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What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade
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In addition to the flexibility of the UDB array, PSoC also provides 
configurable digital blocks targeted at specific functions. For the 
CY8C32 family these blocks can include four 16-bit timers, 
counters, and PWM blocks; I2C slave, master, and multimaster; 
and FS USB.

For more details on the peripherals see the “Example 
Peripherals” section on page 45 of this datasheet. For 
information on UDBs, DSI, and other digital blocks, see the 
“Digital Subsystem” section on page 45 of this datasheet.

PSoC’s analog subsystem is the second half of its unique 
configurability. All analog performance is based on a highly 
accurate absolute voltage reference with less than 1-percent 
error over temperature and voltage. The configurable analog 
subsystem includes:

 Analog muxes

 Comparators

 Voltage references

 ADC

 DAC

All GPIO pins can route analog signals into and out of the device 
using the internal analog bus. This allows the device to interface 
up to 62 discrete analog signals. The heart of the analog 
subsystem is a fast, accurate, configurable delta-sigma ADC 
with these features:

 Less than 100 µV offset

 A gain error of 0.2 percent

 INL less than ±1 LSB

 DNL less than ±1 LSB

 SINAD better than 66 dB

This converter addresses a wide variety of precision analog 
applications, including some of the most demanding sensors.

A high-speed voltage or current DAC supports 8-bit output 
signals at an update rate of 8 Msps in current DAC (IDAC) and 
1 Msps in voltage DAC (VDAC). It can be routed out of any GPIO 
pin. You can create higher resolution voltage PWM DAC outputs 
using the UDB array. This can be used to create a pulse width 
modulated (PWM) DAC of up to 10 bits, at up to 48 kHz. The 
digital DACs in each UDB support PWM, PRS, or delta-sigma 
algorithms with programmable widths.

In addition to the ADC and DAC, the analog subsystem provides 
multiple comparators.

See the “Analog Subsystem” section on page 55 of this 
datasheet for more details.

PSoC’s 8051 CPU subsystem is built around a single cycle 
pipelined 8051 8-bit processor running at up to 50 MHz. The 
CPU subsystem includes a programmable nested vector 
interrupt controller, DMA controller, and RAM. PSoC’s nested 
vector interrupt controller provides low latency by allowing the 
CPU to vector directly to the first address of the interrupt service 
routine, bypassing the jump instruction required by other 
architectures. The DMA controller enables peripherals to 

exchange data without CPU involvement. This allows the CPU 
to run slower (saving power) or use those CPU cycles to improve 
the performance of firmware algorithms. The single cycle 8051 
CPU runs ten times faster than a standard 8051 processor. The 
processor speed itself is configurable, allowing you to tune active 
power consumption for specific applications.

PSoC’s nonvolatile subsystem consists of flash, byte-writeable 
EEPROM, and nonvolatile configuration options. It provides up 
to 64 KB of on-chip flash. The CPU can reprogram individual 
blocks of flash, enabling bootloaders. You can enable an ECC 
for high reliability applications. A powerful and flexible protection 
model secures the user's sensitive information, allowing 
selective memory block locking for read and write protection. Up 
to 2 KB of byte-writeable EEPROM is available on-chip to store 
application data. Additionally, selected configuration options 
such as boot speed and pin drive mode are stored in nonvolatile 
memory. This allows settings to activate immediately after POR.

The three types of PSoC I/O are extremely flexible. All I/Os have 
many drive modes that are set at POR. PSoC also provides up 
to four I/O voltage domains through the VDDIO pins. Every GPIO 
has analog I/O, LCD drive[3], CapSense[4], flexible interrupt 
generation, slew rate control, and digital I/O capability. The SIOs 
on PSoC allow Voh to be set independently of VDDIO when used 
as outputs. When SIOs are in input mode they are high 
impedance. This is true even when the device is not powered or 
when the pin voltage goes above the supply voltage. This makes 
the SIO ideally suited for use on an I2C bus where the PSoC may 
not be powered when other devices on the bus are. The SIO pins 
also have high current sink capability for applications such as 
LED drives. The programmable input threshold feature of the 
SIO can be used to make the SIO function as a general purpose 
analog comparator. For devices with FS USB the USB physical 
interface is also provided (USBIO). When not using USB these 
pins may also be used for limited digital functionality and device 
programming. All of the features of the PSoC I/Os are covered 
in detail in the “I/O System and Routing” section on page 37 of 
this datasheet.

The PSoC device incorporates flexible internal clock generators, 
designed for high stability and factory trimmed for high accuracy. 
The Internal Main Oscillator (IMO) is the clock base for the 
system, and has 2-percent accuracy at 3 MHz. The IMO can be 
configured to run from 3 MHz up to 24 MHz. Multiple clock 
derivatives can be generated from the main clock frequency to 
meet application needs. The device provides a PLL to generate 
clock frequencies up to 50 MHz from the IMO, external crystal, 
or external reference clock. It also contains a separate, very 
low-power Internal Low-Speed Oscillator (ILO) for the sleep and 
watchdog timers. A 32.768-kHz external watch crystal is also 
supported for use in RTC applications. The clocks, together with 
programmable clock dividers, provide the flexibility to integrate 
most timing requirements.

