



#### Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Active                                                                     |
|----------------------------|----------------------------------------------------------------------------|
| Core Processor             | 8051                                                                       |
| Core Size                  | 8-Bit                                                                      |
| Speed                      | 50MHz                                                                      |
| Connectivity               | EBI/EMI, I <sup>2</sup> C, LINbus, SPI, UART/USART, USB                    |
| Peripherals                | CapSense, DMA, LCD, POR, PWM, WDT                                          |
| Number of I/O              | 25                                                                         |
| Program Memory Size        | 32KB (32K x 8)                                                             |
| Program Memory Type        | FLASH                                                                      |
| EEPROM Size                | 1K x 8                                                                     |
| RAM Size                   | 4K x 8                                                                     |
| Voltage - Supply (Vcc/Vdd) | 1.71V ~ 5.5V                                                               |
| Data Converters            | A/D 16x12b; D/A 1x8b                                                       |
| Oscillator Type            | Internal                                                                   |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                          |
| Mounting Type              | Surface Mount                                                              |
| Package / Case             | 48-BSSOP (0.295", 7.50mm Width)                                            |
| Supplier Device Package    | 48-SSOP                                                                    |
| Purchase URL               | https://www.e-xfl.com/product-detail/infineon-technologies/cy8c3245pvi-150 |
|                            |                                                                            |

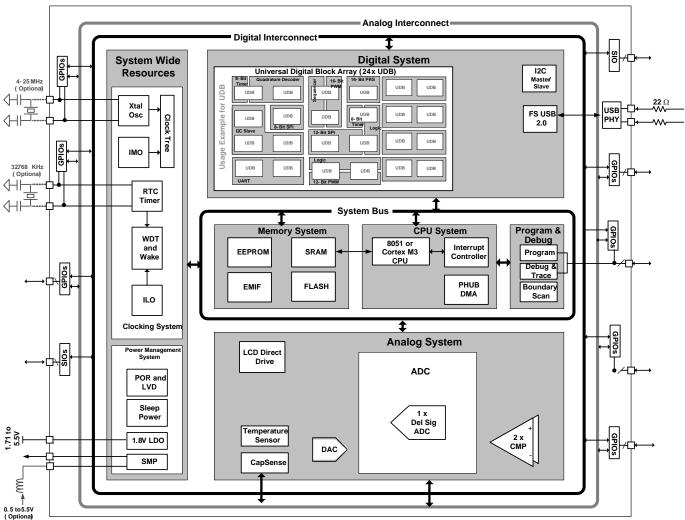
Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



# 1. Architectural Overview

Introducing the CY8C32 family of ultra low-power, flash Programmable System-on-Chip (PSoC<sup>®</sup>) devices, part of a scalable 8-bit PSoC 3 and 32-bit PSoC 5 platform. The CY8C32 family provides configurable blocks of analog, digital, and interconnect circuitry around a CPU subsystem. The combination of a CPU with a flexible analog subsystem, digital subsystem, routing, and I/O enables a high level of integration in a wide variety of consumer, industrial, and medical applications.



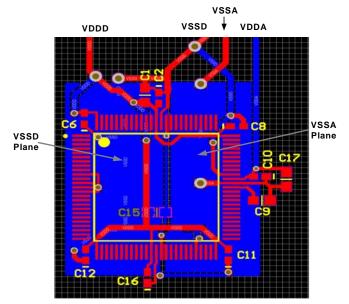


Figure 1-1. Simplified Block Diagram

Figure 1-1 illustrates the major components of the CY8C32 family. They are:

- 8051 CPU subsystem
- Nonvolatile subsystem
- Programming, debug, and test subsystem
- Inputs and outputs
- Clocking
- Power
- Digital subsystem
- Analog subsystem

PSoC's digital subsystem provides half of its unique configurability. It connects a digital signal from any peripheral to any pin through the Digital System Interconnect (DSI). It also provides functional flexibility through an array of small, fast, low-power UDBs. PSoC Creator provides a library of prebuilt and tested standard digital peripherals (UART, SPI, LIN, PRS, CRC, timer, counter, PWM, AND, OR, and so on) that are mapped to the UDB array. You can also easily create a digital circuit using boolean primitives by means of graphical design entry. Each UDB contains programmable array logic (PAL)/programmable logic device (PLD) functionality, together with a small state machine engine to support a wide variety of peripherals.





## Figure 2-8. Example PCB Layout for 100-pin TQFP Part for Optimal Analog Performance

# 3. Pin Descriptions

#### IDAC0

Low resistance output pin for high current DAC (IDAC).

#### Extref0, Extref1

External reference input to the analog system.

### GPIO

General purpose I/O pin provides interfaces to the CPU, digital peripherals, analog peripherals, interrupts, LCD segment drive, and CapSense.

#### 12C0: SCL, 12C1: SCL

 $I^2C$  SCL line providing wake from sleep on an address match. Any I/O pin can be used for  $I^2C$  SCL if wake from sleep is not required.

#### 12C0: SDA, 12C1: SDA

 $\rm I^2C$  SDA line providing wake from sleep on an address match. Any I/O pin can be used for  $\rm I^2C$  SDA if wake from sleep is not required.

#### Ind

Inductor connection to boost pump.

#### kHz XTAL: Xo, kHz XTAL: Xi

32.768-kHz crystal oscillator pin.

#### MHz XTAL: Xo, MHz XTAL: Xi

4- to 25- MHz crystal oscillator pin.

### nTRST

Optional JTAG test reset programming and debug port connection to reset the JTAG connection.

#### SIO

Special I/O provides interfaces to the CPU, digital peripherals and interrupts with a programmable high threshold voltage, analog comparator, high sink current, and high impedance state when the device is unpowered.

#### SWDCK

Serial wire debug clock programming and debug port connection.

### SWDIO

Serial wire debug input and output programming and debug port connection.

## SWV.

Single wire viewer debug output.

# тск

JTAG test clock programming and debug port connection.

# TDI

JTAG test data in programming and debug port connection.

### TDO

JTAG test data out programming and debug port connection.

### TMS

JTAG test mode select programming and debug port connection.



### 4.3.1.3 Data Transfer Instructions

The data transfer instructions are of three types: the core RAM, xdata RAM, and the lookup tables. The core RAM transfer includes transfer between any two core RAM locations or SFRs. These instructions can use direct, indirect, register, and immediate addressing. The xdata RAM transfer includes only the transfer between the accumulator and the xdata RAM location. It can use only indirect addressing. The lookup tables involve nothing but the read of program memory using the Indexed

addressing mode. Table 4-3 lists the various data transfer instructions available.

#### 4.3.1.4 Boolean Instructions

The 8051 core has a separate bit-addressable memory location. It has 128 bits of bit addressable RAM and a set of SFRs that are bit addressable. The instruction set includes the whole menu of bit operations such as move, set, clear, toggle, OR, and AND instructions and the conditional jump instructions. Table 4-4 on page 17Table 4-4 lists the available Boolean instructions.

|      | Mnemonic       | Description                                            | Bytes | Cycles |
|------|----------------|--------------------------------------------------------|-------|--------|
| MOV  | A,Rn           | Move register to accumulator                           | 1     | 1      |
| MOV  | A,Direct       | Move direct byte to accumulator                        | 2     | 2      |
| MOV  | A,@Ri          | Move indirect RAM to accumulator                       | 1     | 2      |
| MOV  | A,#data        | Move immediate data to accumulator                     | 2     | 2      |
| MOV  | Rn,A           | Move accumulator to register                           | 1     | 1      |
| MOV  | Rn,Direct      | Move direct byte to register                           | 2     | 3      |
| MOV  | Rn, #data      | Move immediate data to register                        | 2     | 2      |
| MOV  | Direct, A      | Move accumulator to direct byte                        | 2     | 2      |
| MOV  | Direct, Rn     | Move register to direct byte                           | 2     | 2      |
| MOV  | Direct, Direct | Move direct byte to direct byte                        | 3     | 3      |
| MOV  | Direct, @Ri    | Move indirect RAM to direct byte                       | 2     | 3      |
| MOV  | Direct, #data  | Move immediate data to direct byte                     | 3     | 3      |
| MOV  | @Ri, A         | Move accumulator to indirect RAM                       | 1     | 2      |
| MOV  | @Ri, Direct    | Move direct byte to indirect RAM                       | 2     | 3      |
| MOV  | @Ri, #data     | Move immediate data to indirect RAM                    | 2     | 2      |
| MOV  | DPTR, #data16  | Load data pointer with 16-bit constant                 | 3     | 3      |
| MOVC | ; A, @A+DPTR   | Move code byte relative to DPTR to accumulator         | 1     | 5      |
| MOVC | ; A, @A + PC   | Move code byte relative to PC to accumulator           | 1     | 4      |
| MOVX | A,@Ri          | Move external RAM (8-bit) to accumulator               | 1     | 4      |
| MOVX | A, @DPTR       | Move external RAM (16-bit) to accumulator              | 1     | 3      |
| MOVX | . @Ri, A       | Move accumulator to external RAM (8-bit)               | 1     | 5      |
| MOVX | @DPTR, A       | Move accumulator to external RAM (16-bit)              | 1     | 4      |
| PUSH | Direct         | Push direct byte onto stack                            | 2     | 3      |
| POP  | Direct         | Pop direct byte from stack                             | 2     | 2      |
| XCH  | A, Rn          | Exchange register with accumulator                     | 1     | 2      |
| XCH  | A, Direct      | Exchange direct byte with accumulator                  | 2     | 3      |
| XCH  | A, @Ri         | Exchange indirect RAM with accumulator                 | 1     | 3      |
| XCHD | A, @Ri         | Exchange low order indirect digit RAM with accumulator | 1     | 3      |

