

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	8051
Core Size	8-Bit
Speed	50MHz
Connectivity	EBI/EMI, I ² C, LINbus, SPI, UART/USART
Peripherals	CapSense, DMA, LCD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 5.5V
Data Converters	A/D 16x12b; D/A 1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-VFQFN Exposed Pad
Supplier Device Package	48-QFN (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c3245lti-139

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Contents

1. Architectural Overview	4
2. Pinouts	6
3. Pin Descriptions	12
4. CPU	13
4.1 8051 CPU	13
4.2 Addressing Modes	
4.3 Instruction Set	
4.4 DMA and PHUB	
4.5 Interrupt Controller	20
5. Memory	24
5.1 Static RAM	24
5.2 Flash Program Memory	24
5.3 Flash Security	
5.4 EEPROM	
5.5 Nonvolatile Latches (NVLs)	
5.6 External Memory Interface	
5.7 Memory Map	
6. System Integration	
6.1 Clocking System	
6.2 Power System	
6.3 Reset	
6.4 I/O System and Routing	
7. Digital Subsystem	
7.1 Example Peripherals	
7.2 Universal Digital Block	
7.3 UDB Array Description	
7.4 DSI Routing Interface Description	
7.5 USB	
7.6 Timers, Counters, and PWMs	
7.7 l ² C	
8. Analog Subsystem	
8.1 Analog Routing	
8.2 Delta-sigma ADC	
8.3 Comparators	
8.4 LCD Direct Drive 8.5 CapSense	
8.6 Temp Sensor	
8.7 DAC	
	01

9. Programming, Debug Interfaces, Resources	
9.1 JTAG Interface	
9.2 Serial Wire Debug Interface	
9.3 Debug Features 9.4 Trace Features	
9.5 Single Wire Viewer Interface	
9.6 Programming Features	
9.7 Device Security	
9.8 CSP Package Bootloader	
10. Development Support	66
10.1 Documentation	
10.2 Online	
10.3 Tools	
11. Electrical Specifications	
11.1 Absolute Maximum Ratings	
11.2 Device Level Specifications	
11.3 Power Regulators 11.4 Inputs and Outputs	
11.5 Analog Peripherals	
11.6 Digital Peripherals	
11.7 Memory	
11.8 PSoC System Resources	
11.9 Clocking	107
12. Ordering Information	
12.1 Part Numbering Conventions	
13. Packaging	113
14. Acronyms	117
15. Reference Documents	118
16. Document Conventions	119
16.1 Units of Measure	119
17. Revision History	120
18. Sales, Solutions, and Legal Information	128
Worldwide Sales and Design Support	
Products	
PSoC® Solutions	
Cypress Developer Community	
Technical Support	128

5. Memory

5.1 Static RAM

CY8C32 Static RAM (SRAM) is used for temporary data storage. Up to 8 KB of SRAM is provided and can be accessed by the 8051 or the DMA controller. See Memory Map on page 26. Simultaneous access of SRAM by the 8051 and the DMA controller is possible if different 4-KB blocks are accessed.

5.2 Flash Program Memory

Flash memory in PSoC devices provides nonvolatile storage for user firmware, user configuration data, bulk data storage, and optional ECC data. The main flash memory area contains up to 64 KB of user program space.

Up to an additional 8 KB of flash space is available for Error Correcting Codes (ECC). If ECC is not used this space can store device configuration data and bulk user data. User code may not be run out of the ECC flash memory section. ECC can correct one bit error and detect two bit errors per 8 bytes of firmware memory; an interrupt can be generated when an error is detected.

The CPU reads instructions located in flash through a cache controller. This improves instruction execution rate and reduces system power consumption by requiring less frequent flash access. The cache has 8 lines at 64 bytes per line for a total of 512 bytes. It is fully associative, automatically controls flash power, and can be enabled or disabled. If ECC is enabled, the cache controller also performs error checking and correction, and interrupt generation.

Flash programming is performed through a special interface and preempts code execution out of flash. The flash programming interface performs flash erasing, programming and setting code protection levels. Flash in-system serial programming (ISSP), typically used for production programming, is possible through both the SWD and JTAG interfaces. In-system programming, typically used for bootloaders, is also possible using serial interfaces such as I²C, USB, UART, and SPI, or any communications protocol.

5.3 Flash Security

All PSoC devices include a flexible flash-protection model that prevents access and visibility to on-chip flash memory. This prevents duplication or reverse engineering of proprietary code. Flash memory is organized in blocks, where each block contains 256 bytes of program or data and 32 bytes of ECC or configuration data. A total of up to 256 blocks is provided on 64-KB flash devices.

The device offers the ability to assign one of four protection levels to each row of flash. Table 5-1 lists the protection modes available. Flash protection levels can only be changed by performing a complete flash erase. The Full Protection and Field Upgrade settings disable external access (through a debugging tool such as PSoC Creator, for example). If your application requires code update through a boot loader, then use the Field Upgrade setting. Use the Unprotected setting only when no security is needed in your application. The PSoC device also offers an advanced security feature called Device Security which permanently disables all test, programming, and debug ports, protecting your application from external access (see the "Device Security" section on page 65). For more information about how to take full advantage of the security features in PSoC, see the PSoC 3 TRM.

Table 5-1. Flash Protection

Protection Setting	Allowed	Not Allowed
Unprotected	External read and write + internal read and write	-
Factory Upgrade	External write + internal read and write	External read
Field Upgrade	Internal read and write	External read and write
Full Protection	Internal read	External read and write + internal write

Disclaimer

Note the following details of the flash code protection features on Cypress devices.

Cypress products meet the specifications contained in their particular Cypress datasheets. Cypress believes that its family of products is one of the most secure families of its kind on the market today, regardless of how they are used. There may be methods, unknown to Cypress, that can breach the code protection features. Any of these methods, to our knowledge, would be dishonest and possibly illegal. Neither Cypress nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Cypress is willing to work with the customer who is concerned about the integrity of their code. Code protection is constantly evolving. We at Cypress are committed to continuously improving the code protection features of our products.

5.4 EEPROM

PSoC EEPROM memory is a byte-addressable nonvolatile memory. The CY8C32 has up to 2 KB of EEPROM memory to store user data. Reads from EEPROM are random access at the byte level. Reads are done directly; writes are done by sending write commands to an EEPROM programming interface. CPU code execution can continue from flash during EEPROM writes. EEPROM is erasable and writeable at the row level. The EEPROM is divided into 128 rows of 16 bytes each. The factory default values of all EEPROM bytes are 0.