The CY8C32 family supports a wide supply operating range from 
1.71 V to 5.5 V. This allows operation from regulated supplies 
such as 1.8 ± 5 percent, 2.5 V ±10 percent, 3.3 V ± 10 percent, 
or 5.0 V ± 10 percent, or directly from a wide range of battery 
types. In addition, it provides an integrated high efficiency 
synchronous boost converter that can power the device from 
supply voltages as low as 0.5 V. 

Notes
3. This feature on select devices only. See Ordering Information on page 111 for details.
4. GPIOs with opamp outputs are not recommended for use with CapSense. 
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4.4.4.5 Scatter Gather DMA

In the case of scatter gather DMA, there are multiple 
noncontiguous sources or destinations that are required to 
effectively carry out an overall DMA transaction. For example, a 
packet may need to be transmitted off of the device and the 
packet elements, including the header, payload, and trailer, exist 
in various noncontiguous locations in memory. Scatter gather 
DMA allows the segments to be concatenated together by using 
multiple TDs in a chain. The chain gathers the data from the 
multiple locations. A similar concept applies for the reception of 
data onto the device. Certain parts of the received data may need 
to be scattered to various locations in memory for software 
processing convenience. Each TD in the chain specifies the 
location for each discrete element in the chain.

4.4.4.6 Packet Queuing DMA

Packet queuing DMA is similar to scatter gather DMA but 
specifically refers to packet protocols. With these protocols, 
there may be separate configuration, data, and status phases 
associated with sending or receiving a packet. 

For instance, to transmit a packet, a memory mapped 
configuration register can be written inside a peripheral, 
specifying the overall length of the ensuing data phase. The CPU 
can set up this configuration information anywhere in system 
memory and copy it with a simple TD to the peripheral. After the 
configuration phase, a data phase TD (or a series of data phase 
TDs) can begin (potentially using scatter gather). When the data 
phase TD(s) finish, a status phase TD can be invoked that reads 
some memory mapped status information from the peripheral 
and copies it to a location in system memory specified by the 
CPU for later inspection. Multiple sets of configuration, data, and 
status phase “subchains” can be strung together to create larger 
chains that transmit multiple packets in this way. A similar 
concept exists in the opposite direction to receive the packets.

4.4.4.7 Nested DMA

One TD may modify another TD, as the TD configuration space
is memory mapped similar to any other peripheral. For example,
a first TD loads a second TD’s configuration and then calls the
second TD. The second TD moves data as required by the
application. When complete, the second TD calls the first TD,
which again updates the second TD’s configuration. This
process repeats as often as necessary.

4.5  Interrupt Controller

The interrupt controller provides a mechanism for hardware 
resources to change program execution to a new address, 
independent of the current task being executed by the main 
code. The interrupt controller provides enhanced features not 
found on original 8051 interrupt controllers:

 Thirty two interrupt vectors

 Jumps directly to ISR anywhere in code space with dynamic 
vector addresses

Multiple sources for each vector

 Flexible interrupt to vector matching

 Each interrupt vector is independently enabled or disabled

 Each interrupt can be dynamically assigned one of eight 
priorities

 Eight level nestable interrupts

Multiple I/O interrupt vectors

 Software can send interrupts

 Software can clear pending interrupts

When an interrupt is pending, the current instruction is 
completed and the program counter is pushed onto the stack. 
Code execution then jumps to the program address provided by 
the vector. After the ISR is completed, a RETI instruction is 
executed and returns execution to the instruction following the 
previously interrupted instruction. To do this the RETI instruction 
pops the program counter from the stack.

If the same priority level is assigned to two or more interrupts, 
the interrupt with the lower vector number is executed first. Each 
interrupt vector may choose from three interrupt sources: Fixed 
Function, DMA, and UDB. The fixed function interrupts are direct 
connections to the most common interrupt sources and provide 
the lowest resource cost connection. The DMA interrupt sources 
provide direct connections to the two DMA interrupt sources 
provided per DMA channel. The third interrupt source for vectors 
is from the UDB digital routing array. This allows any digital signal 
available to the UDB array to be used as an interrupt source. 
Fixed function interrupts and all interrupt sources may be routed 
to any interrupt vector using the UDB interrupt source 
connections.

Figure 4-2 on page 21 represents typical flow of events when an 
interrupt triggered. Figure 4-3 on page 22 shows the interrupt 
structure and priority polling.
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Figure 4-3. Interrupt Structure
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5.5  Nonvolatile Latches (NVLs)

PSoC has a 4-byte array of nonvolatile latches (NVLs) that are used to configure the device at reset. The NVL register map is shown 
in Table 5-2.

