

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	8051
Core Size	8-Bit
Speed	50MHz
Connectivity	EBI/EMI, I ² C, LINbus, SPI, UART/USART, USB
Peripherals	CapSense, DMA, POR, PWM, WDT
Number of I/O	25
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 5.5V
Data Converters	A/D 16x12b; D/A 1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-VFQFN Exposed Pad
Supplier Device Package	48-QFN (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c3245lti-144

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

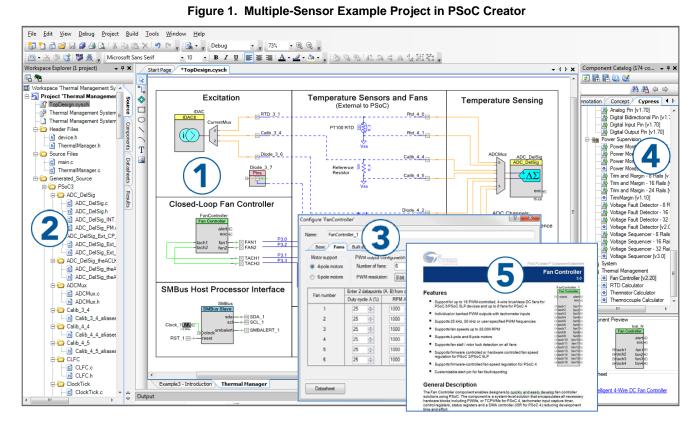
More Information

Cypress provides a wealth of data at www.cypress.com to help you to select the right PSoC device for your design, and to help you to quickly and effectively integrate the device into your design. For a comprehensive list of resources, see the knowledge base article KBA86521, How to Design with PSoC 3, PSoC 4, and PSoC 5LP. Following is an abbreviated list for PSoC 3:

- Overview: PSoC Portfolio, PSoC Roadmap
- Product Selectors: PSoC 1, PSoC 3, PSoC 4, PSoC 5LP In addition, PSoC Creator includes a device selection tool.
- Application notes: Cypress offers a large number of PSoC application notes and code examples covering a broad range of topics, from basic to advanced level. Recommended application notes for getting started with PSoC 3 are:
 - AN54181: Getting Started With PSoC 3
- AN61290: Hardware Design Considerations
- AN57821: Mixed Signal Circuit Board Layout
- AN58304: Pin Selection for Analog Designs
- AN81623: Digital Design Best Practices
- AN73854: Introduction To Bootloaders

using the PSoC Creator IDE C compiler

- Development Kits:
 - CY8CKIT-030 is designed for analog performance, for developing high-precision analog, low-power, and low-voltage applications.
 - CY8CKIT-001 provides a common development platform for any one of the PSoC 1, PSoC 3, PSoC 4, or PSoC 5LP families of devices.
 - The MiniProg3 device provides an interface for flash programming and debug.
- Technical Reference Manuals (TRM)
 - Architecture TRM
 - Registers TRM
 - Programming Specification


PSoC Creator

PSoC Creator is a free Windows-based Integrated Design Environment (IDE). It enables concurrent hardware and firmware design of PSoC 3, PSoC 4, and PSoC 5LP based systems. Create designs using classic, familiar schematic capture supported by over 100 pre-verified, production-ready PSoC Components; see the list of component datasheets. With PSoC Creator, you can:

1. Drag and drop component icons to build your hardware system design in the main design workspace

2. Codesign your application firmware with the PSoC hardware,

- 3. Configure components using the configuration tools
- 4. Explore the library of 100+ components
- 5. Review component datasheets

Document Number: 001-56955 Rev. *Y

Table 2-2 shows the pinout for the 72-pin CSP package. Since there are four V_{DDIO} pins, the set of I/O pins associated with any V_{DDIO} may sink up to 100 mA total, same as for the 100-pin and 68-pin devices.

Table 2-2.	COD	Dinout
Table Z-Z.	LOP	Pinout

Ball	Name	Ball	Name	Ball	Name
G6	P2[5]	F1	VDDD	A5	VDDA
E5	P2[6]	E1	VSSD	A6	VSSD
F5	P2[7]	E2	VCCD	B6	P12[2]
J7	P12[4]	C1	P15[0]	C6	P12[3]
H6	P12[5]	C2	P15[1]	A7	P0[0]
J6	VSSB	D2	P3[0]	B7	P0[1]
J5	Ind	D3	P3[1]	B5	P0[2]
H5	VBOOST	D4	P3[2]	C5	P0[3]
J4	VBAT	D5	P3[3]	A8	VIO0
H4	VSSD	B4	P3[4]	D6	P0[4]
J3	XRES_N	B3	P3[5]	D7	P0[5]
H3	P1[0]	A1	VIO3	C7	P0[6]
G3	P1[1]	B2	P3[6]	C8	P0[7]
H2	P1[2]	A2	P3[7]	E8	VCCD
J2	P1[3]	C3	P12[0]	F8	VSSD
G4	P1[4]	C4	P12[1]	G8	VDDD
G5	P1[5]	E3	P15[2]	E7	P15[4]
J1	VIO1	E4	P15[3]	F7	P15[5]
F4	P1[6]	B1 ^[10]	NC	G7	P2[0]
F3	P1[7]	B8 ^[10]	NC	H7	P2[1]
H1	P12[6]	D1 ^[10]	NC	H8	P2[2]
G1	P12[7]	D8 ^[10]	NC	F6	P2[3]
G2	P15[6]	A3	VCCA	E6	P2[4]
F2	P15[7]	A4	VSSA	J8	VIO2

Figure 2-7 and Figure 2-8 show an example schematic and an example PCB layout, for the 100-pin TQFP part, for optimal analog performance on a two layer board.

- The two pins labeled VDDD must be connected together.
- The two pins labeled VCCD must be connected together, with capacitance added, as shown in Figure 2-7 and Power System on page 31. The trace between the two VCCD pins should be as short as possible.
- The two pins labeled VSSD must be connected together.

For information on circuit board layout issues for mixed signals, refer to the application note AN57821 - Mixed Signal Circuit Board Layout Considerations for PSoC® 3 and PSoC 5.

4.3 Instruction Set

The 8051 instruction set is highly optimized for 8-bit handling and Boolean operations. The types of instructions supported include:

- Arithmetic instructions
- Logical instructions
- Data transfer instructions
- Boolean instructions
- Program branching instructions

Table 4-1. Arithmetic Instructions

4.3.1 Instruction Set Summary

4.3.1.1 Arithmetic Instructions

Arithmetic instructions support the direct, indirect, register, immediate constant, and register-specific instructions. Arithmetic modes are used for addition, subtraction, multiplication, division, increment, and decrement operations. Table 4-1 lists the different arithmetic instructions.