Because the EEPROM is mapped to the 8051 xdata space, the CPU cannot execute out of EEPROM. There is no ECC hardware associated with EEPROM. If ECC is required it must be handled in firmware.

It can take as much as 20 milliseconds to write to EEPROM or flash. During this time the device should not be reset, or unexpected changes may be made to portions of EEPROM or flash. Reset sources (see Section 6.3.1) include XRES pin, software reset, and watchdog; care should be taken to make sure that these are not inadvertently activated. In addition, the low voltage detect circuits should be configured to generate an interrupt instead of a reset.

5.5 Nonvolatile Latches (NVLs)

PSoC has a 4-byte array of nonvolatile latches (NVLs) that are used to configure the device at reset. The NVL register map is shown in Table 5-2.

 Table 5-2.
 Device Configuration NVL Register Map

Register Address	7	6	5	4	3	2	1	0
0x00	PRT3RE	DM[1:0]	PRT2RDM[1:0] PRT1RDM[1:0] PR		PRT2RDM[1:0]		PRT0	RDM[1:0]
0x01	PRT12R	DM[1:0]	PRT6RDM[1:0] PRT5RDM[1:0]		PRT4	RDM[1:0]		
0x02	XRESMEN	DBGEN			PRT18	5RDM[1:0]		
0x03		DIG_PHS_I	DLY[3:0] ECCEN DPS[DLY[3:0]		[1:0]	

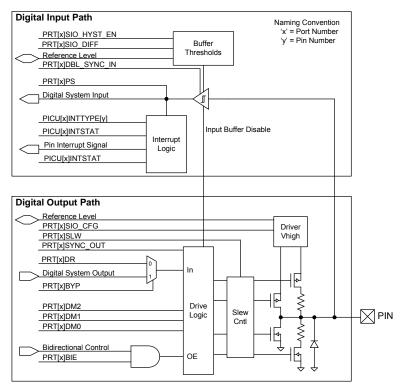
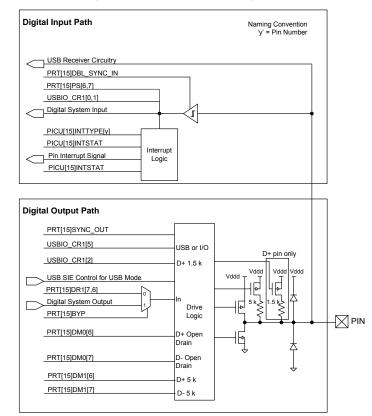

The details for individual fields and their factory default settings are shown in Table 5-3:.

Table 5-3. Fields and Factory Default Settings

Field	Description	Settings
PRTxRDM[1:0]	Controls reset drive mode of the corresponding IO port. See "Reset Configuration" on page 44. All pins of the port are set to the same mode.	00b (default) - high impedance analog 01b - high impedance digital 10b - resistive pull up 11b - resistive pull down
XRESMEN	Controls whether pin P1[2] is used as a GPIO or as an external reset. See "Pin Descriptions" on page 12, XRES description.	0 (default for 68-pin 72-pin, and 100-pin parts) - GPIO 1 (default for 48-pin parts) - external reset
DBGEN	Debug Enable allows access to the debug system, for third-party programmers.	0 - access disabled 1 (default) - access enabled
DPS[1:0]		00b - 5-wire JTAG 01b (default) - 4-wire JTAG 10b - SWD 11b - debug ports disabled
ECCEN	Controls whether ECC flash is used for ECC or for general configuration and data storage. See "Flash Program Memory" on page 24.	0 - ECC disabled 1 (default) - ECC enabled
DIG_PHS_DLY[3:0]	Selects the digital clock phase delay.	See the TRM for details.


Although PSoC Creator provides support for modifying the device configuration NVLs, the number of NVL erase / write cycles is limited – see "Nonvolatile Latches (NVL))" on page 100.

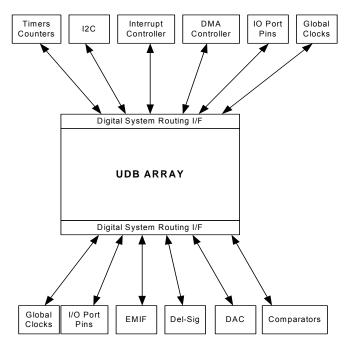


Figure 6-10. SIO Input/Output Block Diagram

Figure 6-11. USBIO Block Diagram

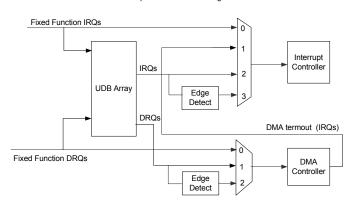


Figure 7-9. Digital System Interconnect

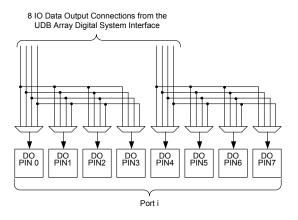
Interrupt and DMA routing is very flexible in the CY8C32 programmable architecture. In addition to the numerous fixed function peripherals that can generate interrupt requests, any data signal in the UDB array routing can also be used to generate a request. A single peripheral may generate multiple independent interrupt requests simplifying system and firmware design. Figure 7-10 shows the structure of the IDMUX (Interrupt/DMA Multiplexer).

Figure 7-10. Interrupt and DMA Processing in the IDMUX

Interrupt and DMA Processing in IDMUX


7.4.1 I/O Port Routing

There are a total of 20 DSI routes to a typical 8-bit I/O port, 16 for data and four for drive strength control.


When an I/O pin is connected to the routing, there are two primary connections available, an input and an output. In

conjunction with drive strength control, this can implement a bidirectional I/O pin. A data output signal has the option to be single synchronized (pipelined) and a data input signal has the option to be double synchronized. The synchronization clock is the master clock (see Figure 6-1). Normally all inputs from pins are synchronized as this is required if the CPU interacts with the signal or any signal derived from it. Asynchronous inputs have rare uses. An example of this is a feed through of combinational PLD logic from input pins to output pins.