The details for individual fields and their factory default settings are shown in Table 5-3:.

Although PSoC Creator provides support for modifying the device configuration NVLs, the number of NVL erase / write cycles is limited 
– see “Nonvolatile Latches (NVL))” on page 100.

Table 5-2.  Device Configuration NVL Register Map

Register Address 7 6 5 4 3 2 1 0

0x00 PRT3RDM[1:0] PRT2RDM[1:0] PRT1RDM[1:0] PRT0RDM[1:0]

0x01 PRT12RDM[1:0] PRT6RDM[1:0] PRT5RDM[1:0] PRT4RDM[1:0]

0x02 XRESMEN DBGEN PRT15RDM[1:0]

0x03 DIG_PHS_DLY[3:0] ECCEN DPS[1:0]

Table 5-3.  Fields and Factory Default Settings

Field Description Settings

PRTxRDM[1:0] Controls reset drive mode of the corresponding IO port. 
See “Reset Configuration” on page 44. All pins of the 
port are set to the same mode.

00b (default) - high impedance analog
01b - high impedance digital
10b - resistive pull up
11b - resistive pull down

XRESMEN Controls whether pin P1[2] is used as a GPIO or as an 
external reset. See “Pin Descriptions” on page 12, 
XRES description.

0 (default for 68-pin 72-pin, and 100-pin parts) - GPIO
1 (default for 48-pin parts) - external reset

DBGEN Debug Enable allows access to the debug system, for 
third-party programmers.

0 - access disabled
1 (default) - access enabled

DPS[1:0] Controls the usage of various P1 pins as a debug port. 
See “Programming, Debug Interfaces, Resources” on 
page 62.

00b - 5-wire JTAG
01b (default) - 4-wire JTAG
10b - SWD
11b - debug ports disabled

ECCEN Controls whether ECC flash is used for ECC or for 
general configuration and data storage. See “Flash 
Program Memory” on page 24.

0 - ECC disabled
1 (default) - ECC enabled

DIG_PHS_DLY[3:0] Selects the digital clock phase delay. See the TRM for details.
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Figure 6-1. Clocking Subsystem

Table 6-1.  Oscillator Summary
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6.2.1  Power Modes

PSoC 3 devices have four different power modes, as shown in 
Table 6-2 and Table 6-3. The power modes allow a design to 
easily provide required functionality and processing power while 
simultaneously minimizing power consumption and maximizing 
battery life in low-power and portable devices. 

PSoC 3 power modes, in order of decreasing power 
consumption are: 

 Active

 Alternate Active

 Sleep 

 Hibernate

Active is the main processing mode. Its functionality is 
configurable. Each power controllable subsystem is enabled or 
disabled by using separate power configuration template 
registers. In alternate active mode, fewer subsystems are 
enabled, reducing power. In sleep mode most resources are 
disabled regardless of the template settings. Sleep mode is 
optimized to provide timed sleep intervals and RTC functionality. 
The lowest power mode is hibernate, which retains register and 
SRAM state, but no clocks, and allows wakeup only from I/O 
pins. Figure 6-5 illustrates the allowable transitions between 
power modes. Sleep and hibernate modes should not be entered 
until all VDDIO supplies are at valid voltage levels.

Note
11. Bus clock off. Execute from cache at 6 MHz. See Table 11-2 on page 68.

Table 6-2.  Power Modes

Power Modes Description Entry Condition Wakeup Source Active Clocks  Regulator

Active Primary mode of operation, all 
peripherals available (program-
mable)

Wakeup, reset, 
manual register 
entry 

Any interrupt Any 
(programmable)

All regulators available. 
Digital and analog 
regulators can be disabled 
if external regulation used.

Alternate 
Active

Similar to Active mode, and is 
typically configured to have 
fewer peripherals active to 
reduce power. One possible 
configuration is to use the UDBs 
for processing, with the CPU 
turned off

Manual register 
entry

Any interrupt Any 
(programmable)

All regulators available. 
Digital and analog 
regulators can be disabled 
if external regulation used.

Sleep All subsystems automatically 
disabled 

Manual register 
entry

Comparator, 
PICU, I2C, RTC, 
CTW, LVD

ILO/kHzECO Both digital and analog 
regulators buzzed. 
Digital and analog 
regulators can be disabled 
if external regulation used.

Hibernate All subsystems automatically 
disabled 
Lowest power consuming mode 
with all peripherals and internal 
regulators disabled, except 
hibernate regulator is enabled
Configuration and memory 
contents retained

Manual register 
entry 

PICU Only hibernate regulator 
active.