#### Table 4-3. Data Transfer Instructions



# Table 4-4. Boolean Instructions

| Mnemonic     | Description                             | Bytes | Cycles |
|--------------|-----------------------------------------|-------|--------|
| CLR C        | Clear carry                             | 1     | 1      |
| CLR bit      | Clear direct bit                        | 2     | 3      |
| SETB C       | Set carry                               | 1     | 1      |
| SETB bit     | Set direct bit                          | 2     | 3      |
| CPL C        | Complement carry                        | 1     | 1      |
| CPL bit      | Complement direct bit                   | 2     | 3      |
| ANL C, bit   | AND direct bit to carry                 | 2     | 2      |
| ANL C, /bit  | AND complement of direct bit to carry   | 2     | 2      |
| ORL C, bit   | OR direct bit to carry                  | 2     | 2      |
| ORL C, /bit  | OR complement of direct bit to carry    | 2     | 2      |
| MOV C, bit   | Move direct bit to carry                | 2     | 2      |
| MOV bit, C   | Move carry to direct bit                | 2     | 3      |
| JC rel       | Jump if carry is set                    | 2     | 3      |
| JNC rel      | Jump if no carry is set                 | 2     | 3      |
| JB bit, rel  | Jump if direct bit is set               | 3     | 5      |
| JNB bit, rel | Jump if direct bit is not set           | 3     | 5      |
| JBC bit, rel | Jump if direct bit is set and clear bit | 3     | 5      |





### 4.3.1.5 Program Branching Instructions

The 8051 supports a set of conditional and unconditional jump instructions that help to modify the program execution flow. Table 4-5 shows the list of jump instructions.

#### Table 4-5. Jump Instructions

| Mnemonic             | Description                                                  | Bytes | Cycles |
|----------------------|--------------------------------------------------------------|-------|--------|
| ACALL addr11         | Absolute subroutine call                                     | 2     | 4      |
| LCALL addr16         | Long subroutine call                                         | 3     | 4      |
| RET                  | Return from subroutine                                       | 1     | 4      |
| RETI                 | Return from interrupt                                        | 1     | 4      |
| AJMP addr11          | Absolute jump                                                | 2     | 3      |
| LJMP addr16          | Long jump                                                    | 3     | 4      |
| SJMP rel             | Short jump (relative address)                                | 2     | 3      |
| JMP @A + DPTR        | Jump indirect relative to DPTR                               | 1     | 5      |
| JZ rel               | Jump if accumulator is zero                                  | 2     | 4      |
| JNZ rel              | Jump if accumulator is nonzero                               | 2     | 4      |
| CJNE A, Direct, rel  | Compare direct byte to accumulator and jump if not equal     | 3     | 5      |
| CJNE A, #data, rel   | Compare immediate data to accumulator and jump if not equal  | 3     | 4      |
| CJNE Rn, #data, rel  | Compare immediate data to register and jump if not equal     | 3     | 4      |
| CJNE @Ri, #data, rel | Compare immediate data to indirect RAM and jump if not equal | 3     | 5      |
| DJNZ Rn,rel          | Decrement register and jump if not zero                      | 2     | 4      |
| DJNZ Direct, rel     | Decrement direct byte and jump if not zero                   | 3     | 5      |
| NOP                  | No operation                                                 | 1     | 1      |

### 4.4 DMA and PHUB

The PHUB and the DMA controller are responsible for data transfer between the CPU and peripherals, and also data transfers between peripherals. The PHUB and DMA also control device configuration during boot. The PHUB consists of:

- A central hub that includes the DMA controller, arbiter, and router
- Multiple spokes that radiate outward from the hub to most peripherals

There are two PHUB masters: the CPU and the DMA controller. Both masters may initiate transactions on the bus. The DMA channels can handle peripheral communication without CPU intervention. The arbiter in the central hub determines which DMA channel is the highest priority if there are multiple requests.

# 4.4.1 PHUB Features

- CPU and DMA controller are both bus masters to the PHUB
- Eight Multi-layer AHB Bus parallel access paths (spokes) for peripheral access

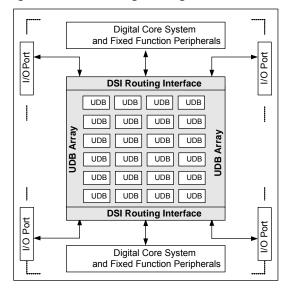
- Simultaneous CPU and DMA access to peripherals located on different spokes
- Simultaneous DMA source and destination burst transactions on different spokes
- Supports 8, 16, 24, and 32-bit addressing and data

#### Table 4-6. PHUB Spokes and Peripherals

| PHUB Spokes | Peripherals                                                                                         |
|-------------|-----------------------------------------------------------------------------------------------------|
| 0           | SRAM                                                                                                |
| 1           | IOs, PICU, EMIF                                                                                     |
| 2           | PHUB local configuration, Power manager,<br>Clocks, IC, SWV, EEPROM, Flash<br>programming interface |
| 3           | Analog interface and trim, Decimator                                                                |
| 4           | USB, USB, I <sup>2</sup> C, Timers, Counters, and PWMs                                              |
| 5           | Reserved                                                                                            |
| 6           | UDBs group 1                                                                                        |
| 7           | UDBs group 2                                                                                        |



# 7. Digital Subsystem


The digital programmable system creates application specific combinations of both standard and advanced digital peripherals and custom logic functions. These peripherals and logic are then interconnected to each other and to any pin on the device, providing a high level of design flexibility and IP security.

The features of the digital programmable system are outlined here to provide an overview of capabilities and architecture. You do not need to interact directly with the programmable digital system at the hardware and register level. PSoC Creator provides a high level schematic capture graphical interface to automatically place and route resources similar to PLDs.

The main components of the digital programmable system are:

- Universal Digital Blocks (UDB) These form the core functionality of the digital programmable system. UDBs are a collection of uncommitted logic (PLD) and structural logic (Datapath) optimized to create all common embedded peripherals and customized functionality that are application or design specific.
- Universal Digital Block Array UDB blocks are arrayed within a matrix of programmable interconnect. The UDB array structure is homogeneous and allows for flexible mapping of digital functions onto the array. The array supports extensive and flexible routing interconnects between UDBs and the Digital System Interconnect.
- Digital System Interconnect (DSI) Digital signals from Universal Digital Blocks (UDBs), fixed function peripherals, I/O pins, interrupts, DMA, and other system core signals are attached to the Digital System Interconnect to implement full featured device connectivity. The DSI allows any digital function to any pin or other feature routability when used with the Universal Digital Block Array.

#### Figure 7-1. CY8C32 Digital Programmable Architecture



## 7.1 Example Peripherals

The flexibility of the CY8C32 family's Universal Digital Blocks (UDBs) and Analog Blocks allow the user to create a wide range of components (peripherals). The most common peripherals were built and characterized by Cypress and are shown in the PSoC Creator component catalog, however, users may also create their own custom components using PSoC Creator. Using PSoC Creator, users may also create their own components for reuse within their organization, for example sensor interfaces, proprietary algorithms, and display interfaces.