Figure 7-11. I/O Pin Synchronization Routing

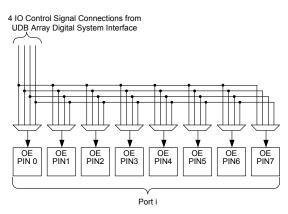


Figure 7-12. I/O Pin Output Connectivity

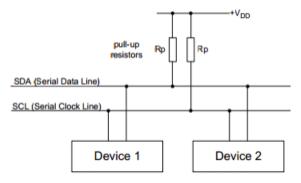

There are four more DSI connections to a given I/O port to implement dynamic output enable control of pins. This connectivity gives a range of options, from fully ganged 8-bits controlled by one signal, to up to four individually controlled pins. The output enable signal is useful for creating tri-state bidirectional pins and buses.

Figure 7-13. I/O Pin Output Enable Connectivity

Figure 7-17. Connection of Devices to the I²C Bus

For most designs, the default values in Table 7-2 will provide excellent performance without any calculations. The default values were chosen to use standard resistor values between the minimum and maximum limits. The values in Table 7-2 work for designs with 1.8 V to 5.0V V_{DD}, less than 200-pF bus capacitance (C_B), up to 25 μ A of total input leakage (I_{IL}), up to 0.4 V output voltage level (V_{OL}), and a max V_{IH} of 0.7 * V_{DD}. Standard Mode and Fast Mode can use either GPIO or SIO PSoC pins. Fast Mode Plus requires use of SIO pins to meet the V_{OL} spec at 20 mA. Calculation of custom pull-up resistor values is required; if your design does not meet the default assumptions, you use series resistor value for low power consumption.

Table 7-2. Recommended default Pull-up Resistor Values

	R _P	Units
Standard Mode – 100 kbps	4.7 k, 5%	Ω
Fast Mode – 400 kbps	1.74 k, 1%	Ω
Fast Mode Plus – 1 Mbps	620, 5%	Ω

Calculation of the ideal pull-up resistor value involves finding a value between the limits set by three equations detailed in the NXP I^2C specification. These equations are:

Equation 1:

$$R_{PMIN} = (V_{DD}(max) - V_{OL}(max))/(I_{OL}(min))$$

Equation 2:

$$R_{PMAX} = T_R(max)/0.8473 \times C_R(max)$$

Equation 3:

 $R_{PMAX} = V_{DD}(min) - V_{IH}(min) + V_{NH}(min) / I_{IH}(max)$

Equation parameters:

 V_{DD} = Nominal supply voltage for I²C bus

 V_{OL} = Maximum output low voltage of bus devices.

 I_{OL} = Low-level output current from I²C specification

 T_R = Rise Time of bus from I²C specification

C_B = Capacitance of each bus line including pins and PCB traces

V_{IH} = Minimum high-level input voltage of all bus devices

 V_{NH} = Minimum high-level input noise margin from I^2C specification

I_{IH} = Total input leakage current of all devices on the bus

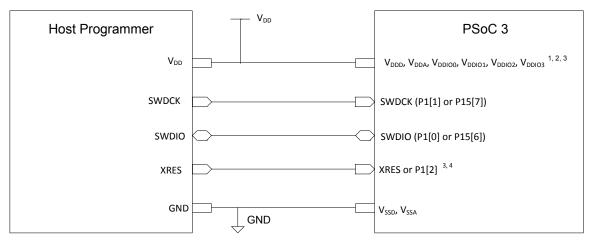
The supply voltage (V_{DD}) limits the minimum pull-up resistor value due to bus devices maximum low output voltage (V_{DL}) specifications. Lower pull-up resistance increases current through the pins and can, therefore, exceed the spec conditions of V_{OL}. Equation 1 is derived using Ohm's law to determine the minimum resistance that will still meet the V_{OL} specification at 3 mA for standard and fast modes, and 20 mA for fast mode plus at the given V_{DD}.

Equation 2 determines the maximum pull-up resistance due to bus capacitance. Total bus capacitance is comprised of all pin, wire, and trace capacitance on the bus. The higher the bus capacitance, the lower the pull-up resistance required to meet the specified bus speeds rise time due to RC delays. Choosing a pull-up resistance higher than allowed can result in failing timing requirements resulting in communication errors. Most designs with five or less I^2C devices and up to 20 centimeters of bus trace length have less than 100 pF of bus capacitance.

A secondary effect that limits the maximum pull-up resistor value is total bus leakage calculated in Equation 3. The primary source of leakage is I/O pins connected to the bus. If leakage is too high, the pull-ups will have difficulty maintaining an acceptable V_{IH} level causing communication errors. Most designs with five or less I²C devices on the bus have less than 10 µA of total leakage current.

9.2 Serial Wire Debug Interface

The SWD interface is the preferred alternative to the JTAG interface. It requires only two pins instead of the four or five needed by JTAG. SWD provides all of the programming and debugging features of JTAG at the same speed. SWD does not provide access to scan chains or device chaining. The SWD clock frequency can be up to 1/3 of the CPU clock frequency.


SWD uses two pins, either two of the JTAG pins (TMS and TCK) or the USBIO D+ and D– pins. The USBIO pins are useful for in system programming of USB solutions that would otherwise require a separate programming connector. One pin is used for the data clock and the other is used for data input and output.

SWD can be enabled on only one of the pin pairs at a time. This only happens if, within 8 μ s (key window) after reset, that pin pair

(JTAG or USB) receives a predetermined acquire sequence of 1s and 0s. If the NVL latches are set for SWD (see Section 5.5), this sequence need not be applied to the JTAG pin pair. The acquire sequence must always be applied to the USB pin pair.

SWD is used for debugging or for programming the flash memory.

The SWD interface can be enabled from the JTAG interface or disabled, allowing its pins to be used as GPIO. Unlike JTAG, the SWD interface can always be reacquired on any device during the key window. It can then be used to reenable the JTAG interface, if desired. When using SWD or JTAG pins as standard GPIO, make sure that the GPIO functionality and PCB circuits do not interfere with SWD or JTAG use.

