

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

2000	
Product Status	Active
Core Processor	8051
Core Size	8-Bit
Speed	50MHz
Connectivity	EBI/EMI, I²C, LINbus, SPI, UART/USART
Peripherals	CapSense, DMA, POR, PWM, WDT
Number of I/O	25
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 5.5V
Data Converters	A/D 16x12b; D/A 1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-BSSOP (0.295", 7.50mm Width)
Supplier Device Package	48-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c3245pvi-134t

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Contents

1. Architectural Overview	4
2. Pinouts	6
3. Pin Descriptions	12
4. CPU	13
4.1 8051 CPU	13
4.2 Addressing Modes	
4.3 Instruction Set	
4.4 DMA and PHUB	
4.5 Interrupt Controller	20
5. Memory	24
5.1 Static RAM	24
5.2 Flash Program Memory	24
5.3 Flash Security	
5.4 EEPROM	
5.5 Nonvolatile Latches (NVLs)	
5.6 External Memory Interface	
5.7 Memory Map	
6. System Integration	
6.1 Clocking System	
6.2 Power System	
6.3 Reset	
6.4 I/O System and Routing	
7. Digital Subsystem	
7.1 Example Peripherals	
7.2 Universal Digital Block	
7.3 UDB Array Description	
7.4 DSI Routing Interface Description	
7.5 USB	
7.6 Timers, Counters, and PWMs	
7.7 l ² C	
8. Analog Subsystem	
8.1 Analog Routing	
8.2 Delta-sigma ADC	
8.3 Comparators	
8.4 LCD Direct Drive 8.5 CapSense	
8.6 Temp Sensor	
8.7 DAC	
	01

9. Programming, Debug Interfaces, Resources	
9.1 JTAG Interface	
9.2 Serial Wire Debug Interface	
9.3 Debug Features 9.4 Trace Features	
9.5 Single Wire Viewer Interface	
9.6 Programming Features	
9.7 Device Security	
9.8 CSP Package Bootloader	
10. Development Support	66
10.1 Documentation	
10.2 Online	
10.3 Tools	
11. Electrical Specifications	
11.1 Absolute Maximum Ratings	
11.2 Device Level Specifications	
11.3 Power Regulators 11.4 Inputs and Outputs	
11.5 Analog Peripherals	
11.6 Digital Peripherals	
11.7 Memory	
11.8 PSoC System Resources	
11.9 Clocking	107
12. Ordering Information	
12.1 Part Numbering Conventions	
13. Packaging	113
14. Acronyms	117
15. Reference Documents	118
16. Document Conventions	119
16.1 Units of Measure	119
17. Revision History	120
18. Sales, Solutions, and Legal Information	128
Worldwide Sales and Design Support	
Products	
PSoC® Solutions	
Cypress Developer Community	
Technical Support	128

4.4.4.5 Scatter Gather DMA

In the case of scatter gather DMA, there are multiple noncontiguous sources or destinations that are required to effectively carry out an overall DMA transaction. For example, a packet may need to be transmitted off of the device and the packet elements, including the header, payload, and trailer, exist in various noncontiguous locations in memory. Scatter gather DMA allows the segments to be concatenated together by using multiple TDs in a chain. The chain gathers the data from the multiple locations. A similar concept applies for the reception of data onto the device. Certain parts of the received data may need to be scattered to various locations in memory for software processing convenience. Each TD in the chain specifies the location for each discrete element in the chain.

4.4.4.6 Packet Queuing DMA

Packet queuing DMA is similar to scatter gather DMA but specifically refers to packet protocols. With these protocols, there may be separate configuration, data, and status phases associated with sending or receiving a packet.

For instance, to transmit a packet, a memory mapped configuration register can be written inside a peripheral, specifying the overall length of the ensuing data phase. The CPU can set up this configuration information anywhere in system memory and copy it with a simple TD to the peripheral. After the configuration phase, a data phase TD (or a series of data phase TDs) can begin (potentially using scatter gather). When the data phase TD(s) finish, a status phase TD can be invoked that reads some memory mapped status information from the peripheral and copies it to a location in system memory specified by the CPU for later inspection. Multiple sets of configuration, data, and status phase "subchains" can be strung together to create larger chains that transmit multiple packets in this way. A similar concept exists in the opposite direction to receive the packets.

4.4.4.7 Nested DMA

One TD may modify another TD, as the TD configuration space is memory mapped similar to any other peripheral. For example, a first TD loads a second TD's configuration and then calls the second TD. The second TD moves data as required by the application. When complete, the second TD calls the first TD, which again updates the second TD's configuration. This process repeats as often as necessary.

4.5 Interrupt Controller

The interrupt controller provides a mechanism for hardware resources to change program execution to a new address, independent of the current task being executed by the main code. The interrupt controller provides enhanced features not found on original 8051 interrupt controllers:

- Thirty two interrupt vectors
- Jumps directly to ISR anywhere in code space with dynamic vector addresses
- Multiple sources for each vector
- Flexible interrupt to vector matching
- Each interrupt vector is independently enabled or disabled
- Each interrupt can be dynamically assigned one of eight priorities
- Eight level nestable interrupts
- Multiple I/O interrupt vectors
- Software can send interrupts
- Software can clear pending interrupts

When an interrupt is pending, the current instruction is completed and the program counter is pushed onto the stack. Code execution then jumps to the program address provided by the vector. After the ISR is completed, a RETI instruction is executed and returns execution to the instruction following the previously interrupted instruction. To do this the RETI instruction pops the program counter from the stack.

If the same priority level is assigned to two or more interrupts, the interrupt with the lower vector number is executed first. Each interrupt vector may choose from three interrupt sources: Fixed Function, DMA, and UDB. The fixed function interrupts are direct connections to the most common interrupt sources and provide the lowest resource cost connection. The DMA interrupt sources provide direct connections to the two DMA interrupt sources provided per DMA channel. The third interrupt source for vectors is from the UDB digital routing array. This allows any digital signal available to the UDB array to be used as an interrupt source. Fixed function interrupts and all interrupt sources may be routed to any interrupt vector using the UDB interrupt source connections.

Figure 4-2 on page 21 represents typical flow of events when an interrupt triggered. Figure 4-3 on page 22 shows the interrupt structure and priority polling.

6.1.1 Internal Oscillators

Figure 6-1 shows that there are two internal oscillators. They can be routed directly or divided. The direct routes may not have a 50% duty cycle. Divided clocks have a 50% duty cycle.

6.1.1.1 Internal Main Oscillator

In most designs the IMO is the only clock source required, due to its \pm 2-percent accuracy. The IMO operates with no external components and outputs a stable clock. A factory trim for each frequency range is stored in the device. With the factory trim, tolerance varies from \pm 2 percent at 3 MHz, up to \pm 4-percent at 24 MHz. The IMO, in conjunction with the PLL, allows generation of other clocks up to the device's maximum frequency (see Phase-locked Loop)

The IMO provides clock outputs at 3, 6, 12, and 24 MHz.