The number of components available through PSoC Creator is too numerous to list in the datasheet, and the list is always growing. An example of a component available for use in CY8C32 family, but, not explicitly called out in this datasheet is the UART component.

#### 7.1.1 Example Digital Components

The following is a sample of the digital components available in PSoC Creator for the CY8C32 family. The exact amount of hardware resources (UDBs, routing, RAM, flash) used by a component varies with the features selected in PSoC Creator for the component.

- Communications
  - □ I<sup>2</sup>C
  - UART
  - 🛛 SPI
- Functions
  - 🛛 EMIF
  - PWMs
  - Timers
  - Counters
- Logic

- 7.1.2 Example Analog Components

The following is a sample of the analog components available in PSoC Creator for the CY8C32 family. The exact amount of hardware resources (routing, RAM, flash) used by a component varies with the features selected in PSoC Creator for the component.

- ADC
  - Delta-sigma
- DACs
- Current
- Voltage
- D PWM
- Comparators
- 7.1.3 Example System Function Components

The following is a sample of the system function components available in PSoC Creator for the CY8C32 family. The exact amount of hardware resources (UDBs, routing, RAM, flash) used by a component varies with the features selected in PSoC Creator for the component.

- CapSense
- LCD Drive
- LCD Control



# 11. Electrical Specifications

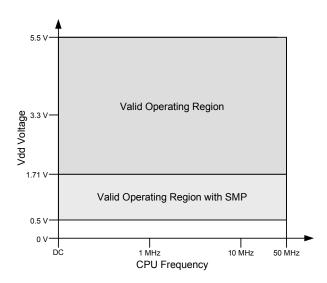
Specifications are valid for –40 °C  $\leq$  T<sub>A</sub>  $\leq$  85 °C and T<sub>J</sub>  $\leq$  100 °C, except where noted. Specifications are valid for 1.71 V to 5.5 V, except where noted. The unique flexibility of the PSoC UDBs and analog blocks enable many functions to be implemented in PSoC Creator components, see the component datasheets for full AC/DC specifications of individual functions. See the "Example Peripherals" section on page 45 for further explanation of PSoC Creator components.

## 11.1 Absolute Maximum Ratings

| Parameter                         | Description                                             | Conditions                                                                              | Min                   | Тур | Max                       | Units |
|-----------------------------------|---------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------|-----|---------------------------|-------|
| V <sub>DDA</sub>                  | Analog supply voltage relative to V <sub>SSA</sub>      |                                                                                         | -0.5                  | _   | 6                         | V     |
| V <sub>DDD</sub>                  | Digital supply voltage relative to V <sub>SSD</sub>     |                                                                                         | -0.5                  | -   | 6                         | V     |
| V <sub>DDIO</sub>                 | I/O supply voltage relative to $V_{SSD}$                |                                                                                         | -0.5                  | -   | 6                         | V     |
| V <sub>CCA</sub>                  | Direct analog core voltage input                        |                                                                                         | -0.5                  | -   | 1.95                      | V     |
| V <sub>CCD</sub>                  | Direct digital core voltage input                       |                                                                                         | -0.5                  | I   | 1.95                      | V     |
| V <sub>SSA</sub>                  | Analog ground voltage                                   |                                                                                         | V <sub>SSD</sub> –0.5 | -   | V <sub>SSD</sub> +<br>0.5 | V     |
| V <sub>GPIO</sub> <sup>[16]</sup> | DC input voltage on GPIO                                | Includes signals sourced by $V_{\mbox{\scriptsize DDA}}$ and routed internal to the pin | V <sub>SSD</sub> –0.5 | -   | V <sub>DDIO</sub> + 0.5   | V     |
| V <sub>SIO</sub>                  | DC input voltage on SIO                                 | Output disabled                                                                         | V <sub>SSD</sub> –0.5 | -   | 7                         | V     |
|                                   |                                                         | Output enabled                                                                          | V <sub>SSD</sub> –0.5 | -   | 6                         | V     |
| V <sub>IND</sub>                  | Voltage at boost converter input                        |                                                                                         | 0.5                   | -   | 5.5                       | V     |
| V <sub>BAT</sub>                  | Boost converter supply                                  |                                                                                         | V <sub>SSD</sub> –0.5 | -   | 5.5                       | V     |
| I <sub>VDDIO</sub>                | Current per V <sub>DDIO</sub> supply pin                |                                                                                         | -                     | -   | 100                       | mA    |
| I <sub>GPIO</sub>                 | GPIO current                                            |                                                                                         | -30                   | -   | 41                        | mA    |
| I <sub>SIO</sub>                  | SIO current                                             |                                                                                         | -49                   | -   | 28                        | mA    |
| I <sub>USBIO</sub>                | USBIO current                                           |                                                                                         | -56                   | -   | 59                        | mA    |
| VEXTREF                           | ADC external reference inputs                           | Pins P0[3], P3[2]                                                                       | -                     | -   | 2                         | V     |
| LU                                | Latch up current <sup>[17]</sup>                        |                                                                                         | -140                  | I   | 140                       | mA    |
|                                   | Electrostatic discharge voltage,                        | V <sub>SSA</sub> tied to V <sub>SSD</sub>                                               | 2200                  | -   | -                         | V     |
| ESD <sub>HBM</sub>                | Human body model                                        | V <sub>SSA</sub> not tied to V <sub>SSD</sub>                                           | 750                   | I   | -                         | V     |
| ESD <sub>CDM</sub>                | Electrostatic discharge voltage,<br>Charge device model |                                                                                         | 500                   | -   | -                         | V     |

Notes

15. Usage above the absolute maximum conditions listed in Table 11-1 may cause permanent damage to the device. Exposure to Absolute Maximum conditions for extended periods of time may affect device reliability. The Maximum Storage Temperature is 150 °C in compliance with JEDEC Standard JESD22-A103, High Temperature Storage Life. When used below Absolute Maximum conditions but above normal operating conditions, the device may not operate to specification.


16. The V<sub>DDIO</sub> supply voltage must be greater than the maximum voltage on the associated GPIO pins. Maximum voltage on GPIO pin ≤ V<sub>DDIO</sub> ≤ V<sub>DDA</sub>. 17. Meets or exceeds JEDEC Spec EIA/JESD78 IC Latch-up Test.



# Table 11-3. AC Specifications<sup>[30]</sup>

| Parameter              | Description                                                                                                               | Conditions                                                                                            | Min | Тур | Max   | Units |
|------------------------|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----|-----|-------|-------|
| F <sub>CPU</sub>       | CPU frequency                                                                                                             | $1.71~V \le V_{DDD} \le 5.5~V$                                                                        | DC  | -   | 50.01 | MHz   |
| F <sub>BUSCLK</sub>    | Bus frequency                                                                                                             | $1.71~V \le V_{DDD} \le 5.5~V$                                                                        | DC  | -   | 50.01 | MHz   |
| Svdd                   | V <sub>DD</sub> ramp rate                                                                                                 |                                                                                                       | -   | -   | 0.066 | V/µs  |
| T <sub>IO_INIT</sub>   | Time from $V_{DDD}/V_{DDA}/V_{CCD}/V_{CCA} \ge IPOR$ to I/O ports set to their reset states                               |                                                                                                       | -   | -   | 10    | μs    |
| T <sub>STARTUP</sub>   | Time from $V_{DDD}/V_{DDA}/V_{CCD}/V_{CCA} \ge PRES$ to CPU executing code at reset vector                                | $V_{CCA}/V_{CCD}$ = regulated from<br>$V_{DDA}/V_{DDD}$ , no PLL used, IMO<br>boot mode (12 MHz typ.) | -   | -   | 74    | μs    |
| T <sub>SLEEP</sub>     | Wakeup from sleep mode –<br>Application of non-LVD interrupt to<br>beginning of execution of next CPU<br>instruction      |                                                                                                       | -   | -   | 15    | μs    |
| T <sub>HIBERNATE</sub> | Wakeup from hibernate mode –<br>Application of external interrupt to<br>beginning of execution of next CPU<br>instruction |                                                                                                       | _   | -   | 100   | μs    |

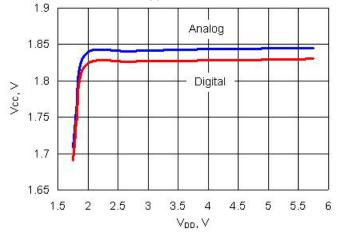
Figure 11-4. F<sub>CPU</sub> vs. V<sub>DD</sub>



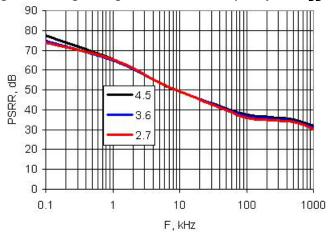
Note 30. Based on device characterization (Not production tested).