Figure 9-2. SWD Interface Connections between PSoC 3 and Programmer

¹ The voltage levels of the Host Programmer and the PSoC 3 voltage domains involved in Programming should be the same. XRES pin (XRES_N or P1[2]) is powered by V_{DDI01}. The USB SWD pins are powered by V_{DDD}. So for Programming using the USB SWD pins with XRES pin, the V_{DDD}, V_{DDI01} of PSoC 3 should be at the same voltage level as Host V_{DD}. Rest of PSoC 3 voltage domains (V_{DDA}, V_{DDI00}, V_{DDI02}, V_{DDI03}) need not be at the same voltage level as host Programmer. The Port 1 SWD pins are powered by V_{DDI01}. So V_{DDI01} of PSoC 3 should be at same voltage level as host Programmer. The Port 1 SWD pins are powered by V_{DDI01}. So V_{DDI01} of PSoC 3 voltage domains (V_{DDA}, V_{DDI02}, V_{DDI02}, V_{DDI03}) need not be at the same voltage level as host Programming. Rest of PSoC 3 voltage domains (V_{DDD}, V_{DDA}, V_{DDI00}, V_{DDI02}, V_{DDI01}, Rest of PSoC 3 voltage domains (V_{DDD}, V_{DDI02}, V_{DDI02}, V_{DDI03}) need not be at the same voltage level as host Programmer.

² Vdda must be greater than or equal to all other power supplies (Vddd, Vddio's) in PSoC 3.

- ³ For Power cycle mode Programming, XRES pin is not required. But the Host programmer must have the capability to toggle power (Vddd, Vdda, All Vddio's) to PSoC 3. This may typically require external interface circuitry to toggle power which will depend on the programming setup. The power supplies can be brought up in any sequence, however, once stable, VDDA must be greater than or equal to all other supplies.
- ⁴ P1[2] will be configured as XRES by default only for 48-pin devices (without dedicated XRES pin). For devices with dedicated XRES pin, P1[2] is GPIO pin by default. So use P1[2] as Reset pin only for 48pin devices, but use dedicated XRES pin for rest of devices.

Table 11-7.	Recommended External Components for Boost Circuit

Parameter	Description	Conditions	Min	Тур	Max	Units
L _{BOOST}	Boost inductor	4.7 μH nominal	3.7	4.7	5.7	μH
		10 μH nominal	8.0	10.0	12.0	μH
		22 μH nominal	17.0	22.0	27.0	μH
C _{BOOST}	Total capacitance sum of V _{DDD} , V _{DDA} , V _{DDIO} ^[34]		17.0	26.0	31.0	μF
C _{BAT}	Battery filter capacitor		17.0	22.0	27.0	μF
I _F	Schottky diode average forward current		1.0	_	-	A
V _R	Schottky reverse voltage		20.0	-	-	V

Figure 11-8. T_A range over V_{BAT} and V_{OUT}

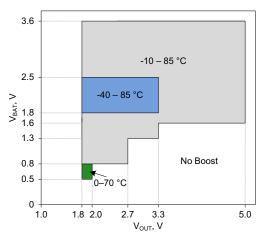
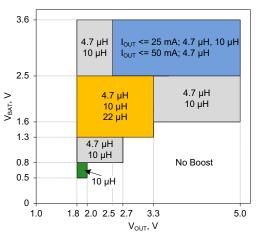
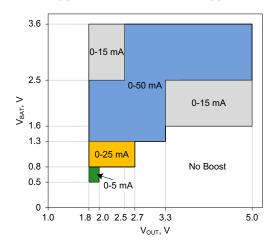




Figure 11-10. L_{BOOST} values over V_{BAT} and V_{OUT}

Figure 11-9. I_{OUT} range over V_{BAT} and V_{OUT}

Note

34. Based on device characterization (Not production tested).

11.4 Inputs and Outputs

Specifications are valid for –40 °C \leq T_A \leq 85 °C and T_J \leq 100 °C, except where noted. Specifications are valid for 1.71 V to 5.5 V, except where noted. Unless otherwise specified, all charts and graphs show typical values.

When the power supplies ramp up, there are low-impedance connections between each GPIO pin and its V_{DDIO} supply. This causes the pin voltages to track V_{DDIO} until both V_{DDIO} and V_{DDA} reach the IPOR voltage, which can be as high as 1.45 V. At that point, the low-impedance connections no longer exist and the pins change to their normal NVL settings.

11.4.1 GPIO

Table 11-9. GPIO DC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
V _{IH}	Input voltage high threshold	CMOS Input, PRT[×]CTL = 0	$0.7 \times V_{DDIO}$	_	_	V
V _{IL}	Input voltage low threshold	CMOS Input, PRT[×]CTL = 0	-	-	$0.3 \times V_{DDIO}$	V
V _{IH}	Input voltage high threshold	LVTTL Input, PRT[×]CTL = 1, V _{DDIO} < 2.7 V	0.7 × V _{DDIO}	_	-	V
V _{IH}	Input voltage high threshold	LVTTL Input, PRT[×]CTL = 1, V _{DDIO} ≥ 2.7V	2.0	_	-	V
V _{IL}	Input voltage low threshold	LVTTL Input, PRT[×]CTL = 1, V _{DDIO} < 2.7 V	-	-	0.3 × V _{DDIO}	V
V _{IL}	Input voltage low threshold	LVTTL Input, PRT[×]CTL = 1, V _{DDIO} ≥ 2.7V	-	-	0.8	V
V _{OH}	Output voltage high	I _{OH} = 4 mA at 3.3 V _{DDIO}	$V_{DDIO} - 0.6$	-	-	V
		I _{OH} = 1 mA at 1.8 V _{DDIO}	$V_{DDIO} - 0.5$	—	-	V
V _{OL}	Output voltage low	I _{OL} = 8 mA at 3.3 V _{DDIO}	-	_	0.6	V
		I _{OL} = 4 mA at 1.8 V _{DDIO}	-	_	0.6	V
		I _{OL} = 3 mA at 3.3 V _{DDIO}	-	_	0.4	V
Rpullup	Pull-up resistor		3.5	5.6	8.5	kΩ
Rpulldown	Pull-down resistor		3.5	5.6	8.5	kΩ
I _{IL}	Input leakage current (absolute value) ^[36]]	25 °C, V _{DDIO} = 3.0 V	-	-	2	nA
C _{IN}	Input capacitance ^[36]	GPIOs not shared with opamp outputs, MHz ECO or kHzECO	-	4	7	pF
		GPIOs shared with MHz ECO or kHzECO ^[37]	-	5	7	pF
		GPIOs shared with opamp outputs	-	_	18	pF
V _H	Input voltage hysteresis (Schmitt-Trigger) ^[36]		-	40	-	mV
Idiode	Current through protection diode to V_{DDIO} and V_{SSIO}		-	-	100	μA
Rglobal	Resistance pin to analog global bus	25 °C, V _{DDIO} = 3.0 V	_	320	-	Ω
Rmux	Resistance pin to analog mux bus	25 °C, V _{DDIO} = 3.0 V	_	220	_	Ω

Notes

36. Based on device characterization (Not production tested).

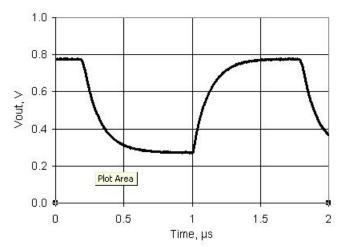

^{37.} For information on designing with PSoC oscillators, refer to the application note, AN54439 - PSoC® 3 and PSoC 5 External Oscillator.