Table 6-3.  Power Modes Wakeup Time and Power Consumption

Sleep 
Modes

Wakeup 
Time

Current 
(typ)

Code 
Execution

Digital 
Resources

Analog 
Resources

Clock Sources 
Available Wakeup Sources Reset 

Sources

Active  – 1.2 mA[11] Yes All All All – All

Alternate 
Active 

 – – User 
defined

All All All – All

Sleep
<15 µs 1 µA No I2C Comparator ILO/kHzECO Comparator, 

PICU, I2C, RTC, 
CTW, LVD

XRES, LVD, 
WDR

Hibernate <100 µs 200 nA No None None None PICU XRES
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Figure 6-5. Power Mode Transitions

6.2.1.1 Active Mode 

Active mode is the primary operating mode of the device. When 
in active mode, the active configuration template bits control 
which available resources are enabled or disabled. When a 
resource is disabled, the digital clocks are gated, analog bias 
currents are disabled, and leakage currents are reduced as 
appropriate. User firmware can dynamically control subsystem 
power by setting and clearing bits in the active configuration 
template. The CPU can disable itself, in which case the CPU is 
automatically reenabled at the next wakeup event.

When a wakeup event occurs, the global mode is always 
returned to active, and the CPU is automatically enabled, 
regardless of its template settings. Active mode is the default 
global power mode upon boot. 

6.2.1.2 Alternate Active Mode

Alternate Active mode is very similar to Active mode. In alternate 
active mode, fewer subsystems are enabled, to reduce power 
consumption. One possible configuration is to turn off the CPU 
and flash, and run peripherals at full speed.

6.2.1.3 Sleep Mode 

Sleep mode reduces power consumption when a resume time of 
15 µs is acceptable. The wake time is used to ensure that the 
regulator outputs are stable enough to directly enter active 
mode.

6.2.1.4 Hibernate Mode 

In hibernate mode nearly all of the internal functions are 
disabled. Internal voltages are reduced to the minimal level to 
keep vital systems alive. Configuration state is preserved in 
hibernate mode and SRAM memory is retained. GPIOs 
configured as digital outputs maintain their previous values and 
external GPIO pin interrupt settings are preserved. The device 
can only return from hibernate mode in response to an external 
I/O interrupt. The resume time from hibernate mode is less than 
100 µs.

To achieve an extremely low current, the hibernate regulator has 
limited capacity. This limits the frequency of any signal present 
on the input pins - no GPIO should toggle at a rate greater than 
10 kHz while in hibernate mode. If pins must be toggled at a high 
rate while in a low power mode, use sleep mode instead.

6.2.1.5 Wakeup Events
Wakeup events are configurable and can come from an interrupt 
or device reset. A wakeup event restores the system to active 
mode. Firmware enabled interrupt sources include internally 
generated interrupts, power supervisor, central timewheel, and 
I/O interrupts. Internal interrupt sources can come from a variety 
of peripherals, such as analog comparators and UDBs. The 
central timewheel provides periodic interrupts to allow the 
system to wake up, poll peripherals, or perform real-time 
functions. Reset event sources include the external reset I/O pin 
(XRES), WDT, and Precision Reset (PRES). 

6.2.2  Boost Converter

Applications that use a supply voltage of less than 1.71 V, such
as solar panels or single cell battery supplies, may use the
on-chip boost converter to generate a minimum of 1.8 V supply
voltage. The boost converter may also be used in any system
that requires a higher operating voltage than the supply provides
such as driving 5.0 V LCD glass in a 3.3 V system. With the
addition of an inductor, Schottky diode, and capacitors, it
produces a selectable output voltage sourcing enough current to
operate the PSoC and other on-board components. 

The boost converter accepts an input voltage VBAT from 0.5 V to
3.6 V, and can start up with VBAT as low as 0.5 V. The converter
provides a user configurable output voltage of 1.8 to 5.0 V (VOUT)
in 100 mV increments. VBAT is typically less than VOUT; if VBAT is
greater than or equal to VOUT, then VOUT will be slightly less than
VBAT due to resistive losses in the boost converter. The block can
deliver up to 50 mA (IBOOST) depending on configuration to both
the PSoC device and external components. The sum of all
current sinks in the design including the PSoC device, PSoC I/O
pin loads, and external component loads must be less than the
IBOOST specified maximum current.

Four pins are associated with the boost converter: VBAT, VSSB,
VBOOST, and IND. The boosted output voltage is sensed at the
VBOOST pin and must be connected directly to the chip’s supply
inputs, VDDA, VDDD, and VDDIO, if used to power the PSoC
device. 