Mnemonic	Description	Bytes	Cycles
ADD A,Rn	Add register to accumulator	1	1
ADD A,Direct	Add direct byte to accumulator	2	2
ADD A,@Ri	Add indirect RAM to accumulator	1	2
ADD A,#data	Add immediate data to accumulator	2	2
ADDC A,Rn	Add register to accumulator with carry	1	1
ADDC A, Direct	Add direct byte to accumulator with carry	2	2
ADDC A,@Ri	Add indirect RAM to accumulator with carry	1	2
ADDC A,#data	Add immediate data to accumulator with carry	2	2
SUBB A,Rn	Subtract register from accumulator with borrow	1	1
SUBB A,Direct	Subtract direct byte from accumulator with borrow	2	2
SUBB A,@Ri	Subtract indirect RAM from accumulator with borrow	1	2
SUBB A,#data	Subtract immediate data from accumulator with borrow	2	2
INC A	Increment accumulator	1	1
INC Rn	Increment register	1	2
INC Direct	Increment direct byte	2	3
INC @Ri	Increment indirect RAM	1	3
DEC A	Decrement accumulator	1	1
DEC Rn	Decrement register	1	2
DEC Direct	Decrement direct byte	2	3
DEC @Ri	Decrement indirect RAM	1	3
INC DPTR	Increment data pointer	1	1
MUL	Multiply accumulator and B	1	2
DIV	Divide accumulator by B	1	6
DAA	Decimal adjust accumulator	1	3

Table 6-1. Oscillator Summary

Source	Fmin	Tolerance at Fmin	Fmax	Tolerance at Fmax	Startup Time
IMO	3 MHz	±2% over voltage and temperature	24 MHz	±4%	13-µs max
MHzECO	4 MHz	Crystal dependent	25 MHz	Crystal dependent	5 ms typ, max is crystal dependent
DSI	0 MHz	Input dependent	33 MHz	Input dependent	Input dependent
PLL	24 MHz	Input dependent	50 MHz	Input dependent	250 µs max
Doubler	48 MHz	Input dependent	48 MHz	Input dependent	1 µs max
ILO	1 kHz	-50%, +100%	100 kHz	-55%, +100%	15 ms max in lowest power mode
kHzECO	32 kHz	Crystal dependent	32 kHz	Crystal dependent	500 ms typ, max is crystal dependent

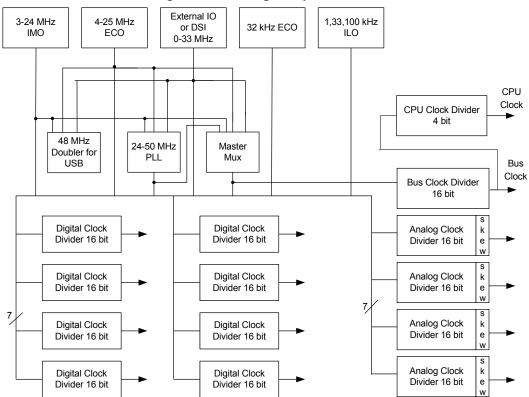


Figure 6-1. Clocking Subsystem

The term **device reset** indicates that the processor as well as analog and digital peripherals and registers are reset.

A reset status register shows some of the resets or power voltage monitoring interrupts. The program may examine this register to detect and report certain exception conditions. This register is cleared after a power-on reset. For details see the Technical Reference Manual.

6.3.1 Reset Sources

- 6.3.1.1 Power Voltage Level Monitors
- IPOR Initial Power-on Reset

At initial power on, IPOR monitors the power voltages VDDD, VDDA, VCCD, and VCCA. The trip level is not precise. It is set to approximately 1 volt, which is below the lowest specified operating voltage but high enough for the internal circuits to be reset and to hold their reset state. The monitor generates a reset pulse that is at least 150 ns wide. It may be much wider if one or more of the voltages ramps up slowly.

After boot, the IPOR circuit is disabled and voltage supervision is handed off to the precise low-voltage reset (PRES) circuit.

PRES – Precise Low Voltage Reset

This circuit monitors the outputs of the analog and digital internal regulators after power up. The regulator outputs are compared to a precise reference voltage. The response to a PRES trip is identical to an IPOR reset.

In normal operating mode, the program cannot disable the digital PRES circuit. The analog regulator can be disabled, which also disables the analog portion of the PRES. The PRES circuit is disabled automatically during sleep and hibernate modes, with one exception: During sleep mode the regulators are periodically activated (buzzed) to provide supervisory services and to reduce wakeup time. At these times the PRES circuit is also buzzed to allow periodic voltage monitoring.

ALVI, DLVI, AHVI – Analog/Digital Low Voltage Interrupt, Analog High Voltage Interrupt

Interrupt circuits are available to detect when VDDA and VDDD go outside a voltage range. For AHVI, VDDA is compared to a fixed trip level. For ALVI and DLVI, VDDA and VDDD are compared to trip levels that are programmable, as listed in Table 6-5. ALVI and DLVI can also be configured to generate a device reset instead of an interrupt.

Table 6-5. Analog/Digital Low Voltage Interrupt, Analog High Voltage Interrupt

Interrupt	Supply	Normal Voltage Range	Available Trip Settings
DLVI	VDDD	1.71 V – 5.5 V	1.70 V – 5.45 V in 250 mV increments
ALVI	VDDA	1.71 V – 5.5 V	1.70 V – 5.45 V in 250 mV increments
AHVI	VDDA	1.71 V – 5.5 V	5.75 V

The monitors are disabled until after IPOR. During sleep mode these circuits are periodically activated (buzzed). If an interrupt occurs during buzzing then the system first enters its wake up sequence. The interrupt is then recognized and may be serviced. The buzz frequency is adjustable, and should be set to be less than the minimum time that any voltage is expected to be out of range. For details on how to adjust the buzz frequency, see the TRM.

6.3.1.2 Other Reset Sources

XRES – External Reset

PSoC 3 has either a single GPIO pin that is configured as an external reset or a dedicated XRES pin. Either the dedicated XRES pin or the GPIO pin, if configured, holds the part in reset while held active (low). The response to an XRES is the same as to an IPOR reset.

After XRES has been deasserted, at least 10 μs must elapse before it can be reasserted.

The external reset is active low. It includes an internal pull-up resistor. XRES is active during sleep and hibernate modes.

SRES – Software Reset

A reset can be commanded under program control by setting a bit in the software reset register. This is done either directly by the program or indirectly by DMA access. The response to a SRES is the same as after an IPOR reset.

Another register bit exists to disable this function.

WRES – Watchdog Timer Reset

The watchdog reset detects when the software program is no longer being executed correctly. To indicate to the watchdog timer that it is running correctly, the program must periodically reset the timer. If the timer is not reset before a user-specified amount of time, then a reset is generated.

Note IPOR disables the watchdog function. The program must enable the watchdog function at an appropriate point in the code by setting a register bit. When this bit is set, it cannot be cleared again except by an IPOR power-on reset event.

6.4 I/O System and Routing

PSoC I/Os are extremely flexible. Every GPIO has analog and digital I/O capability. All I/Os have a large number of drive modes, which are set at POR. PSoC also provides up to four individual I/O voltage domains through the VDDIO pins.