# **11.3 Power Regulators**


Specifications are valid for –40 °C  $\leq$  T<sub>A</sub>  $\leq$  85 °C and T<sub>J</sub>  $\leq$  100 °C, except where noted. Specifications are valid for 1.71 V to 5.5 V, except where noted.

### 11.3.1 Digital Core Regulator

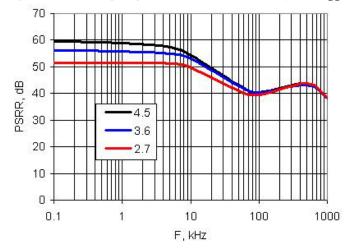

## Table 11-4. Digital Core Regulator DC Specifications

| Parameter        | Description                | Conditions                                                                                                                                               | Min | Тур  | Max | Units |
|------------------|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------|-----|-------|
| V <sub>DDD</sub> | Input voltage              |                                                                                                                                                          | 1.8 | -    | 5.5 | V     |
| V <sub>CCD</sub> | Output voltage             |                                                                                                                                                          | -   | 1.80 | I   | V     |
|                  | Regulator output capacitor | $\pm$ 10%, X5R ceramic or better. The two V <sub>CCD</sub> pins must be shorted together, with as short a trace as possible, see Power System on page 31 | 0.9 | 1    | 1.1 | μF    |

### Figure 11-5. Regulators V<sub>CC</sub> vs V<sub>DD</sub>



# Figure 11-6. Digital Regulator PSRR vs Frequency and V<sub>DD</sub>




### 11.3.2 Analog Core Regulator

#### Table 11-5. Analog Core Regulator DC Specifications

| Parameter        | Description                | Conditions                  | Min | Тур  | Max | Units |
|------------------|----------------------------|-----------------------------|-----|------|-----|-------|
| V <sub>DDA</sub> | Input voltage              |                             | 1.8 | -    | 5.5 | V     |
| V <sub>CCA</sub> | Output voltage             |                             | -   | 1.80 | -   | V     |
|                  | Regulator output capacitor | ±10%, X5R ceramic or better | 0.9 | 1    | 1.1 | μF    |

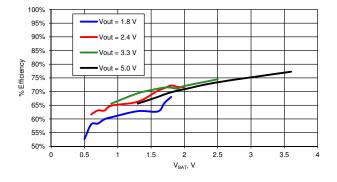
Figure 11-7. Analog Regulator PSRR vs Frequency and  $V_{DD}$ 





### 11.3.3 Inductive Boost Regulator

Unless otherwise specified, operating conditions are:  $V_{BAT} = 0.5 V-3.6 V$ ,  $V_{OUT} = 1.8 V-5.0 V$ ,  $I_{OUT} = 0 mA-50 mA$ ,  $L_{BOOST} = 4.7 \mu H-22 \mu$ H,  $C_{BOOST} = 22 \mu$ F || 3 × 1.0  $\mu$ F || 3 × 0.1  $\mu$ F,  $C_{BAT} = 22 \mu$ F,  $I_F = 1.0 A$ . Unless otherwise specified, all charts and graphs show typical values.


| Table 11-6. Inductive Boost Regulator DC Specification | Table 11-6. | Inductive | Boost | Regulator | DC S | pecifications |
|--------------------------------------------------------|-------------|-----------|-------|-----------|------|---------------|
|--------------------------------------------------------|-------------|-----------|-------|-----------|------|---------------|

| Parameter           | Description                            | Cond                               | ditions                                                               | Min  | Тур  | Max  | Units      |
|---------------------|----------------------------------------|------------------------------------|-----------------------------------------------------------------------|------|------|------|------------|
| V <sub>OUT</sub>    | Boost output voltage <sup>[31]</sup>   | vsel = 1.8 V in regist             | ter BOOST_CR0                                                         | 1.71 | 1.8  | 1.89 | V          |
|                     |                                        | vsel = 1.9 V in register BOOST_CR0 |                                                                       | 1.81 | 1.90 | 2.00 | V          |
|                     |                                        | vsel = 2.0 V in regist             | ter BOOST_CR0                                                         | 1.90 | 2.00 | 2.10 | V          |
|                     |                                        | vsel = 2.4 V in regist             | ter BOOST_CR0                                                         | 2.16 | 2.40 | 2.64 | V          |
|                     |                                        | vsel = 2.7 V in regist             | vsel = 2.7 V in register BOOST_CR0                                    |      | 2.70 | 2.97 | V          |
|                     |                                        | vsel = 3.0 V in regist             | ter BOOST_CR0                                                         | 2.70 | 3.00 | 3.30 | V          |
|                     |                                        | vsel = 3.3 V in regist             | ter BOOST_CR0                                                         | 2.97 | 3.30 | 3.63 | V          |
|                     |                                        | vsel = 3.6 V in regist             | ter BOOST_CR0                                                         | 3.24 | 3.60 | 3.96 | V          |
|                     |                                        | vsel = 5.0 V in regist             | ter BOOST_CR0                                                         | 4.50 | 5.00 | 5.50 | V          |
| V <sub>BAT</sub>    | Input voltage to boost <sup>[32]</sup> | I <sub>OUT</sub> = 0 mA–5 mA       | vsel = 1.8 V–2.0 V,<br>T <sub>A</sub> = 0 °C–70 °C                    | 0.5  | -    | 0.8  | V          |
|                     |                                        | I <sub>OUT</sub> = 0 mA–15 mA      | vsel = 1.8 V–5.0 V <sup>[33]</sup> ,<br>T <sub>A</sub> = –10 °C–85 °C | 1.6  | -    | 3.6  | V          |
|                     |                                        | I <sub>OUT</sub> = 0 mA–25 mA      | vsel = 1.8 V–2.7 V,<br>T <sub>A</sub> = –10 °C–85 °C                  | 0.8  | -    | 1.6  | V          |
|                     |                                        | I <sub>OUT</sub> = 0 mA–50 mA      | vsel = 1.8 V–3.3 V <sup>[33]</sup> ,<br>T <sub>A</sub> = –40 °C–85 °C | 1.8  | -    | 2.5  | V          |
|                     |                                        |                                    | vsel = 1.8 V–3.3 V <sup>[33]</sup> ,<br>T <sub>A</sub> = –10 °C–85 °C | 1.3  | -    | 2.5  | V          |
|                     |                                        |                                    | vsel = 2.5 V–5.0 V <sup>[33]</sup> ,<br>T <sub>A</sub> = –10 °C–85 °C | 2.5  | -    | 3.6  | V          |
| I <sub>OUT</sub>    | Output current                         | T <sub>A</sub> = 0 °C–70 °C        | V <sub>BAT</sub> = 0.5 V–0.8 V                                        | 0    | _    | 5    | mA         |
|                     |                                        | T <sub>A</sub> = −10 °C−85 °C      | V <sub>BAT</sub> = 1.6 V–3.6 V                                        | 0    | -    | 15   | mA         |
|                     |                                        |                                    | V <sub>BAT</sub> = 0.8 V–1.6 V                                        | 0    | _    | 25   | mA         |
|                     |                                        |                                    | V <sub>BAT</sub> = 1.3 V–2.5 V                                        | 0    | _    | 50   | mA         |
|                     |                                        |                                    | V <sub>BAT</sub> = 2.5 V–3.6 V                                        | 0    | _    | 50   | mA         |
|                     |                                        | T <sub>A</sub> = -40 °C-85 °C      |                                                                       | 0    | _    | 50   | mA         |
| I <sub>LPK</sub>    | Inductor peak current                  | A                                  |                                                                       | _    | _    | 700  | mA         |
|                     | Quiescent current                      | Boost active mode                  |                                                                       | _    | 250  | -    | μΑ         |
| νQ                  |                                        | Boost sleep mode, I                | out < 1 µA                                                            |      | 250  | _    | μΑ         |
| Pog                 | Load regulation                        |                                    |                                                                       |      |      | 10   | μ <u>γ</u> |
| Reg <sub>LOAD</sub> | -                                      |                                    |                                                                       | _    | -    | _    |            |
| Reg <sub>LINE</sub> | Line regulation                        |                                    |                                                                       | -    | -    | 10   | %          |

#### Notes

- 31. Listed vsel options are characterized. Additional vsel options are valid and guaranteed by design.
   32. The boost will start at all valid V<sub>BAT</sub> conditions including down to V<sub>BAT</sub> = 0.5 V.
   33. If V<sub>BAT</sub> is greater than or equal to V<sub>OUT</sub> boost setting, then V<sub>OUT</sub> will be less than V<sub>BAT</sub> due to resistive losses in the boost circuit.