The boost converter requires four components in addition to
those required in a non-boost design, as shown in Figure 6-6 on
page 35. A 22-µF capacitor (CBAT) is required close to the VBAT
pin to provide local bulk storage of the battery voltage and
provide regulator stability. A diode between the battery and VBAT
pin should not be used for reverse polarity protection because
the diodes forward voltage drop reduces the VBAT voltage.
Between the VBAT and IND pins, an inductor of 4.7 µH, 10 µH,
or 22 µH is required. The inductor value can be optimized to
increase the boost converter efficiency based on input voltage,
output voltage, temperature, and current. Inductor size is
determined by following the design guidance in this section and
the electrical specifications. The inductor must be placed within
1 cm of the VBAT and IND pins and have a minimum saturation
current of 750 mA. Between the IND and VBOOST pins, place a
Schottky diode within 1 cm of the pins. This diode shall have a
forward current rating of at least 1.0 A and a reverse voltage of
at least 20 V. Connect a 22-µF bulk capacitor (CBOOST) close
to VBOOST to provide regulator output stability. It is important to
sum the total capacitance connected to the VBOOST pin and
ensure the maximum CBOOST specification is not exceeded. All
capacitors must be rated for a minimum of 10 V to minimize
capacitive losses due to voltage de-rating.

Active

Manual

Hibernate

Alternate 
Active
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Figure 6-10. SIO Input/Output Block Diagram

Figure 6-11. USBIO Block Diagram 
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5 k 1.5 k

D+ pin only

PRT[15]DM1[6]

USBIO_CR1[5] USB or I/O

D+ 1.5 k

D+ 5 k

D+ Open 
Drain

PRT[15]SYNC_OUT

USB SIE Control for USB Mode

USB Receiver Circuitry

Vddd

PRT[15]PS[6,7]

USBIO_CR1[2]

D- 5 k
PRT[15]DM1[7]

D- Open 
Drain

PRT[15]DM0[6]

PRT[15]DM0[7]
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6.4.1  Drive Modes

Each GPIO and SIO pin is individually configurable into one of the eight drive modes listed in Table 6-6. Three configuration bits are 
used for each pin (DM[2:0]) and set in the PRTxDM[2:0] registers. Figure 6-12 depicts a simplified pin view based on each of the eight 
drive modes. Table 6-6 shows the I/O pin’s drive state based on the port data register value or digital array signal if bypass mode is 
selected. Note that the actual I/O pin voltage is determined by a combination of the selected drive mode and the load at the pin. For 
example, if a GPIO pin is configured for resistive pull-up mode and driven high while the pin is floating, the voltage measured at the 
pin is a high logic state. If the same GPIO pin is externally tied to ground then the voltage unmeasured at the pin is a low logic state.

Figure 6-12. Drive Mode

Table 6-6.  Drive Modes

Diagram Drive Mode PRTxDM2 PRTxDM1 PRTxDM0 PRTxDR = 1 PRTxDR = 0

0 High impedence analog 0 0 0 High Z High Z

1 High Impedance digital 0 0 1 High Z High Z

2 Resistive pull-up[12] 0 1 0 Res High (5K) Strong Low

3 Resistive pull-down[12] 0 1 1 Strong High Res Low (5K)

4 Open drain, drives low 1 0 0 High Z Strong Low

5 Open drain, drive high 1 0 1 Strong High High Z

6 Strong drive 1 1 0 Strong High Strong Low

7 Resistive pull-up and pull-down[12] 1 1 1 Res High (5K) Res Low (5K)

Out
In

Pin
Out
In

Pin
Out
In

Pin Out
In

Pin

Out
In

Pin
Out
In

Pin
Out
In

Pin Out
In

Pin

0. High Impedance
    Analog

1. High Impedance
    Digital

2. Resistive Pull-Up 3. Resistive Pull-Down

4. Open Drain,
    Drives Low

5. Open Drain,
    Drives High

6. Strong Drive 7. Resistive Pull-Up
    and Pull-Down

VDD VDD

VDD VDD VDD

An An An An

AnAnAnAn

The ‘Out’ connection is driven from either the Digital System (when the Digital Output terminal is connected) or the Data Register 
(when HW connection is disabled). 
The ‘In’ connection drives the Pin State register, and the Digital System if the Digital Input terminal is enabled and connected. 
The ‘An’ connection connects to the Analog System.

Note
12. Resistive pull-up and pull-down are not available with SIO in regulated output mode.
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Figure 8-2. CY8C32 Analog Interconnect
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8.4.4  LCD DAC

The LCD DAC generates the contrast control and bias voltage 
for the LCD system. The LCD DAC produces up to five LCD drive 
voltages plus ground, based on the selected bias ratio. The bias 
voltages are driven out to GPIO pins on a dedicated LCD bias 
bus, as required. 

8.5  CapSense

The CapSense system provides a versatile and efficient means 
for measuring capacitance in applications such as touch sense 
buttons, sliders, proximity detection, etc. The CapSense system 
uses a configuration of system resources, including a few 
hardware functions primarily targeted for CapSense. Specific 
resource usage is detailed in each CapSense component in 
PSoC Creator.

A capacitive sensing method using a delta-sigma modulator 
(CSD) is used. It provides capacitance sensing using a switched 
capacitor technique with a delta-sigma modulator to convert the 
sensing current to a digital code.

8.6  Temp Sensor

Die temperature is used to establish programming parameters 
for writing flash. Die temperature is measured using a dedicated 
sensor based on a forward biased transistor. The temperature 
sensor has its own auxiliary ADC.