There are two types of I/O pins on every device; those with USB provide a third type. Both GPIO and Special I/O (SIO) provide similar digital functionality. The primary differences are their analog capability and drive strength. Devices that include USB also provide two USBIO pins that support specific USB functionality as well as limited GPIO capability.

All I/O pins are available for use as digital inputs and outputs for both the CPU and digital peripherals. In addition, all I/O pins can generate an interrupt. The flexible and advanced capabilities of the PSoC I/O, combined with any signal to any pin routability, greatly simplify circuit design and board layout. All GPIO pins can be used for analog input, CapSense, and LCD segment drive, while SIO pins are used for voltages in excess of VDDA and for programmable output voltages.

- Features supported by both GPIO and SIO:
 - Duser programmable port reset state
- Separate I/O supplies and voltages for up to four groups of I/O
- Digital peripherals use DSI to connect the pins

The USBIO pins (P15[7] and P15[6]), when enabled for I/O mode, have limited drive mode control. The drive mode is set using the PRT15.DM0[7, 6] register. A resistive pull option is also available at the USBIO pins, which can be enabled using the PRT15.DM1[7, 6] register. When enabled for USB mode, the drive mode control has no impact on the configuration of the USB pins. Unlike the GPIO and SIO configurations, the port wide configuration registers do not configure the USB drive mode bits. Table 6-7 shows the drive mode configuration for the USBIO pins.

PRT15.DM1[7,6] Pull up enable	PRT15.DM0[7,6] Drive Mode enable	PRT15.DR[7,6] = 1	PRT15.DR[7,6] = 0	Description
0	0	High Z	Strong Low	Open Drain, Strong Low
0	1	Strong High	Strong Low	Strong Outputs
1	0	Res High (5k)	Strong Low	Resistive Pull Up, Strong Low
1	1	Strong High	Strong Low	Strong Outputs

Table 6-7. USBIO Drive Modes (P15[7] and P15[6])

High Impedance Analog

The default reset state with both the output driver and digital input buffer turned off. This prevents any current from flowing in the I/O's digital input buffer due to a floating voltage. This state is recommended for pins that are floating or that support an analog voltage. High impedance analog pins do not provide digital input functionality.

To achieve the lowest chip current in sleep modes, all I/Os must either be configured to the high impedance analog mode, or have their pins driven to a power supply rail by the PSoC device or by external circuitry.

High Impedance Digital

The input buffer is enabled for digital signal input. This is the standard high impedance (HiZ) state recommended for digital inputs.

Resistive pull-up or resistive pull-down

Resistive pull-up or pull-down, respectively, provides a series resistance in one of the data states and strong drive in the other. Pins can be used for digital input and output in these modes. Interfacing to mechanical switches is a common application for these modes. Resistive pull-up and pull-down are not available with SIO in regulated output mode.

Open Drain, Drives High and Open Drain, Drives Low

Open drain modes provide high impedance in one of the data states and strong drive in the other. Pins can be used for digital input and output in these modes. A common application for these modes is driving the I^2C bus signal lines.

Strong Drive

Provides a strong CMOS output drive in either high or low state. This is the standard output mode for pins. Strong Drive mode pins must not be used as inputs under normal circumstances. This mode is often used to drive digital output signals or external FETs.

Resistive pull-up and pull-down

Similar to the resistive pull-up and resistive pull-down modes except the pin is always in series with a resistor. The high data state is pull-up while the low data state is pull-down. This mode is most often used when other signals that may cause shorts can drive the bus. Resistive pull-up and pull-down are not available with SIO in regulated output mode.

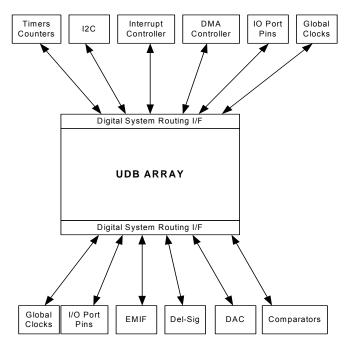
6.4.2 Pin Registers

Registers to configure and interact with pins come in two forms that may be used interchangeably.

All I/O registers are available in the standard port form, where each bit of the register corresponds to one of the port pins. This register form is efficient for quickly reconfiguring multiple port pins at the same time.

I/O registers are also available in pin form, which combines the eight most commonly used port register bits into a single register for each pin. This enables very fast configuration changes to individual pins with a single register write.

6.4.3 Bidirectional Mode


High-speed bidirectional capability allows pins to provide both the high impedance digital drive mode for input signals and a second user selected drive mode such as strong drive (set using PRT×DM[2:0] registers) for output signals on the same pin, based on the state of an auxiliary control bus signal. The bidirectional capability is useful for processor busses and communications interfaces such as the SPI Slave MISO pin that requires dynamic hardware control of the output buffer.

The auxiliary control bus routes up to 16 UDB or digital peripheral generated output enable signals to one or more pins.

6.4.4 Slew Rate Limited Mode

GPIO and SIO pins have fast and slow output slew rate options for strong and open drain drive modes, not resistive drive modes. Because it results in reduced EMI, the slow edge rate option is recommended for signals that are not speed critical, generally less than 1 MHz. The fast slew rate is for signals between 1 MHz and 33 MHz. The slew rate is individually configurable for each pin, and is set by the PRT×SLW registers.

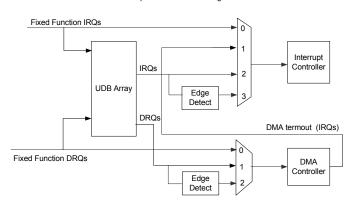


Figure 7-9. Digital System Interconnect

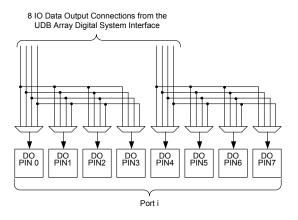
Interrupt and DMA routing is very flexible in the CY8C32 programmable architecture. In addition to the numerous fixed function peripherals that can generate interrupt requests, any data signal in the UDB array routing can also be used to generate a request. A single peripheral may generate multiple independent interrupt requests simplifying system and firmware design. Figure 7-10 shows the structure of the IDMUX (Interrupt/DMA Multiplexer).

Figure 7-10. Interrupt and DMA Processing in the IDMUX

Interrupt and DMA Processing in IDMUX


7.4.1 I/O Port Routing

There are a total of 20 DSI routes to a typical 8-bit I/O port, 16 for data and four for drive strength control.


When an I/O pin is connected to the routing, there are two primary connections available, an input and an output. In

conjunction with drive strength control, this can implement a bidirectional I/O pin. A data output signal has the option to be single synchronized (pipelined) and a data input signal has the option to be double synchronized. The synchronization clock is the master clock (see Figure 6-1). Normally all inputs from pins are synchronized as this is required if the CPU interacts with the signal or any signal derived from it. Asynchronous inputs have rare uses. An example of this is a feed through of combinational PLD logic from input pins to output pins.

