

High speed mode, source mode, 
range = 2.04 mA

– 305 500 µA

High speed mode, sink mode, 
range = 31.875 µA

– 310 500 µA

High speed mode, sink mode, 
range = 255 µA

– 300 500 µA

High speed mode, sink mode, 
range = 2.04 mA

– 300 500 µA

Table 11-26.  IDAC DC Specifications (continued)

Parameter Description Conditions Min Typ Max Units
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Figure 11-36. IDAC Step Response, Codes 0x40 - 0xC0, 
255 µA Mode, Source Mode, High speed mode, VDDA = 5 V

Figure 11-37. IDAC Glitch Response, Codes 0x7F - 0x80, 
255 µA Mode, Source Mode, High speed mode, VDDA = 5 V

Figure 11-38. IDAC PSRR vs Frequency Figure 11-39. IDAC Current Noise, 255 µA Mode, 
Source Mode, High speed mode, VDDA = 5 V

Table 11-27.  IDAC AC Specifications

Parameter Description Conditions Min Typ Max Units

FDAC Update rate – – 8 Msps

TSETTLE Settling time to 0.5 LSB Range = 31.875 µA or 255 µA, full 
scale transition, High speed mode, 
600  15-pF load

– – 125 ns

Current noise Range = 255 µA, source mode, 
High speed mode, VDDA = 5 V, 
10 kHz

– 340 – pA/sqrtHz
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