8.7  DAC

The CY8C32 parts contain a Digital to Analog Converter (DAC). 
The DAC is 8-bit and can be configured for either voltage or 
current output. The DAC supports CapSense, power supply 
regulation, and waveform generation. The DAC has the following 
features:

 Adjustable voltage or current output in 255 steps

 Programmable step size (range selection)

 Eight bits of calibration to correct ± 25 percent of gain error

 Source and sink option for current output

 High and low speed / power modes

 8 Msps conversion rate for current output

 1 Msps conversion rate for voltage output

Monotonic in nature

 Data and strobe inputs can be provided by the CPU or DMA, 
or routed directly from the DSI

 Dedicated low-resistance output pin for high-current mode

Figure 8-7. DAC Block Diagram

8.7.1  Current DAC

The current DAC (IDAC) can be configured for the ranges 0 to 
31.875 µA, 0 to 255 µA, and 0 to 2.04 mA. The IDAC can be 
configured to source or sink current.

8.7.2  Voltage DAC

For the voltage DAC (VDAC), the current DAC output is routed 
through resistors. The two ranges available for the VDAC are 0 
to 1.02 V and 0 to 4.08 V. In voltage mode any load connected 
to the output of a DAC should be purely capacitive (the output of 
the VDAC is not buffered).

Reference 

Source

Scaler

I source  Range 

1x , 8x , 64x

I sink  Range    

1x , 8x , 64x

R

3R

Vout
Iout
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Figure 11-8. TA range over VBAT  and VOUT Figure 11-9. IOUT range over VBAT and VOUT

Figure 11-10. LBOOST values over VBAT and VOUT

Table 11-7.  Recommended External Components for Boost Circuit

Parameter Description Conditions Min Typ Max Units

LBOOST Boost inductor 4.7 µH nominal 3.7 4.7 5.7 µH

10 µH nominal 8.0 10.0 12.0 µH

22 µH nominal 17.0 22.0 27.0 µH

CBOOST Total capacitance sum of 
VDDD, VDDA, VDDIO

[34]
17.0 26.0 31.0 µF

CBAT Battery filter capacitor 17.0 22.0 27.0 µF

IF Schottky diode average 
forward current

1.0 – – A

VR Schottky reverse voltage 20.0 – – V

Note
34. Based on device characterization (Not production tested).
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Figure 11-15. GPIO Output High Voltage and Current Figure 11-16. GPIO Output Low Voltage and Current

Table 11-10.  GPIO AC Specifications

Parameter Description Conditions Min Typ Max Units

TriseF Rise time in Fast Strong Mode[38] 3.3 V VDDIO Cload = 25 pF – – 6 ns

TfallF Fall time in Fast Strong Mode[38] 3.3 V VDDIO Cload = 25 pF – – 6 ns

TriseS Rise time in Slow Strong Mode[38] 3.3 V VDDIO Cload = 25 pF – – 60 ns

TfallS Fall time in Slow Strong Mode[38] 3.3 V VDDIO Cload = 25 pF – – 60 ns

Fgpioout

GPIO output operating frequency

2.7 V < VDDIO < 5.5 V, fast strong drive mode 90/10% VDDIO into 25 pF – – 33 MHz

1.71 V < VDDIO < 2.7 V, fast strong drive mode 90/10% VDDIO into 25 pF – – 20 MHz

3.3 V < VDDIO < 5.5 V, slow strong drive mode 90/10% VDDIO into 25 pF – – 7 MHz

1.71 V < VDDIO < 3.3 V, slow strong drive mode 90/10% VDDIO into 25 pF – – 3.5 MHz

Fgpioin
GPIO input operating frequency

1.71 V < VDDIO < 5.5 V 90/10% VDDIO – – 33 MHz

Note
38. Based on device characterization (Not production tested).
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Figure 11-22. USBIO Output High Voltage and Current, GPIO 
Mode

Figure 11-23. USBIO Output Low Voltage and Current, GPIO 
Mode

Figure 11-24. USBIO Output Rise and Fall Times, GPIO Mode, 

Table 11-15.  USBIO AC Specifications

Parameter Description Conditions Min Typ Max Units
Tdrate Full-speed data rate average bit rate  12 – 0.25% 12 12 + 

0.25%
 MHz

Tjr1 Receiver data jitter tolerance to next 
transition

–8 – 8 ns

Tjr2 Receiver data jitter tolerance to pair 
transition

–5 – 5  ns

Tdj1 Driver differential jitter to next 
transition

–3.5 – 3.5  ns

Tdj2 Driver differential jitter to pair transition –4 – 4 ns
Tfdeop Source jitter for differential transition to 