Figure 7-11. I/O Pin Synchronization Routing

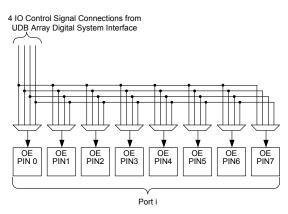


Figure 7-12. I/O Pin Output Connectivity

There are four more DSI connections to a given I/O port to implement dynamic output enable control of pins. This connectivity gives a range of options, from fully ganged 8-bits controlled by one signal, to up to four individually controlled pins. The output enable signal is useful for creating tri-state bidirectional pins and buses.

Figure 7-13. I/O Pin Output Enable Connectivity

More information on output formats is provided in the Technical Reference Manual.

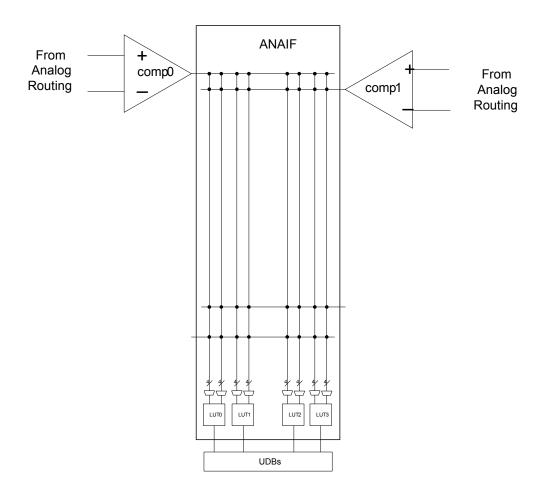
8.2.3 Start of Conversion Input

The SoC signal is used to start an ADC conversion. A digital clock or UDB output can be used to drive this input. It can be used when the sampling period must be longer than the ADC conversion time or when the ADC must be synchronized to other hardware. This signal is optional and does not need to be connected if ADC is running in a continuous mode.

8.2.4 End of Conversion Output

The EoC signal goes high at the end of each ADC conversion. This signal may be used to trigger either an interrupt or DMA request.

8.3 Comparators


The CY8C32 family of devices contains two comparators in a device. Comparators have these features:

- Input offset factory trimmed to less than 5 mV
- Rail-to-rail common mode input range (VSSA to VDDA)
- Speed and power can be traded off by using one of three modes: fast, slow, or ultra low-power
- Comparator outputs can be routed to lookup tables to perform simple logic functions and then can also be routed to digital blocks
- The positive input of the comparators may be optionally passed through a low pass filter. Two filters are provided
- Comparator inputs can be connections to GPIO or DAC output

8.3.1 Input and Output Interface

The positive and negative inputs to the comparators come from the analog global buses, the analog mux line, the analog local bus and precision reference through multiplexers. The output from each comparator could be routed to any of the two input LUTs. The output of that LUT is routed to the UDB Digital System Interface.

9.3 Debug Features

Using the JTAG or SWD interface, the CY8C32 supports the following debug features:

- Halt and single-step the CPU
- View and change CPU and peripheral registers, and RAM addresses
- Eight program address breakpoints
- One memory access breakpoint—break on reading or writing any memory address and data value
- Break on a sequence of breakpoints (non recursive)
- Debugging at the full speed of the CPU
- Compatible with PSoC Creator and MiniProg3 programmer and debugger
- Standard JTAG programming and debugging interfaces make CY8C32 compatible with other popular third-party tools (for example, ARM / Keil)

9.4 Trace Features

The CY8C32 supports the following trace features when using JTAG or SWD:

- Trace the 8051 program counter (PC), accumulator register (ACC), and one SFR / 8051 core RAM register
- Trace depth up to 1000 instructions if all registers are traced, or 2000 instructions if only the PC is traced (on devices that include trace memory)
- Program address trigger to start tracing
- Trace windowing, that is, only trace when the PC is within a given range
- Two modes for handling trace buffer full: continuous (overwriting the oldest trace data) or break when trace buffer is full

9.5 Single Wire Viewer Interface

The SWV interface is closely associated with SWD but can also be used independently. SWV data is output on the JTAG interface's TDO pin. If using SWV, you must configure the device for SWD, not JTAG. SWV is not supported with the JTAG interface.

SWV is ideal for application debug where it is helpful for the firmware to output data similar to 'printf' debugging on PCs. The SWV is ideal for data monitoring, because it requires only a single pin and can output data in standard UART format or Manchester encoded format. For example, it can be used to tune a PID control loop in which the output and graphing of the three error terms greatly simplifies coefficient tuning.

The following features are supported in SWV:

- 32 virtual channels, each 32 bits long
- Simple, efficient packing and serializing protocol
- Supports standard UART format (N81)

9.6 Programming Features

The JTAG and SWD interfaces provide full programming support. The entire device can be erased, programmed, and verified. You can increase flash protection levels to protect firmware IP. Flash protection can only be reset after a full device erase. Individual flash blocks can be erased, programmed, and verified, if block security settings permit.

9.7 Device Security

PSoC 3 offers an advanced security feature called device security, which permanently disables all test, programming, and debug ports, protecting your application from external access. The device security is activated by programming a 32-bit key (0×50536F43) to a Write Once Latch (WOL).

The Write Once Latch is a type of nonvolatile latch (NVL). The cell itself is an NVL with additional logic wrapped around it. Each WOL device contains four bytes (32 bits) of data. The wrapper outputs a '1' if a super-majority (28 of 32) of its bits match a pre-determined pattern (0×50536F43); it outputs a '0' if this majority is not reached. When the output is 1, the Write Once NV latch locks the part out of Debug and Test modes; it also permanently gates off the ability to erase or alter the contents of the latch. Matching all bits is intentionally not required, so that single (or few) bit failures do not deassert the WOL output. The state of the NVL bits after wafer processing is truly random with no tendency toward 1 or 0.

The WOL only locks the part after the correct 32-bit key (0×50536F43) is loaded into the NVL's volatile memory, programmed into the NVL's nonvolatile cells, and the part is reset. The output of the WOL is only sampled on reset and used to disable the access. This precaution prevents anyone from reading, erasing, or altering the contents of the internal memory.

The user can write the key into the WOL to lock out external access only if no flash protection is set (see "Flash Security" on page 24). However, after setting the values in the WOL, a user still has access to the part until it is reset. Therefore, a user can write the key into the WOL, program the flash protection data, and then reset the part to lock it.

If the device is protected with a WOL setting, Cypress cannot perform failure analysis and, therefore, cannot accept RMAs from customers. The WOL can be read out via SWD port to electrically identify protected parts. The user can write the key in WOL to lock out external access only if no flash protection is set. For more information on how to take full advantage of the security features in PSoC see the PSoC 3 TRM.

Disclaimer

Note the following details of the flash code protection features on Cypress devices.

Cypress products meet the specifications contained in their particular Cypress datasheets. Cypress believes that its family of products is one of the most secure families of its kind on the market today, regardless of how they are used. There may be methods, unknown to Cypress, that can breach the code protection features. Any of these methods, to our knowledge, would be dishonest and possibly illegal. Neither Cypress nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Cypress is willing to work with the customer who is concerned about the integrity of their code. Code protection is constantly evolving. We at Cypress are committed to continuously improving the code protection features of our products.