6.1.1.2 Clock Doubler

The clock doubler outputs a clock at twice the frequency of the input clock. The doubler works at input frequency of 24 MHz, providing 48 MHz for the USB. It can be configured to use a clock from the IMO, MHzECO, or the DSI (external pin).

6.1.1.3 Phase-locked Loop

The PLL allows low-frequency, high-accuracy clocks to be multiplied to higher frequencies. This is a tradeoff between higher clock frequency and accuracy and, higher power consumption and increased startup time.

The PLL block provides a mechanism for generating clock frequencies based upon a variety of input sources. The PLL outputs clock frequencies in the range of 24 to 50 MHz. Its input and feedback dividers supply 4032 discrete ratios to create almost any desired clock frequency. The accuracy of the PLL output depends on the accuracy of the PLL input source. The most common PLL use is to multiply the IMO clock at 3 MHz, where it is most accurate to generate the other clocks up to the device's maximum frequency.

The PLL achieves phase lock within 250 µs (verified by bit setting). It can be configured to use a clock from the IMO, MHZECO or DSI (external pin). The PLL clock source can be used until lock is complete and signaled with a lock bit. The lock signal can be routed through the DSI to generate an interrupt. Disable the PLL before entering low-power modes.

6.1.1.4 Internal Low-Speed Oscillator

The ILO provides clock frequencies for low-power consumption, including the watchdog timer, and sleep timer. The ILO generates up to three different clocks: 1 kHz, 33 kHz, and 100 kHz.

The 1 kHz clock (CLK1K) is typically used for a background 'heartbeat' timer. This clock inherently lends itself to low-power supervisory operations such as the watchdog timer and long sleep intervals using the central timewheel (CTW).

The central timewheel is a 1 kHz, free running, 13-bit counter clocked by the ILO. The central timewheel is always enabled, except in hibernate mode and when the CPU is stopped during debug on chip mode. It can be used to generate periodic interrupts for timing purposes or to wake the system from a low-power mode. Firmware can reset the central timewheel. Systems that require accurate timing should use the RTC capability instead of the central timewheel.

The 100-kHz clock (CLK100K) can be used as a low power master clock. It can also generate time intervals using the fast timewheel.

The fast timewheel is a 5-bit counter, clocked by the 100-kHz clock. It features programmable settings and automatically resets when the terminal count is reached. An optional interrupt can be generated each time the terminal count is reached. This enables flexible, periodic interrupts of the CPU at a higher rate than is allowed using the central timewheel.

The 33-kHz clock (CLK33K) comes from a divide-by-3 operation on CLK100K. This output can be used as a reduced accuracy version of the 32.768-kHz ECO clock with no need for a crystal.

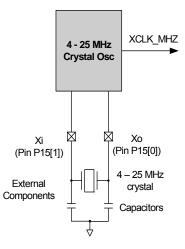
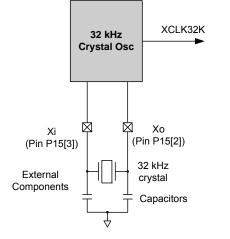

6.1.2 External Oscillators

Figure 6-1 shows that there are two external oscillators. They can be routed directly or divided. The direct routes may not have a 50% duty cycle. Divided clocks have a 50% duty cycle.

6.1.2.1 MHz External Crystal Oscillator

The MHzECO provides high frequency, high precision clocking using an external crystal (see Figure 6-2). It supports a wide variety of crystal types, in the range of 4 to 25 MHz. When used in conjunction with the PLL, it can generate other clocks up to the device's maximum frequency (see "Phase-locked Loop" section on page 30). The GPIO pins connecting to the external crystal and capacitors are fixed. MHzECO accuracy depends on the crystal chosen.

Figure 6-2. MHzECO Block Diagram


6.1.2.2 32.768-kHz ECO

The 32.768-kHz External Crystal Oscillator (32kHzECO) provides precision timing with minimal power consumption using an external 32.768-kHz watch crystal (see Figure 6-3). The 32kHzECO also connects directly to the sleep timer and provides the source for the RTC. The RTC uses a 1-second interrupt to implement the RTC functionality in firmware.

The oscillator works in two distinct power modes. This allows users to trade off power consumption with noise immunity from neighboring circuits. The GPIO pins connected to the external crystal and capacitors are fixed.

Figure 6-3. 32kHzECO Block Diagram

It is recommended that the external 32.768-kHz watch crystal have a load capacitance (CL) of 6 pF or 12.5 pF. Check the crystal manufacturer's datasheet. The two external capacitors, CL1 and CL2, are typically of the same value, and their total capacitance, CL1CL2 / (CL1 + CL2), including pin and trace capacitance, should equal the crystal CL value. For more information, refer to application note AN54439: PSoC 3 and PSoC 5 External Oscillators. See also pin capacitance specifications in the "GPIO" section on page 76.

6.1.2.3 Digital System Interconnect

The DSI provides routing for clocks taken from external clock oscillators connected to I/O. The oscillators can also be generated within the device in the digital system and Universal Digital Blocks.

While the primary DSI clock input provides access to all clocking resources, up to eight other DSI clocks (internally or externally generated) may be routed directly to the eight digital clock dividers. This is only possible if there are multiple precision clock sources.

6.1.3 Clock Distribution

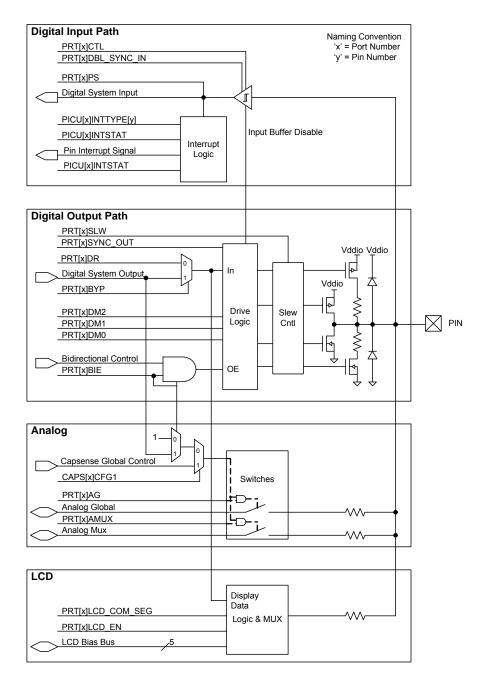
All seven clock sources are inputs to the central clock distribution system. The distribution system is designed to create multiple high precision clocks. These clocks are customized for the design's requirements and eliminate the common problems found with limited resolution prescalers attached to peripherals. The clock distribution system generates several types of clock trees.

The master clock is used to select and supply the fastest clock in the system for general clock requirements and clock synchronization of the PSoC device.