Table 11-29. VDAC AC Specifications t

Parameter	Description	Conditions	Min	Тур	Max	Units
F _{DAC}	Update rate	1 V scale	-	-	1000	ksps
		4 V scale	-	-	250	ksps
TsettleP	Settling time to 0.1%, step 25% to 75%	1 V scale, Cload = 15 pF	-	0.45	1	μs
		4 V scale, Cload = 15 pF	-	0.8	3.2	μs
TsettleN	Settling time to 0.1%, step 75% to 25%	1 V scale, Cload = 15 pF	-	0.45	1	μs
		4 V scale, Cload = 15 pF	-	0.7	3	μs
	Voltage noise	Range = 1 V, High speed mode, V _{DDA} = 5 V, 10 kHz	-	750	-	nV/sqrtHz

Figure 11-48. VDAC Step Response, Codes 0x40 - 0xC0, 1 V Mode, High speed mode, $V_{DDA} = 5 V$

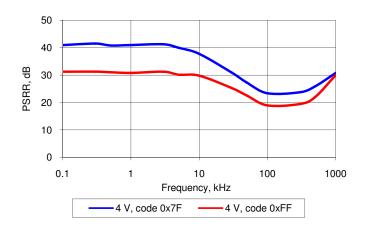
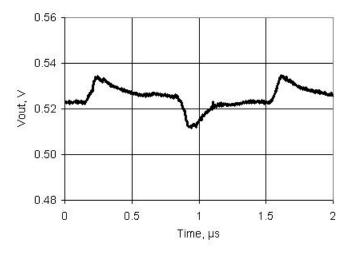
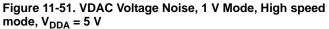
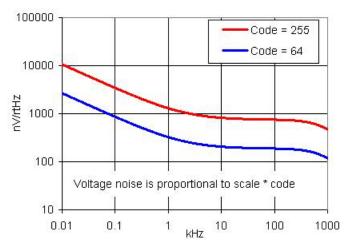





Figure 11-49. VDAC Glitch Response, Codes 0x7F - 0x80, 1 V Mode, High speed mode, V_{DDA} = 5 V

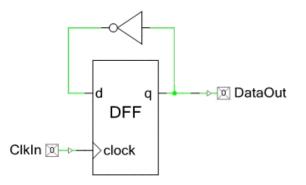
11.6.6 USB

Table 11-43. USB DC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
V _{USB_5}	Device supply (V _{DDD}) for USB operation	USB configured, USB regulator enabled	4.35	-	5.25	V
V _{USB_3.3}		USB configured, USB regulator bypassed	3.15	-	3.6	V
V _{USB_3}		USB configured, USB regulator bypassed ^[54]	2.85	-	3.6	V
IUSB_Configured	Device supply current in device active	V _{DDD} = 5 V, F _{CPU} = 1.5 MHz	-	10	-	mA
	mode, bus clock and IMO = 24 MHz	V _{DDD} = 3.3 V, F _{CPU} = 1.5 MHz	_	8	-	mA
IUSB_Suspended	Device supply current in device sleep mode	V _{DDD} = 5 V, connected to USB host, PICU configured to wake on USB resume signal	-	0.5	-	mA
		V _{DDD} = 5 V, disconnected from USB host	-	0.3	-	mA
		V _{DDD} = 3.3 V, connected to USB host, PICU configured to wake on USB resume signal	_	0.5	-	mA
		V _{DDD} = 3.3 V, disconnected from USB host	_	0.3	-	mA

11.6.7 Universal Digital Blocks (UDBs)

PSoC Creator provides a library of pre-built and tested standard digital peripherals (UART, SPI, LIN, PRS, CRC, timer, counter, PWM, AND, OR, and so on) that are mapped to the UDB array. See the component datasheets in PSoC Creator for full AC/DC specifications, APIs, and example code.


Table 11-44. UDB AC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
Datapath Per	formance		•	•		
F _{MAX_TIMER}	Maximum frequency of 16-bit timer in a UDB pair		-	-	50.01	MHz
F _{MAX_ADDER}	Maximum frequency of 16-bit adder in a UDB pair		-	-	50.01	MHz
F _{MAX_CRC}	Maximum frequency of 16-bit CRC/PRS in a UDB pair		-	-	50.01	MHz
PLD Perform	ance					
F _{MAX_PLD}	Maximum frequency of a two-pass PLD function in a UDB pair		-	-	50.01	MHz
Clock to Outp	but Performance		•	•		
t _{CLK_OUT}	Propagation delay for clock in to data out, see Figure 11-52 on page 99.	25 °C, $V_{DDD} \ge 2.7 V$	-	20	25	ns
t _{CLK_OUT}	Propagation delay for clock in to data out, see Figure 11-52 on page 99.	Worst-case placement, routing, and pin selection	-	-	55	ns

Note 54. Rise/fall time matching (TR) not guaranteed, see USB Driver AC Specifications on page 83.

Figure 11-52. Clock to Output Performance

11.7 Memory

Specifications are valid for –40 °C \leq T_A \leq 85 °C and T_J \leq 100 °C, except where noted. Specifications are valid for 1.71 V to 5.5 V, except where noted.