11. Electrical Specifications

Specifications are valid for –40 °C \leq T_A \leq 85 °C and T_J \leq 100 °C, except where noted. Specifications are valid for 1.71 V to 5.5 V, except where noted. The unique flexibility of the PSoC UDBs and analog blocks enable many functions to be implemented in PSoC Creator components, see the component datasheets for full AC/DC specifications of individual functions. See the "Example Peripherals" section on page 45 for further explanation of PSoC Creator components.

11.1 Absolute Maximum Ratings

Parameter	Description	Conditions	Min	Тур	Max	Units
V _{DDA}	Analog supply voltage relative to V _{SSA}		-0.5	_	6	V
V _{DDD}	Digital supply voltage relative to V _{SSD}		-0.5	-	6	V
V _{DDIO}	I/O supply voltage relative to V_{SSD}		-0.5	-	6	V
V _{CCA}	Direct analog core voltage input		-0.5	-	1.95	V
V _{CCD}	Direct digital core voltage input		-0.5	I	1.95	V
V _{SSA}	Analog ground voltage		V _{SSD} –0.5	-	V _{SSD} + 0.5	V
V _{GPIO} ^[16]	DC input voltage on GPIO	Includes signals sourced by $V_{\mbox{\scriptsize DDA}}$ and routed internal to the pin	V _{SSD} –0.5	-	V _{DDIO} + 0.5	V
V _{SIO}	DC input voltage on SIO	Output disabled	V _{SSD} –0.5	-	7	V
		Output enabled	V _{SSD} –0.5	-	6	V
V _{IND}	Voltage at boost converter input		0.5	-	5.5	V
V _{BAT}	Boost converter supply		V _{SSD} –0.5	-	5.5	V
I _{VDDIO}	Current per V _{DDIO} supply pin		-	-	100	mA
I _{GPIO}	GPIO current		-30	-	41	mA
I _{SIO}	SIO current		-49	-	28	mA
I _{USBIO}	USBIO current		-56	-	59	mA
VEXTREF	ADC external reference inputs	Pins P0[3], P3[2]	-	-	2	V
LU	Latch up current ^[17]		-140	I	140	mA
	Electrostatic discharge voltage,	V _{SSA} tied to V _{SSD}	2200	-	-	V
ESD _{HBM}	Human body model	V _{SSA} not tied to V _{SSD}	750	I	-	V
ESD _{CDM}	Electrostatic discharge voltage, Charge device model		500	-	_	V

Notes

15. Usage above the absolute maximum conditions listed in Table 11-1 may cause permanent damage to the device. Exposure to Absolute Maximum conditions for extended periods of time may affect device reliability. The Maximum Storage Temperature is 150 °C in compliance with JEDEC Standard JESD22-A103, High Temperature Storage Life. When used below Absolute Maximum conditions but above normal operating conditions, the device may not operate to specification.

16. The V_{DDIO} supply voltage must be greater than the maximum voltage on the associated GPIO pins. Maximum voltage on GPIO pin ≤ V_{DDIO} ≤ V_{DDA}. 17. Meets or exceeds JEDEC Spec EIA/JESD78 IC Latch-up Test.

11.2 Device Level Specifications

Specifications are valid for –40 $^{\circ}C \le T_A \le 85 ~^{\circ}C$ and $T_J \le 100 ~^{\circ}C$, except where noted. Specifications are valid for 1.71 V to 5.5 V, except where noted.

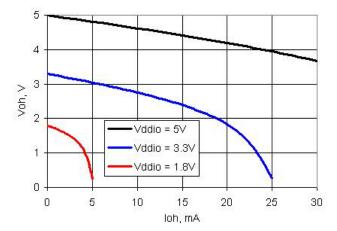
11.2.1 Device Level Specifications

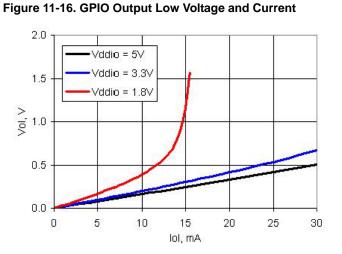
Table 11-2. DC Specifications

Parameter	Description	Conditions		Min	Typ ^[22]	Max	Units	
V _{DDA}	Analog supply voltage and input to analog core regulator	Analog core regulato	r enabled	1.8	_	5.5	V	
V _{DDA}	Analog supply voltage, analog regulator bypassed	Analog core regulato	r disabled	1.71	1.8	1.89	V	
V _{DDD}	Digital supply voltage relative to V _{SSD}	Digital core regulator	enabled	1.8	-	V _{DDA} ^[18]	V	
• DDD		Digital core regulator	Chabled	1	-	V _{DDA} + 0.1 ^[24]	v	
V _{DDD}	Digital supply voltage, digital regulator bypassed	Digital core regulator	disabled	1.71	1.8	1.89	V	
V _{DDIO} ^[19]	I/O supply voltage relative to V _{SSIO}			1.71	-	V _{DDA} ^[18]	V	
				-	-	V _{DDA} + 0.1 ^[24]		
V _{CCA}	Direct analog core voltage input (Analog regulator bypass)	Analog core regulato	r disabled	1.71	1.8	1.89	V	
V _{CCD}	Direct digital core voltage input (Digital regulator bypass)	Digital core regulator	disabled	1.71	1.8	1.89	V	
	Active Mode							
	Only IMO and CPU clock enabled. CPU executing simple loop from instruction buffer.	T = -271(55)(-7)	T = -40 °C	-	1.2	2.9		
		$F_{CPU} = 6 \text{ MHz}^{[23]}$	T = 25 °C		1.2			
		T = 85 °C	-	4.9				
		$V_{PPV} = 27V - 55V$	T = -40 °C	-	1.3			
		$F_{CPU} = 3 \text{ MHz}^{[23]}$	T = 25 °C	-	1.6	-		
			T = 85 °C	-	4.8	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
			T = -40 °C	-	2.1			
		$V_{DDX} = 2.7 V - 5.5 V;$ E _{ODV} = 6 MHz	$V_{DDX} = 2.7 V - 5.5 V,$ T =	T = 25 °C	-	2.3	5.5 3 1.89 $V_{DDA}^{[18]}$ $V_{DDA} + 0.1^{[24]}$ 3 1.89 $V_{DDA} + 0.1^{[24]}$ 3 1.89 $V_{DDA} + 0.1^{[24]}$ 3 1.89 2 2.9 2 3.1 9 7.7 3 2.9 5 3.2 3 7.5 1 3.7 3 3.9 5 5.5 5 5.2 3 5.5 1 9.8 3 8.1 5 3.3.5 1 13.5 2 14	
I _{DD} ^[20, 21]			T = 85 °C	_	5.6	8.5	mA	
	IMO enabled, bus clock and CPU clock	$V_{DDX} = 2.7 V - 5.5 V;$	T = -40 °C	-	3.5	5.2		
	enabled. CPU executing program from	F _{CPU} = 12 MHz ^[23]	T = 25 °C	-	3.8	5.5		
	flash.		T = 85 °C	-	7.1	9.8	-	
		$V_{DDX} = 2.7 V - 5.5 V;$	T = -40 °C	-	6.3	8.1		
		$F_{CPU} = 24 \text{ MHz}^{[23]}$	T = 25 °C	_	6.6	8.3		
			T = 85 °C	-	10	13		
		$V_{DDX} = 2.7 V - 5.5 V;$	T = -40 °C	_	11.5	13.5		
		F _{CPU} = 48 MHz ^[23]	T = 25 °C	-	12	14		
	Only IMO and CPU clock enabled. CPU executing simple loop from instruction buffer. $V_{DDX} = 2.7 V - 5.5 V_F_{CPU} = 6 \text{ MHz}^{[23]}$ 1] $V_{DDX} = 2.7 V - 5.5 V_F_{CPU} = 3 \text{ MHz}^{[23]}$ $V_{DDX} = 2.7 V - 5.5 V_F_{CPU} = 3 \text{ MHz}^{[23]}$ 1]IMO enabled, bus clock and CPU clock enabled. CPU executing program from flash. $V_{DDX} = 2.7 V - 5.5 V_F_{CPU} = 6 \text{ MHz}^{-1}$ 1] $V_{DDX} = 2.7 V - 5.5 V_F_{CPU} = 12 \text{ MHz}^{-1}$	T = 85 °C	_	15.5	18.5			