- Bus Clock 16-bit divider uses the master clock to generate the bus clock used for data transfers. Bus clock is the source clock for the CPU clock divider.
- Eight fully programmable 16-bit clock dividers generate digital system clocks for general use in the digital system, as configured by the design's requirements. Digital system clocks can generate custom clocks derived from any of the seven clock sources for any purpose. Examples include baud rate generators, accurate PWM periods, and timer clocks, and many others. If more than eight digital clock dividers are required, the Universal Digital Blocks (UDBs) and fixed function Timer/Counter/PWMs can also generate clocks.
- Four 16-bit clock dividers generate clocks for the analog system components that require clocking, such as ADC. The analog clock dividers include skew control to ensure that critical analog events do not occur simultaneously with digital switching events. This is done to reduce analog system noise.

Each clock divider consists of an 8-input multiplexer, a 16-bit clock divider (divide by 2 and higher) that generates ~50 percent duty cycle clocks, master clock resynchronization logic, and deglitch logic. The outputs from each digital clock tree can be routed into the digital system interconnect and then brought back into the clock system as an input, allowing clock chaining of up to 32 bits.

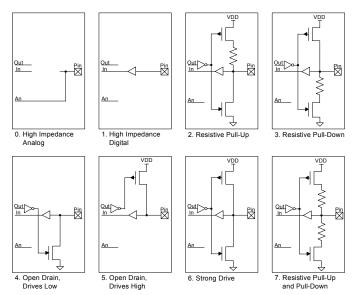
6.1.4 USB Clock Domain


The USB clock domain is unique in that it operates largely asynchronously from the main clock network. The USB logic contains a synchronous bus interface to the chip, while running on an asynchronous clock to process USB data. The USB logic requires a 48 MHz frequency. This frequency can be generated from different sources, including DSI clock at 48 MHz or doubled value of 24 MHz from internal oscillator, DSI signal, or crystal oscillator.

6.2 Power System

The power system consists of separate analog, digital, and I/O supply pins, labeled VDDA, VDDD, and VDDIOX, respectively. It also includes two internal 1.8 V regulators that provide the digital (VCCD) and analog (VCCA) supplies for the internal core logic. The output pins of the regulators (VCCD and VCCA) and the VDDIO pins must have capacitors connected as shown in Figure 6-4. The two VCCD pins must be shorted together, with as short a trace as possible, and connected to a 1- μ F ±10-percent X5R capacitor. The power system also contains a sleep regulator, an I²C regulator, and a hibernate regulator.

Figure 6-9. GPIO Block Diagram



6.4.1 Drive Modes

Each GPIO and SIO pin is individually configurable into one of the eight drive modes listed in Table 6-6. Three configuration bits are used for each pin (DM[2:0]) and set in the PRTxDM[2:0] registers. Figure 6-12 depicts a simplified pin view based on each of the eight drive modes. Table 6-6 shows the I/O pin's drive state based on the port data register value or digital array signal if bypass mode is selected. Note that the actual I/O pin voltage is determined by a combination of the selected drive mode and the load at the pin. For example, if a GPIO pin is configured for resistive pull-up mode and driven high while the pin is floating, the voltage measured at the pin is a high logic state. If the same GPIO pin is externally tied to ground then the voltage unmeasured at the pin is a low logic state.

Figure 6-12. Drive Mode

The 'Out' connection is driven from either the Digital System (when the Digital Output terminal is connected) or the Data Register (when HW connection is disabled). The 'in' connection drives the Pin State register, and the Digital System if the Digital Input terminal is enabled and connected. The 'An' connection connects to the Analog System.

Table 6-6. Drive Modes

Diagram	Drive Mode	PRTxDM2	PRTxDM1	PRTxDM0	PRTxDR = 1	PRTxDR = 0
0	High impedence analog	0	0	0	High Z	High Z
1	High Impedance digital	0	0	1	High Z	High Z
2	Resistive pull-up ^[12]	0	1	0	Res High (5K)	Strong Low
3	Resistive pull-down ^[12]	0	1	1	Strong High	Res Low (5K)
4	Open drain, drives low	1	0	0	High Z	Strong Low
5	Open drain, drive high	1	0	1	Strong High	High Z
6	Strong drive	1	1	0	Strong High	Strong Low
7	Resistive pull-up and pull-down ^[12]	1	1	1	Res High (5K)	Res Low (5K)

The USBIO pins (P15[7] and P15[6]), when enabled for I/O mode, have limited drive mode control. The drive mode is set using the PRT15.DM0[7, 6] register. A resistive pull option is also available at the USBIO pins, which can be enabled using the PRT15.DM1[7, 6] register. When enabled for USB mode, the drive mode control has no impact on the configuration of the USB pins. Unlike the GPIO and SIO configurations, the port wide configuration registers do not configure the USB drive mode bits. Table 6-7 shows the drive mode configuration for the USBIO pins.

PRT15.DM1[7,6] Pull up enable	PRT15.DM0[7,6] Drive Mode enable	PRT15.DR[7,6] = 1	PRT15.DR[7,6] = 0	Description
0	0	High Z	Strong Low	Open Drain, Strong Low
0	1	Strong High	Strong Low	Strong Outputs
1	0	Res High (5k)	Strong Low	Resistive Pull Up, Strong Low
1	1	Strong High	Strong Low	Strong Outputs

Table 6-7. USBIO Drive Modes (P15[7] and P15[6])

High Impedance Analog

The default reset state with both the output driver and digital input buffer turned off. This prevents any current from flowing in the I/O's digital input buffer due to a floating voltage. This state is recommended for pins that are floating or that support an analog voltage. High impedance analog pins do not provide digital input functionality.

To achieve the lowest chip current in sleep modes, all I/Os must either be configured to the high impedance analog mode, or have their pins driven to a power supply rail by the PSoC device or by external circuitry.

High Impedance Digital

The input buffer is enabled for digital signal input. This is the standard high impedance (HiZ) state recommended for digital inputs.

Resistive pull-up or resistive pull-down

Resistive pull-up or pull-down, respectively, provides a series resistance in one of the data states and strong drive in the other. Pins can be used for digital input and output in these modes. Interfacing to mechanical switches is a common application for these modes. Resistive pull-up and pull-down are not available with SIO in regulated output mode.

Open Drain, Drives High and Open Drain, Drives Low

Open drain modes provide high impedance in one of the data states and strong drive in the other. Pins can be used for digital input and output in these modes. A common application for these modes is driving the I^2C bus signal lines.

Strong Drive

Provides a strong CMOS output drive in either high or low state. This is the standard output mode for pins. Strong Drive mode pins must not be used as inputs under normal circumstances. This mode is often used to drive digital output signals or external FETs.

Resistive pull-up and pull-down

Similar to the resistive pull-up and resistive pull-down modes except the pin is always in series with a resistor. The high data state is pull-up while the low data state is pull-down. This mode is most often used when other signals that may cause shorts can drive the bus. Resistive pull-up and pull-down are not available with SIO in regulated output mode.