SE0 transition
–2 – 5 ns

Tfeopt Source SE0 interval of EOP 160 – 175 ns
Tfeopr Receiver SE0 interval of EOP 82 – –  ns
Tfst Width of SE0 interval during differ-

ential transition
– – 14 ns

Fgpio_out GPIO mode output operating 
frequency

3 V  VDDD  5.5 V – – 20 MHz
VDDD = 1.71 V – – 6 MHz

Tr_gpio Rise time, GPIO mode, 10%/90% 
VDDD

VDDD > 3 V, 25 pF load – – 12 ns
VDDD = 1.71 V, 25 pF load – – 40 ns

Tf_gpio Fall time, GPIO mode, 90%/10% VDDD VDDD > 3 V, 25 pF load – – 12 ns
VDDD = 1.71 V, 25 pF load – – 40 ns



PSoC® 3: CY8C32 Family Data Sheet

Document Number: 001-56955 Rev. *Y Page 86 of 128

11.5.2  Voltage Reference

11.5.3  Analog Globals

11.5.4  Comparator  

Table 11-22.  Voltage Reference Specifications

See also ADC external reference specifications in Section 11.5.1.

Parameter Description Conditions Min Typ Max Units

VREF Precision reference voltage Initial trimming, 
25 °C

1.014 (–1%) 1.024 1.034 (+1%) V

Table 11-23.  Analog Globals Specifications

Parameter Description Conditions Min Typ Max Units

Rppag Resistance pin-to-pin through P2[4], AGL0, DSM INP, 
AGL1, P2[5][49]

VDDA = 3 V – 1472 2200 

Rppmuxbus Resistance pin-to-pin through P2[3], amuxbusL, 
P2[4][49]

VDDA = 3 V – 706 1100 

Notes
49. The resistance of the analog global and analog mux bus is high if VDDA 2.7 V, and the chip is in either sleep or hibernate mode. Use of analog global and analog 

mux bus under these conditions is not recommended
50. The recommended procedure for using a custom trim value for the on-chip comparators can be found in the TRM.
51. Based on device characterization (Not production tested). 

Table 11-24.  Comparator DC Specifications

Parameter Description Conditions Min Typ Max Units

VOS

Input offset voltage in fast mode Factory trim, VDDA > 2.7 V, 
VIN  0.5 V

– 10 mV

Input offset voltage in slow mode Factory trim, VIN  0.5 V – 9 mV

Input offset voltage in fast mode[50] Custom trim – – 4 mV

Input offset voltage in slow mode[50] Custom trim – – 4 mV

Input offset voltage in ultra low-power 
mode

VDDA ≤ 4.6 V – ±12 – mV

VHYST Hysteresis Hysteresis enable mode – 10 32 mV

VICM Input common mode voltage High current / fast mode VSSA – VDDA V

Low current / slow mode VSSA – VDDA V

Ultra low power mode
VDDA ≤ 4.6 V

VSSA – VDDA – 
1.15

CMRR Common mode rejection ratio – 50 – dB

ICMP High current mode/fast mode[51] – – 400 µA

Low current mode/slow mode[51] – – 100 µA

Ultra low-power mode[51] VDDA ≤ 4.6 V – 6 – µA

Table 11-25.  Comparator AC Specifications

Parameter Description Conditions Min Typ Max Units

Tresp

Response time, high current mode[51] 50 mV overdrive, measured pin-to-pin – 75 110 ns

Response time, low current mode[51] 50 mV overdrive, measured pin-to-pin – 155 200 ns

Response time, ultra low-power mode[51] 50 mV overdrive, measured 
pin-to-pin, VDDA ≤ 4.6 V

– 55 – µs
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Figure 11-26. IDAC INL vs Input Code, Range = 255 µA, 
Source Mode

Figure 11-27. IDAC INL vs Input Code, Range = 255 µA, Sink 
Mode

IDD Operating current, code = 0 Low speed mode, source mode, 
range = 31.875 µA

– 44 100 µA

Low speed mode, source mode, 
range = 255 µA,

– 33 100 µA

Low speed mode, source mode, 
range = 2.04 mA

– 33 100 µA

Low speed mode, sink mode, 
range = 31.875 µA

– 36 100 µA

Low speed mode, sink mode, 
range = 255 µA

– 33 100 µA

Low speed mode, sink mode, 
range = 2.04 mA

– 33 100 µA

High speed mode, source mode, 
range = 31.875 µA

– 310 500 µA

High speed mode, source mode, 
range = 255 µA

– 305 500 µA

High speed mode, source mode, 
range = 2.04 mA

– 305 500 µA

High speed mode, sink mode, 
range = 31.875 µA

– 310 500 µA

High speed mode, sink mode, 
range = 255 µA

– 300 500 µA

High speed mode, sink mode, 
range = 2.04 mA

– 300 500 µA

Table 11-26.  IDAC DC Specifications (continued)

Parameter Description Conditions Min Typ Max Units
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Figure 11-32. IDAC Full Scale Error vs Temperature, Range 
= 255 µA, Source Mode