Notes

18. The power supplies can be brought up in any sequence however once stable V_{DDA} must be greater than or equal to all other supplies. 19. The V_{DDIO} supply voltage must be greater than the maximum voltage on the associated GPIO pins. Maximum voltage on GPIO pin $\leq V_{DDIO} \leq V_{DDA}$. 20. Total current for all power domains: digital (I_{DDD}), analog (I_{DDA}), and I/Os ($I_{DDIO0, 1, 2, 3}$). Boost not included. All I/Os floating.


21. The current consumption of additional peripherals that are implemented only in programmed logic blocks can be found in their respective datasheets, available in PSoC Creator, the integrated design environment. To estimate total current, find the CPU current at the frequency of interest and add peripheral currents for your particular system from the device datasheet and component datasheets.


22. V_{DDX} = 3.3 V. 23. Based on device characterizations (Not production tested).

24. Guaranteed by design, not production tested.

Figure 11-15. GPIO Output High Voltage and Current

Table 11-10. GPIO AC Specifications

Parameter	Description	Conditions	Min	Тур	Мах	Units
TriseF		3.3 V V _{DDIO} Cload = 25 pF	_	-	6	ns
TfallF	Fall time in Fast Strong Mode ^[38]	3.3 V V _{DDIO} Cload = 25 pF	_	-	6	ns
TriseS	Rise time in Slow Strong Mode ^[38]	3.3 V V _{DDIO} Cload = 25 pF	-	-	60	ns
TfallS	Fall time in Slow Strong Mode ^[38]	3.3 V V _{DDIO} Cload = 25 pF	-	-	60	ns
	GPIO output operating frequency					
	2.7 V \leq V _{DDIO} \leq 5.5 V, fast strong drive mode	90/10% V _{DDIO} into 25 pF	-	-	33	MHz
Fgpioout	$1.71 \text{ V} \leq \text{V}_{\text{DDIO}} < 2.7 \text{ V}$, fast strong drive mode	90/10% V _{DDIO} into 25 pF	_	-	20	MHz
	$3.3 \text{ V} \leq \text{V}_{\text{DDIO}} \leq 5.5 \text{ V}$, slow strong drive mode	90/10% V _{DDIO} into 25 pF	_	-	7	MHz
	1.71 V \leq V _{DDIO} < 3.3 V, slow strong drive mode	90/10% V _{DDIO} into 25 pF	-	-	3.5	MHz
Fgpioin	GPIO input operating frequency					
	1.71 V <u>≤</u> V _{DDIO} <u>≤</u> 5.5 V	90/10% V _{DDIO}	-	-	33	MHz

^{38.} Based on device characterization (Not production tested).

V_{DDD} = 3.3 V, 25 pF Load

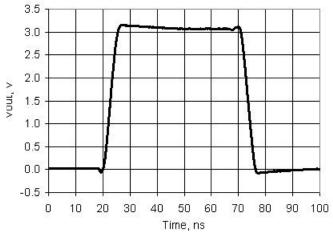


Table 11-16. USB Driver AC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
Tr	Transition rise time		-	-	20	ns
Tf	Transition fall time		-	-	20	ns
TR	Rise/fall time matching	V _{USB_5} , V _{USB_3.3} , see USB DC Specifications on page 98	90%	-	111%	
Vcrs	Output signal crossover voltage		1.3	-	2	V

11.4.4 XRES

Table 11-17. XRES DC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
V _{IH}	Input voltage high threshold		$0.7 \times V_{DDIO}$	_	_	V
V _{IL}	Input voltage low threshold		-	-	0.3 ×	V
					V _{DDIO}	
Rpullup	Pull-up resistor		3.5	5.6	8.5	kΩ
C _{IN}	Input capacitance ^[43]		_	3	-	pF
V _H	Input voltage hysteresis (Schmitt-Trigger) ^[43]		-	100	_	mV
Idiode	Current through protection diode to V_{DDIO} and V_{SSIO}		-	_	100	μA

Table 11-18. XRES AC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
T _{RESET}	Reset pulse width		1	-	-	μs

11.5 Analog Peripherals

Specifications are valid for –40 °C \leq T_A \leq 85 °C and T_J \leq 100 °C, except where noted. Specifications are valid for 1.71 V to 5.5 V, except where noted.

11.5.1 Delta-sigma ADC

Unless otherwise specified, operating conditions are:

- Operation in continuous sample mode
- fclk = 6.144 MHz
- Reference = 1.024 V internal reference bypassed on P3.2 or P0.3
- Unless otherwise specified, all charts and graphs show typical values