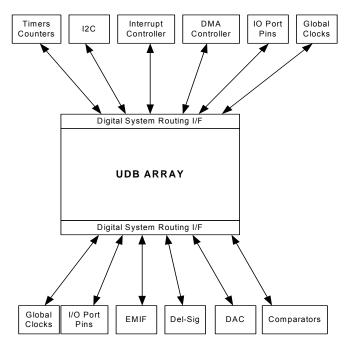
6.4.2 Pin Registers

Registers to configure and interact with pins come in two forms that may be used interchangeably.

All I/O registers are available in the standard port form, where each bit of the register corresponds to one of the port pins. This register form is efficient for quickly reconfiguring multiple port pins at the same time.

I/O registers are also available in pin form, which combines the eight most commonly used port register bits into a single register for each pin. This enables very fast configuration changes to individual pins with a single register write.

6.4.3 Bidirectional Mode


High-speed bidirectional capability allows pins to provide both the high impedance digital drive mode for input signals and a second user selected drive mode such as strong drive (set using PRT×DM[2:0] registers) for output signals on the same pin, based on the state of an auxiliary control bus signal. The bidirectional capability is useful for processor busses and communications interfaces such as the SPI Slave MISO pin that requires dynamic hardware control of the output buffer.

The auxiliary control bus routes up to 16 UDB or digital peripheral generated output enable signals to one or more pins.

6.4.4 Slew Rate Limited Mode

GPIO and SIO pins have fast and slow output slew rate options for strong and open drain drive modes, not resistive drive modes. Because it results in reduced EMI, the slow edge rate option is recommended for signals that are not speed critical, generally less than 1 MHz. The fast slew rate is for signals between 1 MHz and 33 MHz. The slew rate is individually configurable for each pin, and is set by the PRT×SLW registers.

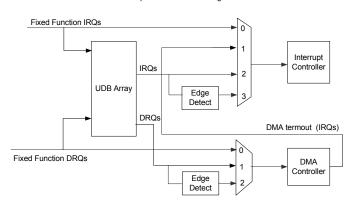


Figure 7-9. Digital System Interconnect

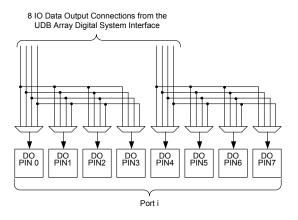
Interrupt and DMA routing is very flexible in the CY8C32 programmable architecture. In addition to the numerous fixed function peripherals that can generate interrupt requests, any data signal in the UDB array routing can also be used to generate a request. A single peripheral may generate multiple independent interrupt requests simplifying system and firmware design. Figure 7-10 shows the structure of the IDMUX (Interrupt/DMA Multiplexer).

Figure 7-10. Interrupt and DMA Processing in the IDMUX

Interrupt and DMA Processing in IDMUX


7.4.1 I/O Port Routing

There are a total of 20 DSI routes to a typical 8-bit I/O port, 16 for data and four for drive strength control.


When an I/O pin is connected to the routing, there are two primary connections available, an input and an output. In

conjunction with drive strength control, this can implement a bidirectional I/O pin. A data output signal has the option to be single synchronized (pipelined) and a data input signal has the option to be double synchronized. The synchronization clock is the master clock (see Figure 6-1). Normally all inputs from pins are synchronized as this is required if the CPU interacts with the signal or any signal derived from it. Asynchronous inputs have rare uses. An example of this is a feed through of combinational PLD logic from input pins to output pins.

Figure 7-11. I/O Pin Synchronization Routing

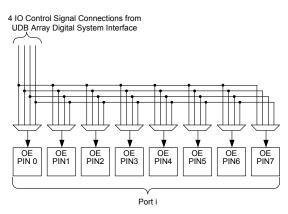


Figure 7-12. I/O Pin Output Connectivity

There are four more DSI connections to a given I/O port to implement dynamic output enable control of pins. This connectivity gives a range of options, from fully ganged 8-bits controlled by one signal, to up to four individually controlled pins. The output enable signal is useful for creating tri-state bidirectional pins and buses.

Figure 7-13. I/O Pin Output Enable Connectivity

8.1 Analog Routing

The CY8C32 family of devices has a flexible analog routing architecture that provides the capability to connect GPIOs and different analog blocks, and also route signals between different analog blocks. One of the strong points of this flexible routing architecture is that it allows dynamic routing of input and output connections to the different analog blocks.

For information on how to make pin selections for optimal analog routing, refer to the application note, AN58304 - PSoC® 3 and PSoC® 5 - Pin Selection for Analog Designs.

- 8.1.1 Features
- Flexible, configurable analog routing architecture
- 16 analog globals (AG) and two analog mux buses (AMUXBUS) to connect GPIOs and the analog blocks
- Each GPIO is connected to one analog global and one analog mux bus

- Eight analog local buses (abus) to route signals between the different analog blocks
- Multiplexers and switches for input and output selection of the analog blocks

8.1.2 Functional Description

Analog globals (AGs) and analog mux buses (AMUXBUS) provide analog connectivity between GPIOs and the various analog blocks. There are 16 AGs in the CY8C32 family. The analog routing architecture is divided into four quadrants as shown in Figure 8-2. Each quadrant has four analog globals (AGL[0..3], AGL[4..7], AGR[0..3], AGR[4..7]). Each GPIO is connected to the corresponding AG through an analog switch. The analog mux bus is a shared routing resource that connects to every GPIO through an analog switch. There are two AMUXBUS routes in CY8C32, one in the left half (AMUXBUSL) and one in the right half (AMUXBUSR), as shown in Figure 8-2.

9. Programming, Debug Interfaces, Resources

PSoC devices include extensive support for programming, testing, debugging, and tracing both hardware and firmware. Three interfaces are available: JTAG, SWD, and SWV. JTAG and SWD support all programming and debug features of the device. JTAG also supports standard JTAG scan chains for board level test and chaining multiple JTAG devices to a single JTAG connection.

For more information on PSoC 3 Programming, refer to the PSoC[®] 3 Device Programming Specifications.

Complete Debug on Chip (DoC) functionality enables full device debugging in the final system using the standard production device. It does not require special interfaces, debugging pods, simulators, or emulators. Only the standard programming connections are required to fully support debug.

The PSoC Creator IDE software provides fully integrated programming and debug support for PSoC devices. The low cost MiniProg3 programmer and debugger is designed to provide full programming and debug support of PSoC devices in conjunction with the PSoC Creator IDE. PSoC JTAG, SWD, and SWV interfaces are fully compatible with industry standard third party tools.

All DOC circuits are disabled by default and can only be enabled in firmware. If not enabled, the only way to reenable them is to erase the entire device, clear flash protection, and reprogram the device with new firmware that enables DOC. Disabling DOC features, robust flash protection, and hiding custom analog and digital functionality inside the PSoC device provide a level of security not possible with multichip application solutions. Additionally, all device interfaces can be permanently disabled (Device Security) for applications concerned about phishing attacks due to a maliciously reprogrammed device. Permanently disabling interfaces is not recommended in most applications because you cannot access the device later. Because all programming, debug, and test interfaces are disabled when Device Security is enabled, PSoCs with Device Security enabled may not be returned for failure analysis.