11.7.1 Flash

Table 11-45. Flash DC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
	Erase and program voltage	V _{DDD} pin	1.71	_	5.5	V

Table 11-46. Flash AC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
T _{WRITE}	Row write time (erase + program)		-	15	20	ms
T _{ERASE}	Row erase time		-	10	13	ms
	Row program time		-	5	7	ms
T _{BULK}	Bulk erase time (16 KB to 64 KB)		-	-	35	ms
	Sector erase time (8 KB to 16 KB)		-	-	15	ms
T _{PROG}	Total device programming time	No overhead ^[55]	-	1.5	2	seconds
	Flash data retention time, retention period measured from last erase cycle	Average ambient temp. $T_A \le 55$ °C, 100 K erase/program cycles	20	-	-	years
		Average ambient temp. $T_A \le 85$ °C, 10 K erase/program cycles	10	-	_	

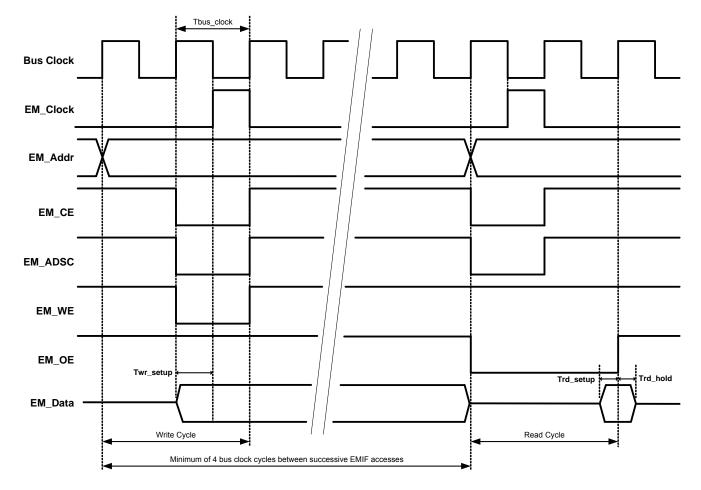


Figure 11-54. Synchronous Write and Read Cycle Timing, No Wait States

Table 11-54. S	Synchronous	Write and Rea	ad Timing	Specifications ^[59]
----------------	-------------	---------------	-----------	--------------------------------

Parameter	Description	Conditions	Min	Тур	Max	Units
Fbus_clock	Bus clock frequency ^[60]		-	-	33	MHz
Tbus_clock	Bus clock period ^[61]		30.3	-	-	ns
Twr_Setup	Time from EM_data valid to rising edge of EM_Clock		Tbus_clock – 10	-	-	ns
Trd_setup	Time that EM_data must be valid before rising edge of EM_OE		5	-	-	ns
Trd_hold	Time that EM_data must be valid after rising edge of EM_OE		5	_	_	ns

Notes

- 59. Based on device characterization (Not production tested).
 60. EMIF signal timings are limited by GPIO frequency limitations. See "GPIO" section on page 76.
 61. EMIF output signals are generally synchronized to bus clock, so EMIF signal timings are dependent on bus clock frequency.

11.8 PSoC System Resources

Specifications are valid for –40 °C \leq T_A \leq 85 °C and T_J \leq 100 °C, except where noted. Specifications are valid for 1.71 V to 5.5 V, except where noted.

11.8.1 POR with Brown Out

For brown out detect in regulated mode, V_{DDD} and V_{DDA} must be \geq 2.0 V. Brown out detect is not available in externally regulated mode.

Table 11-57. Precise Low-Voltage Reset (PRES) with Brown Out DC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
PRESR	Rising trip voltage	Factory trim	1.64	-	1.68	V
PRESF	Falling trip voltage		1.62	-	1.66	V

Table 11-58. Power-on Reset (POR) with Brown Out AC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
PRES_TR	Response time		-	_	0.5	μs
	V _{DDD} /V _{DDA} droop rate	Sleep mode	-	5	-	V/sec

11.8.2 Voltage Monitors

Table 11-59. Voltage Monitors DC Specifications

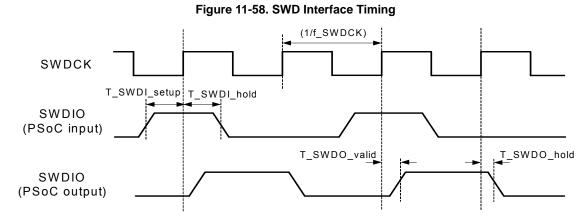

Parameter	Description	Conditions	Min	Тур	Max	Units
LVI	Trip voltage					
	LVI_A/D_SEL[3:0] = 0000b		1.68	1.73	1.77	V
	LVI_A/D_SEL[3:0] = 0001b		1.89	1.95	2.01	V
	LVI_A/D_SEL[3:0] = 0010b		2.14	2.20	2.27	V
	LVI_A/D_SEL[3:0] = 0011b		2.38	2.45	2.53	V
	LVI_A/D_SEL[3:0] = 0100b		2.62	2.71	2.79	V
	LVI_A/D_SEL[3:0] = 0101b		2.87	2.95	3.04	V
	LVI_A/D_SEL[3:0] = 0110b		3.11	3.21	3.31	V
	LVI_A/D_SEL[3:0] = 0111b		3.35	3.46	3.56	V
	LVI_A/D_SEL[3:0] = 1000b		3.59	3.70	3.81	V
	LVI_A/D_SEL[3:0] = 1001b		3.84	3.95	4.07	V
	LVI_A/D_SEL[3:0] = 1010b		4.08	4.20	4.33	V
	LVI_A/D_SEL[3:0] = 1011b		4.32	4.45	4.59	V
	LVI_A/D_SEL[3:0] = 1100b		4.56	4.70	4.84	V
	LVI_A/D_SEL[3:0] = 1101b		4.83	4.98	5.13	V
	LVI_A/D_SEL[3:0] = 1110b		5.05	5.21	5.37	V
	LVI_A/D_SEL[3:0] = 1111b		5.30	5.47	5.63	V
HVI	Trip voltage		5.57	5.75	5.92	V

Table 11-60. Voltage Monitors AC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
	Response time ^[64]		-	-	1	μs

11.8.5 SWD Interface

Table 11-63. SWD Interface AC Specifications^[67]

Parameter	Description	Conditions	Min	Тур	Max	Units
f_SWDCK	SWDCLK frequency	$3.3 \text{ V} \leq \text{V}_{DDD} \leq 5 \text{ V}$	-	-	14 ^[68]	MHz
		$1.71 \text{ V} \le \text{V}_{\text{DDD}} < 3.3 \text{ V}$	-	-	7 ^[68]	MHz
		$1.71 \text{ V} \le \text{V}_{\text{DDD}} < 3.3 \text{ V},$ SWD over USBIO pins	-	_	5.5 ^[68]	MHz
T_SWDI_setup	SWDIO input setup before SWDCK high	T = 1/f_SWDCK max	T/4	-	-	
T_SWDI_hold	SWDIO input hold after SWDCK high	T = 1/f_SWDCK max	T/4	-	-	
T_SWDO_valid	SWDCK high to SWDIO output	T = 1/f_SWDCK max	_	_	2T/5	

11.8.6 SWV Interface

Table 11-64. SWV Interface AC Specifications^[30]

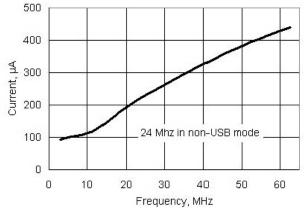
Parameter	Description	Conditions	Min	Тур	Max	Units
	SWV mode SWV bit rate		_	—	33	Mbit

11.9 Clocking

Specifications are valid for –40 °C \leq T_A \leq 85 °C and T_J \leq 100 °C, except where noted. Specifications are valid for 1.71 V to 5.5 V, except where noted.