Table 11-19. 12-bit Delta-sigma ADC DC Specifications

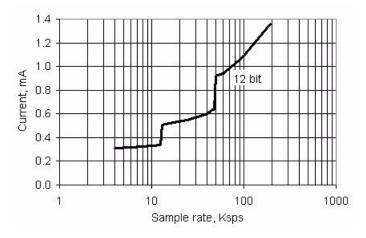
Parameter	Description	Conditions	Min	Тур	Max	Units
	Resolution		8	-	12	bits
	Number of channels, single ended		-	-	No. of GPIO	_
	Number of channels, differential	Differential pair is formed using a pair of GPIOs.	-	-	No. of GPIO/2	-
	Monotonic	Yes	-	-	-	-
Ge	Gain error	Buffered, buffer gain = 1, Range = ±1.024 V, 25 °C	-	-	±0.2	%
Gd	Gain drift	Buffered, buffer gain = 1, Range = ±1.024 V	-	-	50	ppm/° C
Vos	Input offset voltage	Buffered, 12-bit mode	-	-	±0.1	mV
TCVos	Temperature coefficient, input offset voltage	Buffer gain = 1, 12-bit, Range = ±1.024 V	_	-	1	µV/°C
	Input voltage range, single ended ^[45]		V _{SSA}	-	V _{DDA}	V
	Input voltage range, differential unbuf- fered ^[45]		V _{SSA}	-	V _{DDA}	V
	Input voltage range, differential, buffered ^[45]		V _{SSA}	-	V _{DDA} – 1	V
INL12	Integral non linearity ^[45]	Range = ±1.024 V, unbuffered	-	-	±1	LSB
DNL12	Differential non linearity ^[45]	Range = ±1.024 V, unbuffered	-	-	±1	LSB
INL8	Integral non linearity ^[45]	Range = ±1.024 V, unbuffered	-	-	±1	LSB
DNL8	Differential non linearity ^[45]	Range = ±1.024 V, unbuffered	-	-	±1	LSB
Rin_Buff	ADC input resistance	Input buffer used	10	-	-	MΩ
Rin_ADC12	ADC input resistance	Input buffer bypassed, 12 bit, Range = ±1.024 V	-	148 ^[46]	-	kΩ
Rin_ExtRef	ADC external reference input resistance		-	70 ^[46, 47]	_	kΩ
Vextref	ADC external reference input voltage, see also internal reference in Voltage Reference on page 86	Pins P0[3], P3[2]	0.9	-	1.3	v
Current Co						
I _{DD_12}	$I_{DDA} + I_{DDD}$ current consumption, 12 bit ^[45]	192 ksps, unbuffered	-	-	1.95	mA
I _{BUFF}	Buffer current consumption ^[45]		-	-	2.5	mA

Notes

^{45.} Based on device characterization (not production tested).

^{46.} By using switched capacitors at the ADC input an effective input resistance is created. Holding the gain and number of bits constant, the resistance is proportional to the inverse of the clock frequency. This value is calculated, not measured. For more information see the Technical Reference Manual.

^{47.} Recommend an external reference device with an output impedance <100 Ω, for example, the LM185/285/385 family. A 1-μF capacitor is recommended. For more information, see AN61290 - PSoC® 3 and PSoC 5LP Hardware Design Considerations.


Table 11-20. Delta-sigma ADC AC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
	Startup time			-	4	Samples
THD	Total harmonic distortion ^[48]	Buffer gain = 1, 12-bit, Range = ±1.024 V	-	-	0.0032	%
12-Bit Resol	ution Mode					
SR12	Sample rate, continuous, high power ^[48]	Range = ±1.024 V, unbuffered	4	-	192	ksps
BW12	Input bandwidth at max sample rate ^[48]	Range = ±1.024 V, unbuffered	-	44	-	kHz
SINAD12int	Signal to noise ratio, 12-bit, internal reference ^[48]	Range = ±1.024 V, unbuffered	66	-	-	dB
8-Bit Resolu	tion Mode	-		•		
SR8	Sample rate, continuous, high power ^[48]	Range = ± 1.024 V, unbuffered	8	-	384	ksps
BW8	Input bandwidth at max sample rate ^[48]	Range = ±1.024 V, unbuffered	-	88	-	kHz
SINAD8int	Signal to noise ratio, 8-bit, internal reference ^[48]	Range = ±1.024 V, unbuffered	43	_	-	dB

Table 11-21. Delta-sigma ADC Sample Rates, Range = ±1.024 V

Resolution,	Continuous		Multi-Sample		
Bits	Min	Max	Min	Max	
8	8000	384000	1911	91701	
9	6400	307200	1543	74024	
10	5566	267130	1348	64673	
11	4741	227555	1154	55351	
12	4000	192000	978	46900	

Figure 11-25. Delta-sigma ADC IDD vs sps, Range = ±1.024 V, Continuous Sample Mode, Input Buffer Bypassed

Note 48. Based on device characterization (Not production tested).

11.5.2 Voltage Reference

Table 11-22. Voltage Reference Specifications

See also ADC external reference specifications in Section 11.5.1.

Parameter	Description	Conditions	Min	Тур	Max	Units
V _{REF}	5	Initialtrimming, 25 °C	1.014 (–1%)	1.024	1.034 (+1%)	V

11.5.3 Analog Globals

Table 11-23. Analog Globals Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
Rppag	Resistance pin-to-pin through P2[4], AGL0, DSM INP, AGL1, P2[5] ^[49]	V _{DDA} = 3 V	-	1472	2200	Ω
Rppmuxbus	Resistance pin-to-pin through P2[3], amuxbusL, P2[4] ^[49]	V _{DDA} = 3 V	_	706	1100	Ω

11.5.4 Comparator

Table 11-24. Comparator DC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
	Input offset voltage in fast mode	Factory trim, V _{DDA} > 2.7 V, V _{IN} \geq 0.5 V	-		10	mV
	Input offset voltage in slow mode	Factory trim, $V_{IN} \ge 0.5 V$	-		9	mV
V _{OS}	Input offset voltage in fast mode ^[50]	Custom trim	_	-	4	mV
	Input offset voltage in slow mode ^[50]	Custom trim	_	-	4	mV
	Input offset voltage in ultra low-power mode	V _{DDA} ≤ 4.6 V	-	±12	-	mV
V _{HYST}	Hysteresis	Hysteresis enable mode	_	10	32	mV
V _{ICM}	Input common mode voltage	High current / fast mode	V _{SSA}	-	V _{DDA}	V
		Low current / slow mode	V _{SSA}	-	V _{DDA}	V
		Ultra low power mode V _{DDA} ≤ 4.6 V	V _{SSA}	-	V _{DDA} – 1.15	
CMRR	Common mode rejection ratio		_	50	_	dB
I _{CMP}	High current mode/fast mode ^[51]		-	-	400	μA
	Low current mode/slow mode ^[51]		_	-	100	μA
	Ultra low-power mode ^[51]	V _{DDA} ≤ 4.6 V	-	6	-	μA

Table 11-25. Comparator AC Specifications

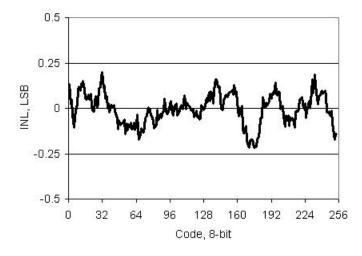
Parameter	Description	Conditions	Min	Тур	Max	Units
	Response time, high current mode ^[51]	50 mV overdrive, measured pin-to-pin	-	75	110	ns
Tresp	Response time, low current mode ^[51]	50 mV overdrive, measured pin-to-pin	-	155	200	ns
	Response time, ultra low-power mode ^[51]	50 mV overdrive, measured pin-to-pin, V _{DDA} ≤ 4.6 V	-	55	_	μs

Notes

51. Based on device characterization (Not production tested).

 ^{49.} The resistance of the analog global and analog mux bus is high if V_{DDA} ≤ 2.7 V, and the chip is in either sleep or hibernate mode. Use of analog global and analog mux bus under these conditions is not recommended
 50. The recommended procedure for using a custom trim value for the on-chip comparators can be found in the TRM.