Table 9-1. Debug Configurations

Debug and Trace Configuration	GPIO Pins Used
All debug and trace disabled	0
JTAG	4 or 5
SWD	2
SWV	1
SWD + SWV	3

9.1 JTAG Interface

The IEEE 1149.1 compliant JTAG interface exists on four or five pins (the nTRST pin is optional). The JTAG interface is used for programming the flash memory, debugging, I/O scan chains, and JTAG device chaining.

PSoC 3 has certain timing requirements to be met for entering programming mode through the JTAG interface. Due to these timing requirements, not all standard JTAG programmers, or standard JTAG file formats such as SVF or STAPL, can support PSoC 3 programming. The list of programmers that support PSoC 3 programming is available at

http://www.cypress.com/go/programming.

The JTAG clock frequency can be up to 14 MHz, or 1/3 of the CPU clock frequency for 8 and 16-bit transfers, or 1/5 of the CPU clock frequency for 32-bit transfers. By default, the JTAG pins are enabled on new devices but the JTAG interface can be disabled, allowing these pins to be used as GPIO instead.

9.8 CSP Package Bootloader

A factory-installed bootloader program is included in all devices with CSP packages. The bootloader is compatible with PSoC Creator 3.0 bootloadable project files and has the following features:

- I²C-based
- SCLK and SDAT available at P1[6] and P1[7], respectively
- External pull-up resistors required
- I²C slave, address 4, data rate = 100 kbps
- Single application
- Wait two seconds for bootload command
- Other bootloader options are as set by the PSoC Creator 3.0 Bootloader Component default
- Occupies the bottom 9K of flash

For more information on this bootloader, see the following Cypress application notes:

- AN89611 PSoC[®] 3 AND PSoC 5LP Getting Started With Chip Scale Packages (CSP)
- AN73854 PSoC 3 and PSoC 5 LP Introduction to Bootloaders
- AN60317 PSoC 3 and PSoC 5 LP I²C Bootloader

Note that a PSoC Creator bootloadable project must be associated with .hex and .elf files for a bootloader project that is configured for the target device. Bootloader .hex and .elf files can be found at www.cypress.com/go/PSoC3datasheet.

The factory-installed bootloader can be overwritten using JTAG or SWD programming.

10. Development Support

The CY8C32 family has a rich set of documentation, development tools, and online resources to assist you during your development process. Visit psoc.cypress.com/getting-started to find out more.

10.1 Documentation

A suite of documentation, supports the CY8C32 family to ensure that you can find answers to your questions quickly. This section contains a list of some of the key documents.

Software User Guide: A step-by-step guide for using PSoC Creator. The software user guide shows you how the PSoC Creator build process works in detail, how to use source control with PSoC Creator, and much more.

Component Datasheets: The flexibility of PSoC allows the creation of new peripherals (components) long after the device has gone into production. Component datasheets provide all of the information needed to select and use a particular component, including a functional description, API documentation, example code, and AC/DC specifications.

Application Notes: PSoC application notes discuss a particular application of PSoC in depth; examples include brushless DC motor control and on-chip filtering. Application notes often include example projects in addition to the application note document.

Technical Reference Manual: The Technical Reference Manual (TRM) contains all the technical detail you need to use a PSoC device, including a complete description of all PSoC registers.

10.2 Online

In addition to print documentation, the Cypress PSoC forums connect you with fellow PSoC users and experts in PSoC from around the world, 24 hours a day, 7 days a week.

10.3 Tools

With industry standard cores, programming, and debugging interfaces, the CY8C32 family is part of a development tool ecosystem. Visit us at www.cypress.com/go/psoccreator for the latest information on the revolutionary, easy to use PSoC Creator IDE, supported third party compilers, programmers, debuggers, and development kits.

11.2 Device Level Specifications

Specifications are valid for –40 $^{\circ}C \le T_A \le 85 ~^{\circ}C$ and $T_J \le 100 ~^{\circ}C$, except where noted. Specifications are valid for 1.71 V to 5.5 V, except where noted.

11.2.1 Device Level Specifications

Table 11-2. DC Specifications

Parameter	Description	Conditions		Min	Typ ^[22]	Max	Units
V _{DDA}	Analog supply voltage and input to analog core regulator	Analog core regulato	r enabled	1.8	_	5.5	V
V _{DDA}	Analog supply voltage, analog regulator bypassed	Analog core regulato	r disabled	1.71	1.8	1.89	V
Vaaa		Digital core regulator	enabled	1.8	-	V _{DDA} ^[18]	V
• DDD		Digital core regulator	Chabled	1	-	V _{DDA} + 0.1 ^[24]	v
V _{DDD}	Digital supply voltage, digital regulator bypassed	Digital core regulator	disabled	1.71	1.8	1.89	V
VDDIO ^[19]	I/O supply voltage relative to Vesio			1.71	-	V _{DDA} ^[18]	V
				-	-	V _{DDA} + 0.1 ^[24]	
V _{CCA}	Direct analog core voltage input (Analog regulator bypass)	Analog core regulato	r disabled	1.71	1.8	1.89	V
V _{CCD}	Direct digital core voltage input (Digital regulator bypass)	Digital core regulator	disabled	1.71	1.8	1.89	V
	Active Mode						
	Only IMO and CPU clock enabled. CPU executing simple loop from instruction	$V_{DDX} = 2.7 V - 5.5 V;$ $F_{CPU} = 6 MHz^{[23]}$ T = 2	T = -40 °C	-	1.2	2.9	
				-	1.2		
				-			
		$V_{PPV} = 27V - 55V$		-			
		$F_{CPU} = 3 \text{ MHz}^{[23]}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $				
				-	4.8	7.5	
				-	2.1	3.7	
		$V_{DDX} = 2.7 V - 5.5 V;$ E _{CDU} = 6 MHz	T = 25 °C	-	2.3	3.9	
I _{DD} ^[20, 21]			T = 85 °C	_	5.6	8.5	m۸
	IMO enabled, bus clock and CPU clock	$V_{DDX} = 2.7 V - 5.5 V;$	T = -40 °C	-	3.5	5.2	
	enabled. CPU executing program from	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					
		$V_{DDX} = 2.7 V - 5.5 V;$	T = -40 °C	-	6.3	8.1	
VDDD bypassed VDDIO bypassed VDDIO I/O supply voltage relative to VSSIO VCCA Direct analog core voltage input (Analog regulator bypass) VCCD Direct digital core voltage input (Digital regulator bypass) VCCD Direct digital core voltage input (Digital regulator bypass) Active Mode Only IMO and CPU clock enabled. CPU executing simple loop from instruction buffer. IDD IMO enabled, bus clock and CPU clock enabled. CPU executing program from	E 04 MIL [23]	T = 25 °C	-	6.6	8.3		
			T = 85 °C	-	10	13	
VDDD Digital supply voltage relative to VDDD Digital supply voltage, digital reg bypassed VDDD Digital supply voltage, digital reg bypassed VDDIO I/O supply voltage relative to Vss VCCA Direct analog core voltage input regulator bypass) VCCD Direct digital core voltage input (regulator bypass) VCCD Direct digital core voltage input (regulator bypass) Active Mode Only IMO and CPU clock enable executing simple loop from instrubuffer. IDD IMO enabled, bus clock and CPU enabled. CPU executing program		$V_{DDX} = 2.7 V - 5.5 V;$	T = -40 °C	_	11.5	13.5	
		F _{CPU} = 48 MHz ^[23]	T = 25 °C	-	12	14	
			T = 85 °C	_	15.5	18.5	