# Figure 11-11. Efficiency vs V<sub>BAT</sub>, $L_{BOOST}$ = 4.7 $\mu$ H <sup>[35]</sup>

Figure 11-13. Efficiency vs V<sub>BAT</sub>, L<sub>BOOST</sub> = 22  $\mu$ H <sup>[35]</sup>

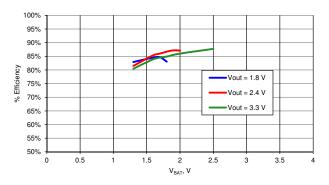



Figure 11-12. Efficiency vs  $V_{BAT}$ ,  $L_{BOOST}$  = 10  $\mu$ H <sup>[35]</sup>

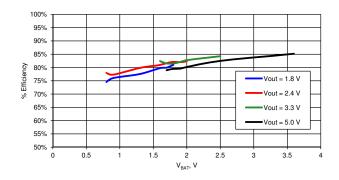
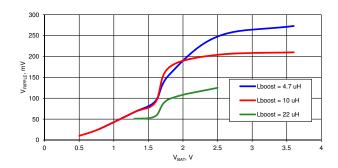
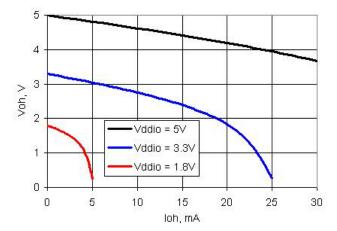
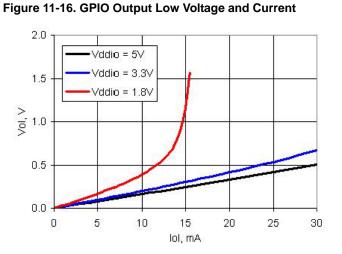




Figure 11-14. V<sub>RIPPLE</sub> vs V<sub>BAT</sub> <sup>[35]</sup>





#### Note

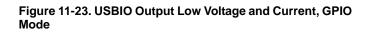
35. Typical example. Actual values may vary depending on external component selection, PCB layout, and other design parameters.

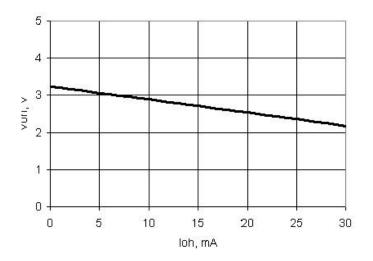


# Figure 11-15. GPIO Output High Voltage and Current






# Table 11-10. GPIO AC Specifications


| Parameter | Description                                                                             | Conditions                            | Min | Тур | Max | Units |
|-----------|-----------------------------------------------------------------------------------------|---------------------------------------|-----|-----|-----|-------|
| TriseF    |                                                                                         | 3.3 V V <sub>DDIO</sub> Cload = 25 pF | _   | -   | 6   | ns    |
| TfallF    | Fall time in Fast Strong Mode <sup>[38]</sup>                                           | 3.3 V V <sub>DDIO</sub> Cload = 25 pF | -   | -   | 6   | ns    |
| TriseS    | Rise time in Slow Strong Mode <sup>[38]</sup>                                           | 3.3 V V <sub>DDIO</sub> Cload = 25 pF | -   | -   | 60  | ns    |
| TfallS    | Fall time in Slow Strong Mode <sup>[38]</sup>                                           | 3.3 V V <sub>DDIO</sub> Cload = 25 pF | -   | -   | 60  | ns    |
|           | GPIO output operating frequency                                                         |                                       |     |     |     |       |
|           | 2.7 V $\leq$ V <sub>DDIO</sub> $\leq$ 5.5 V, fast strong drive mode                     | 90/10% V <sub>DDIO</sub> into 25 pF   | -   | -   | 33  | MHz   |
| Fgpioout  | $1.71 \text{ V} \leq \text{V}_{\text{DDIO}} < 2.7 \text{ V}$ , fast strong drive mode   | 90/10% V <sub>DDIO</sub> into 25 pF   | _   | -   | 20  | MHz   |
|           | $3.3 \text{ V} \leq \text{V}_{\text{DDIO}} \leq 5.5 \text{ V}$ , slow strong drive mode | 90/10% V <sub>DDIO</sub> into 25 pF   | _   | -   | 7   | MHz   |
|           | 1.71 V $\leq$ V <sub>DDIO</sub> < 3.3 V, slow strong drive mode                         | 90/10% V <sub>DDIO</sub> into 25 pF   | -   | -   | 3.5 | MHz   |
| Fgpioin   | GPIO input operating frequency                                                          | I                                     |     |     |     | - 1   |
|           | 1.71 V <u>≤</u> V <sub>DDIO</sub> <u>≤</u> 5.5 V                                        | 90/10% V <sub>DDIO</sub>              | -   | -   | 33  | MHz   |

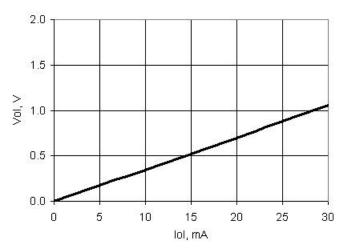

<sup>38.</sup> Based on device characterization (Not production tested).



Figure 11-22. USBIO Output High Voltage and Current, GPIO Mode







### Table 11-15. USBIO AC Specifications

| Parameter | Description                                                 | Conditions                                         | Min        | Тур | Max           | Units |
|-----------|-------------------------------------------------------------|----------------------------------------------------|------------|-----|---------------|-------|
| Tdrate    | Full-speed data rate average bit rate                       |                                                    | 12 – 0.25% | 12  | 12 +<br>0.25% | MHz   |
| Tjr1      | Receiver data jitter tolerance to next transition           |                                                    | -8         | -   | 8             | ns    |
| Tjr2      | Receiver data jitter tolerance to pair transition           |                                                    | -5         | _   | 5             | ns    |
| Tdj1      | Driver differential jitter to next transition               |                                                    | -3.5       | -   | 3.5           | ns    |
| Tdj2      | Driver differential jitter to pair transition               |                                                    | -4         | _   | 4             | ns    |
| Tfdeop    | Source jitter for differential transition to SE0 transition |                                                    | -2         | -   | 5             | ns    |
| Tfeopt    | Source SE0 interval of EOP                                  |                                                    | 160        | -   | 175           | ns    |
| Tfeopr    | Receiver SE0 interval of EOP                                |                                                    | 82         | -   | -             | ns    |
| Tfst      | Width of SE0 interval during differ-<br>ential transition   |                                                    | -          | _   | 14            | ns    |
| Fgpio_out | GPIO mode output operating                                  | $3 \text{ V} \le \text{V}_{DDD} \le 5.5 \text{ V}$ | -          | _   | 20            | MHz   |
|           | frequency                                                   | V <sub>DDD</sub> = 1.71 V                          | -          | _   | 6             | MHz   |
| Tr_gpio   | Rise time, GPIO mode, 10%/90%                               | V <sub>DDD</sub> > 3 V, 25 pF load                 | -          | _   | 12            | ns    |
|           | V <sub>DDD</sub>                                            | V <sub>DDD</sub> = 1.71 V, 25 pF load              | -          | -   | 40            | ns    |
| Tf_gpio   | Fall time, GPIO mode, 90%/10% V <sub>DDD</sub>              | V <sub>DDD</sub> > 3 V, 25 pF load                 | -          | _   | 12            | ns    |
|           |                                                             | V <sub>DDD</sub> = 1.71 V, 25 pF load              | -          | _   | 40            | ns    |