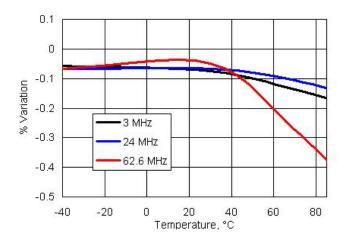
11.9.1 Internal Main Oscillator

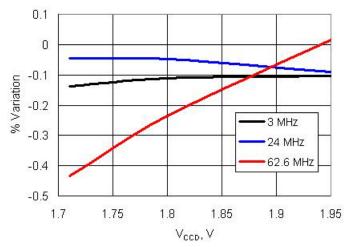
Table 11-65. IMO DC Specifications


Parameter	Description	Conditions	Min	Тур	Max	Units
	Supply current					
	24 MHz – USB mode	With oscillator locking to USB bus	-	-	500	μA
	24 MHz – non USB mode		-	-	300	μA
	12 MHz		-	-	200	μA
	6 MHz		-	-	180	μA
	3 MHz		_	_	150	μΑ

Notes

67. Based on device characterization (Not production tested). 68. f_SWDCK must also be no more than 1/3 CPU clock frequency.


Figure 11-59. IMO Current vs. Frequency


Table 11-66. IMO AC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units	
	IMO frequency stability (with factory trim)						
F _{IMO}	24 MHz – Non USB mode		-4	_	4	%	
	24 MHz – USB mode	With oscillator locking to USB bus	-0.25	-	0.25	%	
	12 MHz		-3	-	3	%	
	6 MHz		-2	_	2	%	
	3 MHz		-2	-	2	%	
	Startup time ^[69]	From enable (during normal system operation)	-	-	13	μs	
	Jitter (peak to peak) ^[69]						
Јр-р	F = 24 MHz		_	0.9	_	ns	
	F = 3 MHz		_	1.6	_	ns	
Jperiod	Jitter (long term) ^[69]						
	F = 24 MHz		_	0.9	-	ns	
	F = 3 MHz		_	12	-	ns	

Figure 11-60. IMO Frequency Variation vs. Temperature

Figure 11-61. IMO Frequency Variation vs. V_{CC}

Note

69. Based on device characterization (Not production tested).

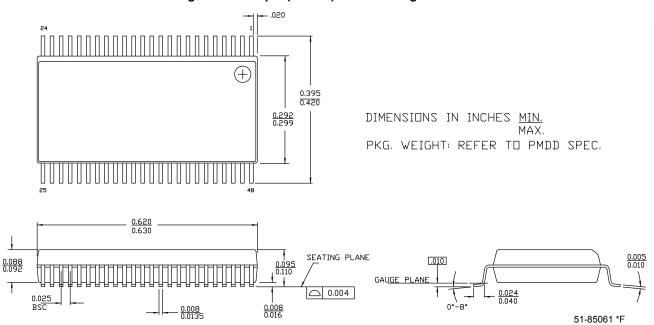
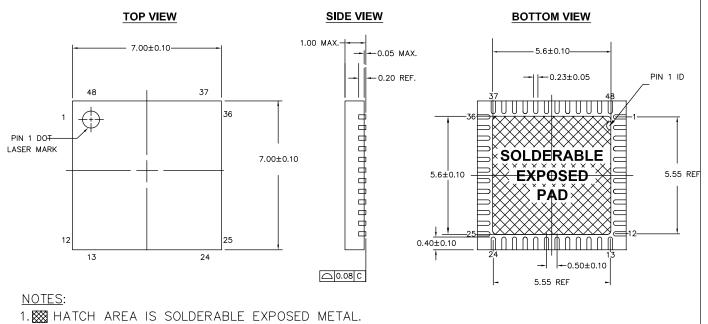



Figure 13-1. 48-pin (300 mil) SSOP Package Outline

Figure 13-2. 48-pin QFN Package Outline

- 2. REFERENCE JEDEC#: MO-220
- 3. PACKAGE WEIGHT: REFER TO PMDD SPEC.
- 4. ALL DIMENSIONS ARE IN MM [MIN/MAX]
- 5. PACKAGE CODE

PART #	DESCRIPTION		
LT48D	LEAD FREE		

001-45616 *E

16. Document Conventions

16.1 Units of Measure

Table 16-1. Units of Measure

Symbol	Unit of Measure			
°C	degrees Celsius			
dB	decibels			
fF	femtofarads			
Hz	hertz			
KB	1024 bytes			
kbps	kilobits per second			
Khr	kilohours			
kHz	kilohertz			
kΩ	kilohms			
ksps	kilosamples per second			
LSB	least significant bit			
Mbps	megabits per second			
MHz	megahertz			
MΩ	megaohms			
Msps	megasamples per second			
μA	microamperes			

Symbol	Unit of Measure		
μF	microfarads		
μH	microhenrys		
μs	microseconds		
μV	microvolts		
μW	microwatts		
mA	milliamperes		
ms	milliseconds		
mV	millivolts		
nA	nanoamperes		
ns	nanoseconds		
nV	nanovolts		
Ω	ohms		
pF	picofarads		
ppm	parts per million		
ps	picoseconds		
s	seconds		
sps	samples per second		
sqrtHz	square root of hertz		
V	volts		

Table 16-1. Units of Measure (continued)