Notes

18. The power supplies can be brought up in any sequence however once stable V_{DDA} must be greater than or equal to all other supplies. 19. The V_{DDIO} supply voltage must be greater than the maximum voltage on the associated GPIO pins. Maximum voltage on GPIO pin $\leq V_{DDIO} \leq V_{DDA}$. 20. Total current for all power domains: digital (I_{DDD}), analog (I_{DDA}), and I/Os ($I_{DDIO0, 1, 2, 3}$). Boost not included. All I/Os floating.

21. The current consumption of additional peripherals that are implemented only in programmed logic blocks can be found in their respective datasheets, available in PSoC Creator, the integrated design environment. To estimate total current, find the CPU current at the frequency of interest and add peripheral currents for your particular system from the device datasheet and component datasheets.

22. V_{DDX} = 3.3 V. 23. Based on device characterizations (Not production tested).

24. Guaranteed by design, not production tested.

11.3.3 Inductive Boost Regulator

Unless otherwise specified, operating conditions are: $V_{BAT} = 0.5 V-3.6 V$, $V_{OUT} = 1.8 V-5.0 V$, $I_{OUT} = 0 mA-50 mA$, $L_{BOOST} = 4.7 \mu H-22 \mu$ H, $C_{BOOST} = 22 \mu$ F || 3 × 1.0 μ F || 3 × 0.1 μ F, $C_{BAT} = 22 \mu$ F, $I_F = 1.0 A$. Unless otherwise specified, all charts and graphs show typical values.

Table 11-6. Inductive Boost Regulator DC Specification	Table 11-6.	Inductive	Boost	Regulator	DC S	pecifications
--	-------------	-----------	-------	-----------	------	---------------

Parameter	Description	Cond	ditions	Min	Тур	Max	Units
V _{OUT}	Boost output voltage ^[31]	vsel = 1.8 V in regist	ter BOOST_CR0	1.71	1.8	1.89	V
		vsel = 1.9 V in regist	ter BOOST_CR0	1.81	1.90	2.00	V
		vsel = 2.0 V in regist	ter BOOST_CR0	1.90	2.00	2.10	V
		vsel = 2.4 V in regist	ter BOOST_CR0	2.16	2.40	2.64	V
		vsel = 2.7 V in regist	ter BOOST_CR0	2.43	2.70	2.97	V
		vsel = 3.0 V in regist	ter BOOST_CR0	2.70	3.00	3.30	V
		vsel = 3.3 V in regist	ter BOOST_CR0	2.97	3.30	3.63	V
		vsel = 3.6 V in regist	ter BOOST_CR0	3.24	3.60	3.96	V
		vsel = 5.0 V in regist	ter BOOST_CR0	4.50	5.00	5.50	V
V _{BAT}	Input voltage to boost ^[32]	I _{OUT} = 0 mA–5 mA	vsel = 1.8 V–2.0 V, T _A = 0 °C–70 °C	0.5	-	0.8	V
		I _{OUT} = 0 mA–15 mA	vsel = 1.8 V–5.0 V ^[33] , T _A = –10 °C–85 °C	1.6	-	3.6	V
		I _{OUT} = 0 mA–25 mA	vsel = 1.8 V–2.7 V, T _A = –10 °C–85 °C	0.8	-	1.6	V
		I _{OUT} = 0 mA–50 mA	vsel = 1.8 V–3.3 V ^[33] , T _A = –40 °C–85 °C	1.8	-	2.5	V
			vsel = 1.8 V–3.3 V ^[33] , T _A = –10 °C–85 °C	1.3	-	2.5	V
			vsel = 2.5 V–5.0 V ^[33] , T _A = –10 °C–85 °C	2.5	-	3.6	V
I _{OUT}	Output current	T _A = 0 °C–70 °C	V _{BAT} = 0.5 V–0.8 V	0	_	5	mA
		T _A = −10 °C−85 °C	V _{BAT} = 1.6 V–3.6 V	0	-	15	mA
			V _{BAT} = 0.8 V–1.6 V	0	_	25	mA
			V _{BAT} = 1.3 V–2.5 V	0	_	50	mA
			V _{BAT} = 2.5 V–3.6 V	0	_	50	mA
		T _A = -40 °C-85 °C		0	_	50	mA
I _{LPK}	Inductor peak current	A		_	_	700	mA
	Quiescent current	Boost active mode		_	250	-	μΑ
νQ		Boost sleep mode, I	out < 1 µA		250	_	μΑ
Pog	Load regulation					10	μ <u>γ</u>
Reg _{LOAD}	-			_	-	_	
Reg _{LINE}	Line regulation			-	-	10	%

Notes

- 31. Listed vsel options are characterized. Additional vsel options are valid and guaranteed by design.
 32. The boost will start at all valid V_{BAT} conditions including down to V_{BAT} = 0.5 V.
 33. If V_{BAT} is greater than or equal to V_{OUT} boost setting, then V_{OUT} will be less than V_{BAT} due to resistive losses in the boost circuit.

Table 11-7.	Recommended External Components for Boost Circuit

Parameter	Description	Conditions	Min	Тур	Max	Units
L _{BOOST}	Boost inductor	4.7 μH nominal	3.7	4.7	5.7	μH
		10 μH nominal	8.0	10.0	12.0	μH
		22 μH nominal	17.0	22.0	27.0	μH
C _{BOOST}	Total capacitance sum of V _{DDD} , V _{DDA} , V _{DDIO} ^[34]		17.0	26.0	31.0	μF
C _{BAT}	Battery filter capacitor		17.0	22.0	27.0	μF
I _F	Schottky diode average forward current		1.0	_	-	A
V _R	Schottky reverse voltage		20.0	-	-	V

Figure 11-8. T_A range over V_{BAT} and V_{OUT}

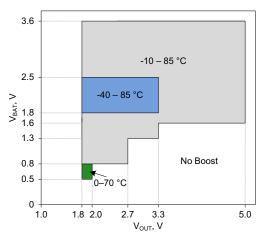
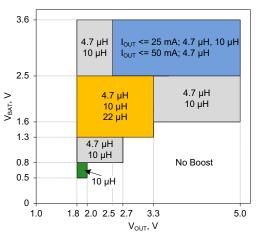
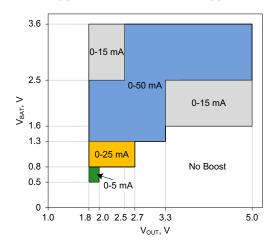