Figure 11-24. USBIO Output Rise and Fall Times, GPIO Mode,



Table 11-27. IDAC AC Specifications

| Parameter           | Description              | Conditions                                                                                                            | Min | Тур | Max | Units     |
|---------------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----------|
| F <sub>DAC</sub>    | Update rate              |                                                                                                                       | -   | -   | 8   | Msps      |
| T <sub>SETTLE</sub> | Settling time to 0.5 LSB | Range = $31.875 \ \mu$ A or $255 \ \mu$ A, full<br>scale transition, High speed mode,<br>$600 \ \Omega \ 15$ -pF load | -   | -   | 125 | ns        |
|                     | Current noise            | Range = 255 µA, source mode,<br>High speed mode, V <sub>DDA</sub> = 5 V,<br>10 kHz                                    | -   | 340 | -   | pA/sqrtHz |

Figure 11-36. IDAC Step Response, Codes 0x40 - 0xC0, 255  $\mu$ A Mode, Source Mode, High speed mode, V<sub>DDA</sub> = 5 V

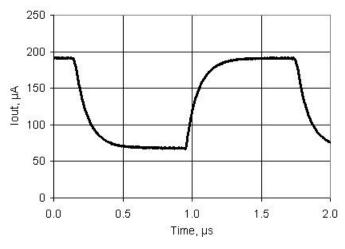



Figure 11-38. IDAC PSRR vs Frequency

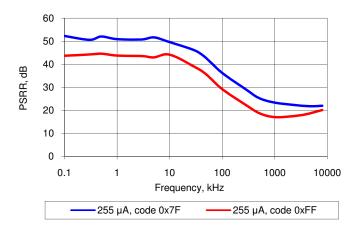



Figure 11-37. IDAC Glitch Response, Codes 0x7F - 0x80, 255 µA Mode, Source Mode, High speed mode, V<sub>DDA</sub> = 5 V

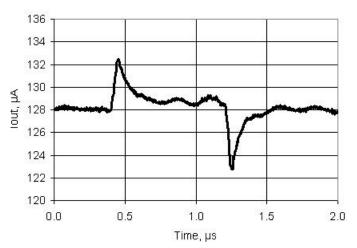
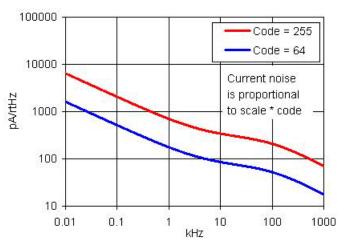




Figure 11-39. IDAC Current Noise, 255  $\mu$ A Mode, Source Mode, High speed mode, V<sub>DDA</sub> = 5 V





# 12. Ordering Information

In addition to the features listed in Table 12-1, every CY8C32 device includes: a precision on-chip voltage reference, precision oscillators, flash, ECC, DMA, a fixed function I<sup>2</sup>C, 4 KB trace RAM, JTAG/SWD programming and debug, external memory interface, and more. In addition to these features, the flexible UDBs and analog subsection support a wide range of peripherals. To assist you in selecting the ideal part, PSoC Creator makes a part recommendation after you choose the components required by your application. All CY8C32 derivatives incorporate device and flash security in user-selectable security levels; see the TRM for details.

|                 | MCU Core        |            |           | Analog      |                   |                |     |            |                     | Digital |     |          |                      | I/O              | [76]   |          |           |      |     |       |              |                         |
|-----------------|-----------------|------------|-----------|-------------|-------------------|----------------|-----|------------|---------------------|---------|-----|----------|----------------------|------------------|--------|----------|-----------|------|-----|-------|--------------|-------------------------|
| Part Number     | CPU Speed (MHz) | Flash (KB) | SRAM (KB) | EEPROM (KB) | LCD Segment Drive | ADC            | DAC | Comparator | SC/CT Analog Blocks | Opamps  | DFB | CapSense | UDBs <sup>[75]</sup> | 16-bit Timer/PWM | FS USB | CAN 2.0b | Total I/O | GPIO | SIO | USBIO | Package      | JTAG ID <sup>[77]</sup> |
| 16 KB Flash     |                 |            |           |             |                   |                |     |            |                     |         |     |          |                      |                  |        |          |           |      |     |       |              |                         |
| CY8C3244AXI-153 | 50              | 16         | 2         | 0.5         | ~                 | 12-bit Del-Sig | 1   | 2          | 0                   | 0       | _   | ~        | 16                   | 4                | -      | -        | 70        | 62   | 8   | 0     | 100-pin TQFP | 0×1E099069              |
| CY8C3244LTI-130 | 50              | 16         | 2         | 0.5         | ~                 | 12-bit Del-Sig | 1   | 2          | 0                   | 0       | -   | ~        | 16                   | 4                | -      | -        | 46        | 38   | 8   | 0     | 68-pin QFN   | 0×1E082069              |
| CY8C3244LTI-123 | 50              | 16         | 2         | 0.5         | ~                 | 12-bit Del-Sig | 1   | 2          | 0                   | 0       | -   | ~        | 16                   | 4                | -      | -        | 29        | 25   | 4   | 0     | 48-pin QFN   | 0×1E07B069              |
| CY8C3244PVI-133 | 50              | 16         | 2         | 0.5         | ~                 | 12-bit Del-Sig | 1   | 2          | 0                   | 0       | I   | ~        | 16                   | 4                | -      | -        | 29        | 25   | 4   | 0     | 48-pin SSOP  | 0×1E085069              |
| 32 KB Flash     |                 |            |           |             |                   |                |     |            |                     |         |     |          |                      |                  |        |          |           |      |     |       |              |                         |
| CY8C3245AXI-158 | 50              | 32         | 4         | 1           | ~                 | 12-bit Del-Sig | 1   | 2          | 0                   | 0       | -   | ~        | 20                   | 4                | -      | -        | 70        | 62   | 8   | 0     | 100-pin TQFP | 0×1E09E069              |
| CY8C3245LTI-163 | 50              | 32         | 4         | 1           | ~                 | 12-bit Del-Sig | 1   | 2          | 0                   | 0       | I   | ~        | 20                   | 4                | -      | -        | 46        | 38   | 8   | 0     | 68-pin QFN   | 0×1E0A3069              |
| CY8C3245LTI-139 | 50              | 32         | 4         | 1           | ~                 | 12-bit Del-Sig | 1   | 2          | 0                   | 0       | -   | ~        | 20                   | 4                | -      | -        | 29        | 25   | 4   | 0     | 48-pin QFN   | 0×1E08B069              |
| CY8C3245PVI-134 | 50              | 32         | 4         | 1           | ۲                 | 12-bit Del-Sig | 1   | 2          | 0                   | 0       | -   | ~        | 20                   | 4                | -      | -        | 29        | 25   | 4   | 0     | 48-pin SSOP  | 0×1E086069              |
| CY8C3245AXI-166 | 50              | 32         | 4         | 1           | 2                 | 12-bit Del-Sig | 1   | 2          | 0                   | 0       | I   | ~        | 20                   | 4                | ~      | -        | 72        | 62   | 8   | 2     | 100-pin TQFP | 0×1E0A6069              |
| CY8C3245LTI-144 | 50              | 32         | 4         | 1           | ~                 | 12-bit Del-Sig | 1   | 2          | 0                   | 0       | -   | ~        | 20                   | 4                | ~      | -        | 31        | 25   | 4   | 2     | 48-pin QFN   | 0×1E090069              |
| CY8C3245PVI-150 | 50              | 32         | 4         | 1           | ~                 | 12-bit Del-Sig | 1   | 2          | 0                   | 0       | -   | ~        | 20                   | 4                | ~      | -        | 31        | 25   | 4   | 2     | 48-pin SSOP  | 0×1E096069              |
| CY8C3245FNI-212 | 50              | 32         | 4         | 1           | ~                 | 12-bit Del-Sig | 1   | 2          | 0                   | 0       | -   | ~        | 20                   | 4                | -      | -        | 46        | 38   | 8   | 0     | 72-pin WLCSP | 0x1E0D4069              |
| 64 KB Flash     |                 |            |           |             |                   |                |     |            |                     |         |     |          |                      |                  |        |          |           |      |     |       |              |                         |
| CY8C3246LTI-149 | 50              | 64         | 8         | 2           | ٢                 | 12-bit Del-Sig | 1   | 2          | 0                   | 0       | -   | ~        | 24                   | 4                | -      | -        | 46        | 38   | 8   | 0     | 68-pin QFN   | 0×1E095069              |
| CY8C3246PVI-147 | 50              | 64         | 8         | 2           | ~                 | 12-bit Del-Sig | 1   | 2          | 0                   | 0       | I   | ~        | 24                   | 4                | ~      | -        | 31        | 25   | 4   | 2     | 48-pin SSOP  | 0×1E093069              |
| CY8C3246AXI-131 | 50              | 64         | 8         | 2           | 5                 | 12-bit Del-Sig | 1   | 2          | 0                   | 0       | I   | ~        | 24                   | 4                | -      | -        | 70        | 62   | 8   | 0     | 100-pin TQFP | 0×1E083069              |
| CY8C3246LTI-162 | 50              | 64         | 8         | 2           | 5                 | 12-bit Del-Sig | 1   | 2          | 0                   | 0       | I   | ~        | 24                   | 4                | -      | -        | 29        | 25   | 4   | 0     | 48-pin QFN   | 0×1E0A2069              |
| CY8C3246PVI-122 | 50              | 64         | 8         | 2           | >                 | 12-bit Del-Sig | 1   | 2          | 0                   | 0       | -   | >        | 24                   | 4                | -      | -        | 29        | 25   | 4   | 0     | 48-pin SSOP  | 0×1E07A069              |
| CY8C3246AXI-138 | 50              | 64         | 8         | 2           | >                 | 12-bit Del-Sig | 1   | 2          | 0                   | 0       | 1   | >        | 24                   | 4                | ~      | -        | 72        | 62   | 8   | 2     | 100-pin TQFP | 0×1E08A069              |
| CY8C3246LTI-128 | 50              | 64         | 8         | 2           | >                 | 12-bit Del-Sig | 1   | 2          | 0                   | 0       | 1   | >        | 24                   | 4                | ~      | -        | 48        | 38   | 8   | 2     | 68-pin QFN   | 0×1E080069              |
| CY8C3246LTI-125 | 50              | 64         | 8         | 2           | ~                 | 12-bit Del-Sig | 1   | 2          | 0                   | 0       | -   | ~        | 24                   | 4                | >      | -        | 31        | 25   | 4   | 2     | 48-pin QFN   | 0×1E07D069              |
| CY8C3246FNI-213 | 50              | 64         | 8         | 2           | ~                 | 12-bit Del-Sig | 1   | 2          | -                   | _       | _   | ~        | 24                   | 4                | -      | -        | 46        | 38   | 8   | -     | 72-pin WLCSP | 0x1E0D5069              |