Figure 11-33. IDAC Full Scale Error vs Temperature, Range 
= 255 µA, Sink Mode

Figure 11-34. IDAC Operating Current vs Temperature, 
Range = 255 µA, Code = 0, Source Mode

Figure 11-35. IDAC Operating Current vs Temperature, 
Range = 255 µA, Code = 0, Sink Mode
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Figure 11-48. VDAC Step Response, Codes 0x40 - 0xC0, 1 V 
Mode, High speed mode, VDDA = 5 V

Figure 11-49. VDAC Glitch Response, Codes 0x7F - 0x80, 1 V 
Mode, High speed mode, VDDA = 5 V

Figure 11-50. VDAC PSRR vs Frequency Figure 11-51. VDAC Voltage Noise, 1 V Mode, High speed 
mode, VDDA = 5 V

Table 11-29.  VDAC AC Specifications t

Parameter Description Conditions Min Typ Max Units

FDAC Update rate 1 V scale – – 1000 ksps

4 V scale – – 250 ksps

TsettleP Settling time to 0.1%, step 25% to 
75%

1 V scale, Cload = 15 pF – 0.45 1 µs

4 V scale, Cload = 15 pF – 0.8 3.2 µs

TsettleN Settling time to 0.1%, step 75% to 
25%

1 V scale, Cload = 15 pF – 0.45 1 µs

4 V scale, Cload = 15 pF – 0.7 3 µs

Voltage noise Range = 1 V, High speed mode, 
VDDA = 5 V, 10 kHz

– 750 – nV/sqrtHz
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11.5.7  Temperature Sensor

11.5.8  LCD Direct Drive 

 

Table 11-30.  Temperature Sensor Specifications

Parameter Description Conditions Min Typ Max Units

Temp sensor accuracy Range: –40 °C to +85 °C – ±5 – °C

Table 11-31.  LCD Direct Drive DC Specifications

Parameter Description Conditions Min Typ Max Units

ICC LCD system operating current Device sleep mode with wakeup at 
400-Hz rate to refresh LCDs, bus 
clock = 3 MHz, VDDIO = VDDA = 3 V,
4 commons, 16 segments, 1/4 duty 
cycle, 50 Hz frame rate, no glass 
connected

– 38 – A

ICC_SEG Current per segment driver Strong drive mode – 260 – µA

VBIAS LCD bias range (VBIAS refers to the 
main output voltage(V0) of LCD DAC)

VDDA  3 V and VDDA  VBIAS 2 – 5 V

LCD bias step size VDDA  3 V and VDDA  VBIAS – 9.1 × VDDA – mV

LCD capacitance per 
segment/common driver 

Drivers may be combined – 500 5000 pF

Long term segment offset – – 20 mV

IOUT Output drive current per segment 
driver)

VDDIO = 5.5V, strong drive mode 355 – 710 µA

Table 11-32.  LCD Direct Drive AC Specifications

Parameter Description Conditions Min Typ Max Units

fLCD LCD frame rate 10 50 150 Hz
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11.8.5  SWD Interface

Figure 11-58. SWD Interface Timing

11.8.6  SWV Interface 

11.9  Clocking

Specifications are valid for –40 °C  TA  85 °C and TJ  100 °C, except where noted. Specifications are valid for 1.71 V to 5.5 V, 
except where noted.

11.9.1  Internal Main Oscillator

Table 11-63.  SWD Interface AC Specifications[67]

Parameter Description Conditions Min Typ Max Units

f_SWDCK SWDCLK frequency 3.3 V  VDDD  5 V – – 14[68] MHz

1.71 V  VDDD < 3.3 V – – 7[68] MHz

1.71 V  VDDD < 3.3 V, 
SWD over USBIO pins

– – 5.5[68] MHz

T_SWDI_setup SWDIO input setup before SWDCK high T = 1/f_SWDCK max T/4 – –

T_SWDI_hold SWDIO input hold after SWDCK high T = 1/f_SWDCK max T/4 – –

T_SWDO_valid SWDCK high to SWDIO output T = 1/f_SWDCK max – – 2T/5

SW DIO
(PSoC input)

SW DCK

T_SW DI_setup

SW DIO
(PSoC output)

(1/f_SW DCK)

T_SW DI_hold

T_SW DO_valid T_SW DO _hold

Table 11-64.  SWV Interface AC Specifications[30]

Parameter Description Conditions Min Typ Max Units

SWV mode SWV bit rate – – 33 Mbit

Notes
67. Based on device characterization (Not production tested).
68. f_SWDCK must also be no more than 1/3 CPU clock frequency.

Table 11-65.  IMO DC Specifications

Parameter Description Conditions Min Typ Max Units

Supply current

24 MHz – USB mode With oscillator locking to USB bus – – 500 µA

24 MHz – non USB mode – – 300 µA

12 MHz – – 200 µA

6 MHz – – 180 µA

3 MHz – – 150 µA