Figure 11-10. L_{BOOST} values over V_{BAT} and V_{OUT}

Figure 11-9. I_{OUT} range over V_{BAT} and V_{OUT}

Note

34. Based on device characterization (Not production tested).

Figure 11-17. SIO Output High Voltage and Current, Unregulated Mode

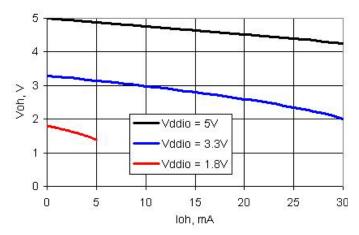


Figure 11-19. SIO Output High Voltage and Current, Regulated Mode

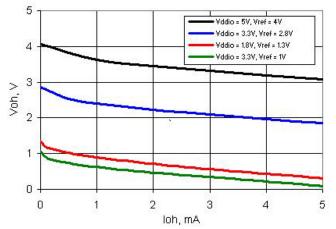
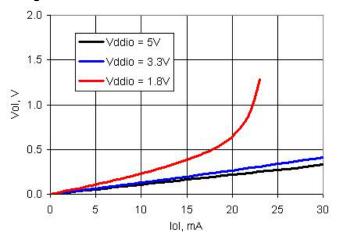



Table 11-12. SIO AC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
TriseF	Rise time in Fast Strong Mode (90/10%) ^[41]	Cload = 25 pF, V_{DDIO} = 3.3 V	_	-	12	ns
TfallF	Fall time in Fast Strong Mode (90/10%) ^[41]	Cload = 25 pF, V_{DDIO} = 3.3 V	-	-	12	ns
TriseS	Rise time in Slow Strong Mode (90/10%) ^[41]	Cload = 25 pF, V_{DDIO} = 3.0 V	-	_	75	ns
TfallS	Fall time in Slow Strong Mode (90/10%) ^[41]	Cload = 25 pF, V _{DDIO} = 3.0 V	-	-	60	ns

Figure 11-18. SIO Output Low Voltage and Current, Unregulated Mode

Figure 11-42. VDAC INL vs Temperature, 1 V Mode

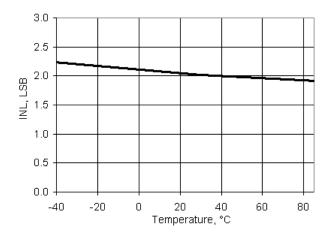


Figure 11-44. VDAC Full Scale Error vs Temperature, 1 V Mode

Figure 11-46. VDAC Operating Current vs Temperature, 1V Mode, Low speed mode

Figure 11-43. VDAC DNL vs Temperature, 1 V Mode

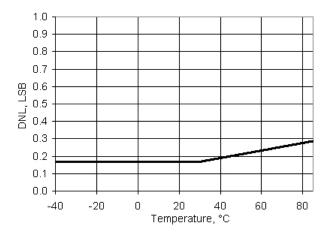


Figure 11-45. VDAC Full Scale Error vs Temperature, 4 V Mode

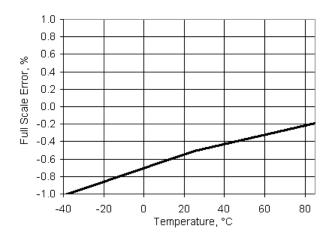
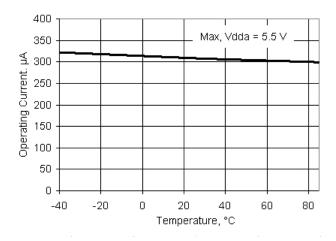



Figure 11-47. VDAC Operating Current vs Temperature, 1 V Mode, High speed mode

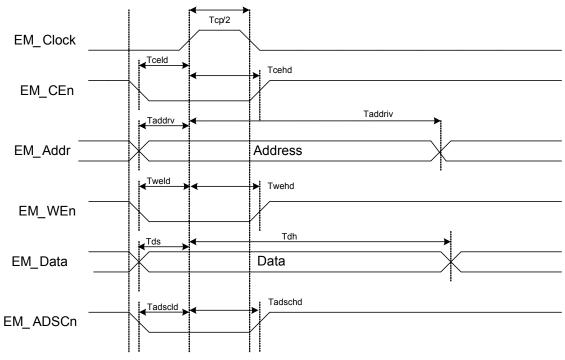


Figure 11-56. Synchronous Write Cycle Timing

Table 11-56.	Synchronous	Write Cycle	Specifications
--------------	-------------	-------------	----------------

Parameter	Description	Conditions	Min	Тур	Max	Units
Т	EMIF clock Period ^[63]	$V_{DDA} \ge 3.3 \text{ V}$	30.3	-	-	ns
Tcp/2	EM_Clock pulse high		T/2	-	-	ns
Tceld	EM_CEn low to EM_Clock high		5	-	-	ns
Tcehd	EM_Clock high to EM_CEn high		T/2 – 5	-	-	ns
Taddrv	EM_Addr valid to EM_Clock high		5	-	-	ns
Taddriv	EM_Clock high to EM_Addr invalid		T/2 – 5	-	-	ns
Tweld	EM_WEn low to EM_Clock high		5	-	-	ns
Twehd	EM_Clock high to EM_WEn high		T/2 – 5	-	-	ns
Tds	Data valid before EM_Clock high		5	-	-	ns
Tdh	Data invalid after EM_Clock high		Т	-	-	ns
Tadscld	EM_ADSCn low to EM_Clock high		5	-	-	ns
Tadschd	EM_Clock high to EM_ADSCn high		T/2 – 5	_	_	ns