11.5.6 Voltage Digital to Analog Converter (VDAC)


See the VDAC component datasheet in PSoC Creator for full electrical specifications and APIs.

Unless otherwise specified, all charts and graphs show typical values.

Table 11-28. VDAC DC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
	Resolution		-	8	-	bits
INL1	Integral nonlinearity	1 V scale	-	±2.1	±2.5	LSB
INL4	Integral nonlinearity ^[52]	4 V scale	-	±2.1	±2.5	LSB
DNL1	Differential nonlinearity	1 V scale	-	±0.3	±1	LSB
DNL4	Differential nonlinearity ^[52]	4 V scale	-	±0.3	±1	LSB
Rout	Output resistance	1 V scale	-	4	-	kΩ
		4 V scale	-	16	-	kΩ
V _{OUT}	Output voltage range, code = 255	1 V scale	-	1.02	-	V
		4 V scale, V _{DDA} = 5 V	-	4.08	-	V
	Monotonicity		-	-	Yes	-
V _{OS}	Zero scale error		-	0	±0.9	LSB
Eg	Gain error	1 V scale	-	-	±2.5	%
		4 V scale	-	-	±2.5	%
TC_Eg	Temperature coefficient, gain error	1 V scale	-	-	0.03	%FSR/°C
		4 V scale	-	-	0.03	%FSR/°C
I _{DD}	Operating current	Low speed mode	-	-	100	μA
		High speed mode	-	-	500	μA

Figure 11-40. VDAC INL vs Input Code, 1 V Mode

Figure 11-41. VDAC DNL vs Input Code, 1 V Mode

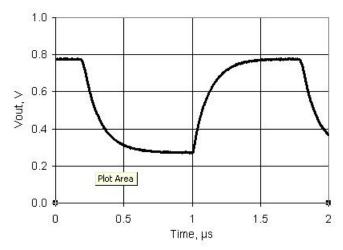

Note 52. Based on device characterization (Not production tested).

Table 11-29. VDAC AC Specifications t

Parameter	Description	Conditions	Min	Тур	Max	Units
F _{DAC}	Update rate	1 V scale	-	-	1000	ksps
		4 V scale	-	-	250	ksps
TsettleP	Settling time to 0.1%, step 25% to 75%	1 V scale, Cload = 15 pF	-	0.45	1	μs
		4 V scale, Cload = 15 pF	-	0.8	3.2	μs
TsettleN	Settling time to 0.1%, step 75% to 25%	1 V scale, Cload = 15 pF	-	0.45	1	μs
		4 V scale, Cload = 15 pF	-	0.7	3	μs
	Voltage noise	Range = 1 V, High speed mode, V _{DDA} = 5 V, 10 kHz	-	750	-	nV/sqrtHz

Figure 11-48. VDAC Step Response, Codes 0x40 - 0xC0, 1 V Mode, High speed mode, $V_{DDA} = 5 V$

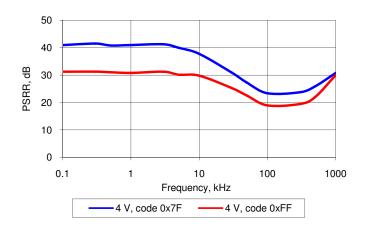
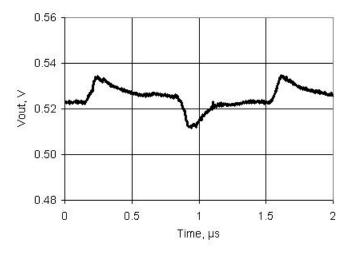
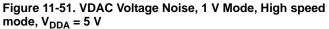
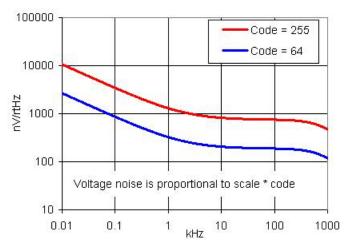
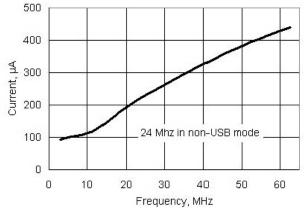
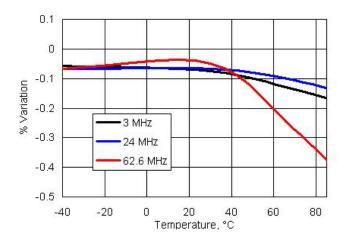
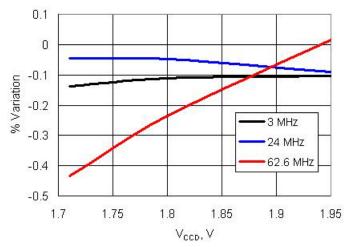





Figure 11-49. VDAC Glitch Response, Codes 0x7F - 0x80, 1 V Mode, High speed mode, V_{DDA} = 5 V




Figure 11-59. IMO Current vs. Frequency


Table 11-66. IMO AC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units		
	IMO frequency stability (with factory trim)							
	24 MHz – Non USB mode		-4	_	4	%		
F _{IMO}	24 MHz – USB mode	With oscillator locking to USB bus	-0.25	-	0.25	%		
	12 MHz		-3	-	3	%		
	6 MHz		-2	_	2	%		
	3 MHz		-2	-	2	%		
	Startup time ^[69]	From enable (during normal system operation)	-	-	13	μs		
	Jitter (peak to peak) ^[69]			I				
Јр-р	F = 24 MHz		_	0.9	_	ns		
	F = 3 MHz		_	1.6	-	ns		
	Jitter (long term) ^[69]				I			
Jperiod	F = 24 MHz		_	0.9	-	ns		
	F = 3 MHz		_	12	-	ns		

Figure 11-60. IMO Frequency Variation vs. Temperature

Figure 11-61. IMO Frequency Variation vs. V_{CC}

Note

69. Based on device characterization (Not production tested).

Description Title: PSoC [®] 3: CY8C32 Family Data Sheet Programmable System-on-Chip (PSoC [®]) (continued) Document Number: 001-56955				
Revision	ECN	Submission Date	Orig. of Change	Description of Change
*X	4932879	09/24/2015	MKEA	Changed the Regulator Output Capacitor min and max from "-" to 0.9 and 1.1, respectively. Added reference to AN54439 in Section 11.9.3. Added MHz ECO DC specs table. Removed references to IPOR rearm issues in Section 6.3.1.1. Table 6-1: Changed DSI Fmax to 33 MHz. Figure 6-1: Changed External I/O or DSI to 0-33 MHz. Table 11-10: Changed Fgpioin Max to 33 MHz. Table 11-12: Changed Fsioin Max to 33 MHz.
*Y	5322536	06/27/2016	MKEA	Updated More Information. Corrected typos in External Electrical Connections. Added links to CAD Libraries in Section 2.