Revision	nt Number: ECN	Submission	Orig. of	Description of Change
		Date	Change	
*C	2903576	04/01/10	MKEA	Updated Vb pin in PCB Schematic.
				Updated Tstartup parameter in AC Specifications table.
				Added Load regulation and Line regulation parameters to Inductive Boost
				Regulator DC Specifications table.
				Updated I _{CC} parameter in LCD Direct Drive DC Specs table. In page 1, updated internal oscillator range under Prescision programmable
				clocking to start from 3 MHz.
				Updated I _{OUT} parameter in LCD Direct Drive DC Specs table.
				Updated Table 6-2 and Table 6-3.
				Added bullets on CapSense in page 1; added CapSense column in Section 12
				Removed some references to footnote [1].
				Changed INC_Rn cycles from 3 to 2 (Table 4-1).
				Added footnote in PLL AC Specification table.
				Added PLL intermediate frequency row with footnote in PLL AC Specs table.
				Added UDBs subsection under 11.6 Digital Peripherals.
				Updated Figure 2-6 (PCB Layout).
				Updated Pin Descriptions section and modified Figures 6-6, 6-8, 6-9.
				Updated LVD in Tables 6-2 and 6-3; modified Low-power modes bullet in page 1
				Added note to Figures 2-5 and 6-2; Updated Figure 6-2 to add capacitors for V_{DDA}
				and V _{DDD} pins.
				Updated boost converter section (6.2.2).
				Updated Tstartup values in Table 11-3. Removed IPOR rows from Table 11-53. Updated 6.3.1.1, Power Voltage Level
				Monitors.
				Updated section 5.2 and Table 11-2 to correct suggestion of execution from flash
				Updated IMO max frequency in Figure 6-1, Table 11-63, and Table 11-64.
				Updated V_{REF} specs in Table 11-19.
				Updated IDAC uncompensated gain error in Table 11-23.
				Updated Delay from Interrupt signal input to ISR code execution from ISR code
				in Table-71. Removed other line in table.
				Added sentence to last paragraph of section 6.1.1.3.
				Updated Tresp, high and low-power modes, in Table 11-22.
				Updated f_TCK values in Table 11-58 and f_SWDCK values in Table 11-59.
				Updated SNR condition in Table 11-18.
				Updated sleep wakeup time in Table 6-3 and Tsleep in Table 11-3.
				Added 1.71 V \leq V _{DDD} \leq 3.3 V, SWD over USBIO pins value to Table 11-59.
				Removed mention of hibernate reset (HRES) from page 1 features, Table 6-3,
				Section 6.2.1.4, Section 6.3, and Section 6.3.1.1. Change PPOR/PRES to TBDs
				in Section 6.3.1.1, Section 6.4.1.6 (changed PPOR to reset), Table 11-3 (changed PPOR to PRES), Table 11-53 (changed title, values TBD), and Table 11-54
				(changed PPOR_TR to PRES_TR).
				Added sentence saying that LVD circuits can generate a reset to Section 6.3.1.1
				Changed I_{DD} values on page 1, page 5, and Table 11-2.
				Changed resume time value in Section 6.2.1.3.
				Changed ESD HBM value in Table 11-1.
				Changed sample rate row in Table 11-18.
				Removed V_{DDA} = 1.65 V rows and changed BWag value in Table 11-20.
				Changed Vioff values and changed CMRR value in Table 11-21.
				Changed INL max value in Table 11-25.
				Changed occurrences of "Block" to "Row" and deleted the "ECC not included"
				footnote in Table 11-41.
				Changed max response time value in Tables 11-54 and 11-56.
				Change the Startup time in Table 11-64.
				Added condition to intermediate frequency row in Table 11-70.
				Added row to Table 11-54.
				Added brown out note to Section 11.8.1.

Description Title: PSoC [®] 3: CY8C32 Family Data Sheet Programmable System-on-Chip (PSoC [®]) (continued) Document Number: 001-56955				
Revision	ECN	Submission Date	Orig. of Change	Description of Change
*D	2938381	05/27/10	MKEA	Replaced V_{DDIO} with V_{DDD} in USBIO diagram and specification tables, added text in USBIO section of Electrical Specifications. Added Table 13-2 (Package MSL) Modified Tstorag condition and changed max spec to 100 Added bullet (Pass) under ALU (section 7.2.2.2) Added figures for kHzECO and MHzECO in the External Oscillator section Updated Figure 6-1(Clocking Subsystem diagram) Removed CPUCLK_DIV in table 5-2, Deleted Clock Divider SFR subsection Updated PSoC Creator Framework image Updated SIO DC Specifications (V _{IH} and V _{IL} parameters) Updated bullets in Clocking System and Clocking Distribution sections Updated Figure 8-2 Updated Table 11-10 Updated PCB Layout and Schematic, updated as per MTRB review comments Updated Table 6-3 (power changed to current) In 32kHZ EC DC Specifications table, changed I _{CC} Max to 0.25 In IMO DC Specifications table, updated Supply Current values Updated GPIO DC Specs table Modified to support a maximum 50MHz CPU speed
*E	2958674	06/22/10	SHEA	Minor ECN to post datasheet to external website
*F	2989685	08/04/10	MKEA	Added USBIO 22 ohm DP and DM resistors to Simplified Block Diagram Added to Table 6-6 a footnote and references to same. Added sentences to the resistive pull-up and pull-down description bullets. Added sentence to Section 6.4.11, Adjustable Output Level. Updated section 5.5 External Memory Interface Updated Table 11-73 JTAG Interface AC Specifications Updated Table 11-74 SWD Interface AC Specifications
*G	3078568	11/04/10	MKEA	Updated "Current Digital-to-analog Converter (IDAC)" on page 87 Updated "Voltage Digital to Analog Converter (VDAC)" on page 92 Updated Table 11-2, "DC Specifications," on page 68
*Н	3107314	12/10/2010	MKEA	Updated delta-sigma tables and graphs. Updated Flash AC specs Formatted table 11.2. Updated interrupt controller table Updated transimpedance amplifier section Updated SIO DC specs table Updated Voltage Monitors DC Specifications table Updated LCD Direct Drive DC specs table Updated ESD _{HBM} value. Updated IDAC and VDAC sections Removed ESO parts from ordering information Changed USBIO pins from NC to DNU and removed redundant USBIO pin description notes Updated POR with brown out DC and AC specs Updated 32 kHz External Crystal DC Specifications Updated Inductive boost regulator section Delta sigma ADC spec updates Updated comparator section Removed buzz mode from Power Mode Transition diagram
*	3179219	02/22/2011	MKEA	Updated conditions for flash data retention time. Updated 100-pin TQFP package spec. Updated EEPROM AC specifications.