17. Revision History

Description Title: PSoC [®] 3: CY8C32 Family Data Sheet Programmable System-on-Chip (PSoC [®]) Document Number: 001-56955					
Revision	ECN	Submission Date	Orig. of Change	Description of Change	
**	2796903	11/04/09	MKEA	New datasheet	
*A	2824546	12/09/09	MKEA	Updated I2C section to reflect 1 Mbps. Updated Table 11-6 and 11-7 (Boost AC and DC specs); also added Shottky Diode specs. Changed current for sleep/hibernate mode to include SIO; Added footnote to analog global specs. Updated Figures 1-1, 6-2, 7-14, and 8-1. Updated Table 6-2 and Table 6-3 (Hibernate and Sleep rows) and Power Modes section. Updated GPIO and SIO AC specifications. Updated Gain error in IDAC and VDAC specifications. Updated description of V _{DDA} spec in Table 11-1 and removed GPIO Clamp Current parameter. Updated number of UDBs on page 1. Moved FILO from ILO DC to AC table. Added PCB Layout and PCB Schematic diagrams. Updated Fgpioout spec (Table 11-9). Added duty cycle frequency in PLL AC spec table. Added note for Sleep and Hibernate modes and Active Mode specs in Table 11-2. Linked URL in Section 10.3 to PSoC Creator site. Updated Ja and Jc values in Table 13-1. Updated Single Sample Mode and Fast FIR Mode sections. Updated Input Resistance specification in Del-Sig ADC table. Added Tio_init parameter. Updated PGA and UGB AC Specs. Removed SPC ADC. Updated Boost Converter section. Added section 'SIO as Comparator'; updated Hysteresis spec (differential mode) in Table 11-10. Updated V _{BAT} condition and deleted Vstart parameter in Table 11-6. Added 'Bytes' column for Tables 4-1 to 4-5.	
*В	2873322	02/04/10	MKEA	Changed maximum value of PPOR_TR to '1'. Updated V _{BIAS} specification. Updated PCB Schematic. Updated Figure 8-1 and Figure 6-3. Updated Interrupt Vector table, Updated Sales links. Updated JTAG and SWD specifications. Removed Jp-p and Jperiod from ECO AC Spec table. Added note on sleep timer in Table 11-2. Updated ILO AC and DC specifications. Added Resolution parameter in VDAC and IDAC tables. Updated I _{OUT} typical and maximum values. Changed Temperature Sensor range to -40 °C to +85 °C. Removed Latchup specification from Table 11-1. Updated DAC details	

Revision	nt Number: ECN	Submission	Orig. of	Description of Change
		Date	Change	
*C	2903576	04/01/10	MKEA	Updated Vb pin in PCB Schematic.
				Updated Tstartup parameter in AC Specifications table.
				Added Load regulation and Line regulation parameters to Inductive Boost
				Regulator DC Specifications table.
				Updated I _{CC} parameter in LCD Direct Drive DC Specs table. In page 1, updated internal oscillator range under Prescision programmable
				clocking to start from 3 MHz.
				Updated I _{OUT} parameter in LCD Direct Drive DC Specs table.
				Updated Table 6-2 and Table 6-3.
				Added bullets on CapSense in page 1; added CapSense column in Section 12
				Removed some references to footnote [1].
				Changed INC_Rn cycles from 3 to 2 (Table 4-1).
				Added footnote in PLL AC Specification table.
				Added PLL intermediate frequency row with footnote in PLL AC Specs table.
				Added UDBs subsection under 11.6 Digital Peripherals.
				Updated Figure 2-6 (PCB Layout).
				Updated Pin Descriptions section and modified Figures 6-6, 6-8, 6-9.
				Updated LVD in Tables 6-2 and 6-3; modified Low-power modes bullet in page 1
				Added note to Figures 2-5 and 6-2; Updated Figure 6-2 to add capacitors for V_{DDA}
				and V _{DDD} pins.
				Updated boost converter section (6.2.2).
				Updated Tstartup values in Table 11-3. Removed IPOR rows from Table 11-53. Updated 6.3.1.1, Power Voltage Level
				Monitors.
				Updated section 5.2 and Table 11-2 to correct suggestion of execution from flash
				Updated IMO max frequency in Figure 6-1, Table 11-63, and Table 11-64.
				Updated V_{REF} specs in Table 11-19.
				Updated IDAC uncompensated gain error in Table 11-23.
				Updated Delay from Interrupt signal input to ISR code execution from ISR code
				in Table-71. Removed other line in table.
				Added sentence to last paragraph of section 6.1.1.3.
				Updated Tresp, high and low-power modes, in Table 11-22.
				Updated f_TCK values in Table 11-58 and f_SWDCK values in Table 11-59.
				Updated SNR condition in Table 11-18.
				Updated sleep wakeup time in Table 6-3 and Tsleep in Table 11-3.
				Added 1.71 V \leq V _{DDD} \leq 3.3 V, SWD over USBIO pins value to Table 11-59.
				Removed mention of hibernate reset (HRES) from page 1 features, Table 6-3,
				Section 6.2.1.4, Section 6.3, and Section 6.3.1.1. Change PPOR/PRES to TBDs
				in Section 6.3.1.1, Section 6.4.1.6 (changed PPOR to reset), Table 11-3 (changed PPOR to PRES), Table 11-53 (changed title, values TBD), and Table 11-54
				(changed PPOR_TR to PRES_TR).
				Added sentence saying that LVD circuits can generate a reset to Section 6.3.1.1
				Changed I_{DD} values on page 1, page 5, and Table 11-2.
				Changed resume time value in Section 6.2.1.3.
				Changed ESD HBM value in Table 11-1.
				Changed sample rate row in Table 11-18.
				Removed V_{DDA} = 1.65 V rows and changed BWag value in Table 11-20.
				Changed Vioff values and changed CMRR value in Table 11-21.
				Changed INL max value in Table 11-25.
				Changed occurrences of "Block" to "Row" and deleted the "ECC not included"
				footnote in Table 11-41.
				Changed max response time value in Tables 11-54 and 11-56.
				Change the Startup time in Table 11-64.
				Added condition to intermediate frequency row in Table 11-70.
				Added row to Table 11-54.
				Added brown out note to Section 11.8.1.

Description Title: PSoC [®] 3: CY8C32 Family Data Sheet Programmable System-on-Chip (PSoC [®]) (continued) Document Number: 001-56955				
Revision	ECN	Submission Date	Orig. of Change	Description of Change
*L	3464258	12/14/2011	MKEA	Updated Analog Global specs Updated IDAC range Modified VDDIO description in Section 3 Added note on Sleep and Hibernate modes in the Power Modes section Updated Boost Converter section Updated Boost Converter section Updated conditions for Inductive boost AC specs Added VDAC/IDAC noise graphs and specs Added VDAC/IDAC noise graphs and specs Added pin capacitance specs for ECO pins Removed C _L from 32 kHz External Crystal DC Specs table. Added reference to AN54439 in Section 6.1.2.2 Deleted T_SWDO_hold row from the SWD Interface AC Specifications table Removed Pin 46 connections in "Example Schematic for 100-pin TQFP Part with Power Connections" Updated Active Mode IDD description in Table 11-2. Added I _{DDDR} and I _{DDAR} specs in Table 11-2. Replaced "total device program time" with T _{PROG} in Flash AC specs table Added I _{GPIO} , I _{SIO} and I _{USBIO} specs in Absolute Maximum Ratings Added conditions to I _{CC} spec in 32 kHz External Crystal DC Specs table. Updated TCV _{OS} value Removed Boost Efficiency vs V _{OUT} graph Updated boost graphs Updated boost graphs Updated USBIO Block diagram; added USBIO drive mode description Updated Analog Interconnect diagram Changed max IMO startup time to 12 µs Added note for I _{IL} spec in USBIO DC specs table Updated GPIO Block diagram Updated GPIO Block diagram Updated GPIO Block diagram Updated voltage reference specs Added text explaining power supply ramp up in Section 11-4.