Notes

75. UDBs support a wide variety of functionality including SPI, LIN, UART, timer, counter, PWM, PRS, and others. Individual functions may use a fraction of a UDB or multiple UDBs. Multiple functions can share a single UDB. See the Example Peripherals on page 45 for more information on how UDBs can be used.
76. The I/O Count includes all types of digital I/O: GPIO, SIO, and the two USB I/O. See the I/O System and Routing on page 37 for details on the functionality of each of

these types of I/O.

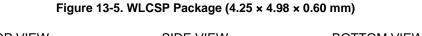
77. The JTAG ID has three major fields. The most significant nibble (left digit) is the version, followed by a 2 byte part number and a 3 nibble manufacturer ID.

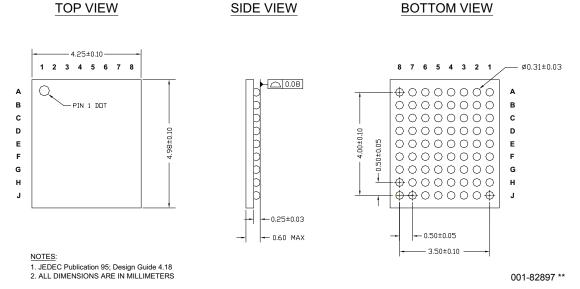


# 13. Packaging

# Table 13-1. Package Characteristics

| Parameter       | Description                          | Conditions | Min | Тур   | Max | Units   |
|-----------------|--------------------------------------|------------|-----|-------|-----|---------|
| T <sub>A</sub>  | Operating ambient temperature        |            | -40 | 25.00 | 85  | °C      |
| TJ              | Operating junction temperature       |            | -40 | -     | 100 | °C      |
| T <sub>JA</sub> | Package $\theta_{JA}$ (48-pin SSOP)  |            | -   | 49    | -   | °C/Watt |
| T <sub>JA</sub> | Package $\theta_{JA}$ (48-pin QFN)   |            | -   | 14    | _   | °C/Watt |
| T <sub>JA</sub> | Package $\theta_{JA}$ (68-pin QFN)   |            | -   | 15    | -   | °C/Watt |
| T <sub>JA</sub> | Package $\theta_{JA}$ (100-pin TQFP) |            | -   | 34    | -   | °C/Watt |
| T <sub>JC</sub> | Package $\theta_{JC}$ (48-pin SSOP)  |            | -   | 24    | -   | °C/Watt |
| T <sub>JC</sub> | Package $\theta_{JC}$ (48-pin QFN)   |            | -   | 15    | -   | °C/Watt |
| T <sub>JC</sub> | Package $\theta_{JC}$ (68-pin QFN)   |            | -   | 13    | -   | °C/Watt |
| T <sub>JC</sub> | Package $\theta_{JC}$ (100-pin TQFP) |            | -   | 10    | -   | °C/Watt |
| T <sub>JA</sub> | Package $\theta_{JA}$ (72-pin CSP)   |            | -   | 18    | -   | °C/Watt |
| T <sub>JC</sub> | Package $\theta_{JC}$ (72-pin CSP)   |            | _   | 0.13  | _   | °C/Watt |


### Table 13-2. Solder Reflow Peak Temperature


| Package      | Maximum Peak<br>Temperature | Maximum Time at Peak<br>Temperature |
|--------------|-----------------------------|-------------------------------------|
| 48-pin SSOP  | 260 °C                      | 30 seconds                          |
| 48-pin QFN   | 260 °C                      | 30 seconds                          |
| 68-pin QFN   | 260 °C                      | 30 seconds                          |
| 100-pin TQFP | 260 °C                      | 30 seconds                          |
| 72-pin CSP   | 260 °C                      | 30 seconds                          |

# Table 13-3. Package Moisture Sensitivity Level (MSL), IPC/JEDEC J-STD-2

| Package      | MSL   |
|--------------|-------|
| 48-pin SSOP  | MSL 3 |
| 48-pin QFN   | MSL 3 |
| 68-pin QFN   | MSL 3 |
| 100-pin TQFP | MSL 3 |
| 72-pin CSP   | MSL 1 |









# 17. Revision History

| Descript<br>Docume | Description Title: PSoC <sup>®</sup> 3: CY8C32 Family Data Sheet Programmable System-on-Chip (PSoC <sup>®</sup> )<br>Document Number: 001-56955 |                    |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Revision           | ECN                                                                                                                                             | Submission<br>Date | Orig. of<br>Change | Description of Change                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
| **                 | 2796903                                                                                                                                         | 11/04/09           | MKEA               | New datasheet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| *A                 | 2824546                                                                                                                                         | 12/09/09           | MKEA               | Updated I2C section to reflect 1 Mbps. Updated Table 11-6 and 11-7 (Boost AC<br>and DC specs); also added Shottky Diode specs. Changed current for<br>sleep/hibernate mode to include SIO; Added footnote to analog global specs.<br>Updated Figures 1-1, 6-2, 7-14, and 8-1. Updated Table 6-2 and Table 6-3<br>(Hibernate and Sleep rows) and Power Modes section. Updated GPIO and SIO<br>AC specifications. Updated Gain error in IDAC and VDAC specifications. Updated<br>description of V <sub>DDA</sub> spec in Table 11-1 and removed GPIO Clamp Current<br>parameter. Updated number of UDBs on page 1.<br>Moved FILO from ILO DC to AC table.<br>Added PCB Layout and PCB Schematic diagrams.<br>Updated Fgpioout spec (Table 11-9). Added duty cycle frequency in PLL AC spec<br>table. Added note for Sleep and Hibernate modes and Active Mode specs in Table<br>11-2. Linked URL in Section 10.3 to PSoC Creator site.<br>Updated Ja and Jc values in Table 13-1. Updated Single Sample Mode and Fast<br>FIR Mode sections. Updated Input Resistance specification in Del-Sig ADC table.<br>Added Tio_init parameter. Updated PGA and UGB AC Specs. Removed SPC<br>ADC. Updated Boost Converter section.<br>Added section 'SIO as Comparator'; updated Hysteresis spec (differential mode)<br>in Table 11-10.<br>Updated V <sub>BAT</sub> condition and deleted Vstart parameter in Table 11-6.<br>Added 'Bytes' column for Tables 4-1 to 4-5. |  |  |  |  |  |
| *В                 | 2873322                                                                                                                                         | 02/04/10           | MKEA               | Changed maximum value of PPOR_TR to '1'. Updated V <sub>BIAS</sub> specification.<br>Updated PCB Schematic. Updated Figure 8-1 and Figure 6-3. Updated Interrupt<br>Vector table, Updated Sales links. Updated JTAG and SWD specifications.<br>Removed Jp-p and Jperiod from ECO AC Spec table. Added note on sleep timer<br>in Table 11-2. Updated ILO AC and DC specifications. Added Resolution<br>parameter in VDAC and IDAC tables. Updated I <sub>OUT</sub> typical and maximum values.<br>Changed Temperature Sensor range to -40 °C to +85 °C. Removed Latchup<br>specification from Table 11-1. Updated DAC details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |



|          | ion Title: PS<br>nt Number: |                    | 32 Family D        | ata Sheet Programmable System-on-Chip (PSoC <sup>®</sup> ) (continued)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|----------|-----------------------------|--------------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Revision | ECN                         | Submission<br>Date | Orig. of<br>Change | Description of Change                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| *D       | 2938381                     | 05/27/10           | MKEA               | Replaced $V_{DDIO}$ with $V_{DDD}$ in USBIO diagram and specification tables, added text<br>in USBIO section of Electrical Specifications.<br>Added Table 13-2 (Package MSL)<br>Modified Tstorag condition and changed max spec to 100<br>Added bullet (Pass) under ALU (section 7.2.2.2)<br>Added figures for kHzECO and MHzECO in the External Oscillator section<br>Updated Figure 6-1(Clocking Subsystem diagram)<br>Removed CPUCLK_DIV in table 5-2, Deleted Clock Divider SFR subsection<br>Updated PSoC Creator Framework image<br>Updated SIO DC Specifications (V <sub>IH</sub> and V <sub>IL</sub> parameters)<br>Updated bullets in Clocking System and Clocking Distribution sections<br>Updated Figure 8-2<br>Updated Table 11-10<br>Updated PCB Layout and Schematic, updated as per MTRB review comments<br>Updated Table 6-3 (power changed to current)<br>In 32kHZ EC DC Specifications table, changed I <sub>CC</sub> Max to 0.25<br>In IMO DC Specifications table, updated Supply Current values<br>Updated GPIO DC Specs table<br>Modified to support a maximum 50MHz CPU speed |
| *E       | 2958674                     | 06/22/10           | SHEA               | Minor ECN to post datasheet to external website                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| *F       | 2989685                     | 08/04/10           | MKEA               | Added USBIO 22 ohm DP and DM resistors to Simplified Block Diagram<br>Added to Table 6-6 a footnote and references to same.<br>Added sentences to the resistive pull-up and pull-down description bullets.<br>Added sentence to Section 6.4.11, Adjustable Output Level.<br>Updated section 5.5 External Memory Interface<br>Updated Table 11-73 JTAG Interface AC Specifications<br>Updated Table 11-74 SWD Interface AC Specifications                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| *G       | 3078568                     | 11/04/10           | MKEA               | Updated "Current Digital-to-analog Converter (IDAC)" on page 87<br>Updated "Voltage Digital to Analog Converter (VDAC)" on page 92<br>Updated Table 11-2, "DC Specifications," on page 68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| *Н       | 3107314                     | 12/10/2010         | MKEA               | Updated delta-sigma tables and graphs.<br>Updated Flash AC specs<br>Formatted table 11.2.<br>Updated interrupt controller table<br>Updated transimpedance amplifier section<br>Updated SIO DC specs table<br>Updated Voltage Monitors DC Specifications table<br>Updated LCD Direct Drive DC specs table<br>Updated ESD <sub>HBM</sub> value.<br>Updated IDAC and VDAC sections<br>Removed ESO parts from ordering information<br>Changed USBIO pins from NC to DNU and removed redundant USBIO pin<br>description notes<br>Updated POR with brown out DC and AC specs<br>Updated 32 kHz External Crystal DC Specifications<br>Updated Inductive boost regulator section<br>Delta sigma ADC spec updates<br>Updated comparator section<br>Removed buzz mode from Power Mode Transition diagram                                                                                                                                                                                                                                                                                                       |
| *        | 3179219                     | 02/22/2011         | MKEA               | Updated conditions for flash data retention time.<br>Updated 100-pin TQFP package spec.<br>Updated EEPROM AC specifications.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |



|          | ion Title: PS<br>nt Number: |                    | 32 Family D        | ata Sheet Programmable System-on-Chip (PSoC <sup>®</sup> ) (continued)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|----------|-----------------------------|--------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Revision | ECN                         | Submission<br>Date | Orig. of<br>Change | Description of Change                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| *0       | 3732521                     | 09/03/2012         | MKEA               | Replaced I <sub>DDDR</sub> and I <sub>DDAR</sub> specs in Table 11-2, "DC Specifications," on page 68 that were dropped out in<br>*M revision.<br>Updated Table 11-19, "12-bit Delta-sigma ADC DC Specifications," on page 84,<br>I <sub>DD 12</sub> Max value from 1.4 to 1.95 mA<br>Replaced PSoC <sup>®</sup> 3 Programming AN62391 with TRM in footnote #55 and Section<br>Table 9., "Programming, Debug Interfaces, Resources," on page 62<br>Removed Figure 11-8 (Efficiency vs Vout)<br>Removed 62-MHz sub-row in Table 11-2, "DC Specifications," on page 68<br>Updated conditions for Storage Temperature in Table 11-1, "Absolute Maximum<br>Ratings DC Specifications[15]," on page 67<br>Updated conditions and min values for NVL data retention time in Table 11-50,<br>"NVL AC Specifications," on page 100<br>Updated Table 11-67, "ILO DC Specifications," on page 109.<br>Removed the pruned part CY8C3245LTI-129 from the "Ordering Information"<br>section on page 111.<br>Updated PSoC 3 boost circuit value throughout the document.<br>Updated package diagram 51-85061 to *F revision. |
| *P       | 3922905                     | 03/06/2013         | MKEA               | Updated I <sub>DD_XX</sub> parameters under Table 11-19, "12-bit Delta-sigma ADC DC Specifications," on page 84.<br>Updated I2C section and updated GPIO and SIO DC specification tables.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| *Q       | 4064707                     | 07/18/2013         | MKEA               | Added USB test ID in Features.<br>Updated schematic in Section 2<br>Added paragraph for device reset warning in Section 5.4.<br>Added NVL bit for DEBUG_EN in Section 5.5.<br>Updated UDB PLD array diagram in Section 7.2.1.<br>Changed Tstartup specs in Section 11.2.1.<br>Changed GPIO rise and fall time specs in Section 11.4.<br>Added IMO spec condition: pre-assembly in Section 11.9.1.<br>Added Appendix for CSP package (preliminary)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| *R       | 4118845                     | 09/10/2013         | MKEA               | Removed T <sub>STG</sub> spec and added note clarifying the maximum storage temperature range in Table 11-1.<br>Updated Vos spec conditions and TCVos in Table 11-19.<br>Updated 100-TQFP package diagram.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| *S       | 4188568                     | 11/14/2013         | MKEA               | Updated delta-sigma Vos spec conditions.<br>Added SIO Comparator specifications.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| *T       | 4218210                     | 12/12/2013         | MKEA               | Integrated 72-pin CSP package information in the datasheet.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| *U       | 4385782                     | 05/21/2014         | MKEA               | Updated General Description and Features.<br>Added More Information and PSoC Creator sections.<br>Updated 100-pin TQFP package diagram.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| *V       | 4708125                     | 03/31/2015         | MKEA               | Added INL4 and DNL4 specs in VDAC DC specs.<br>Updated Fig 6-11.<br>Added second note after Fig 6-4.<br>Added a reference to Fig 6-1 in Section 6.1.1 and Section 6.1.2<br>Updated Section 6.2.2.<br>Added Section 7.7.1.<br>Updated Boost specifications.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| *W       | 4807497                     | 06/23/2015         | MKEA               | Added reference to code examples in More Information.<br>Updated typ value of T <sub>WRITE</sub> from 2 to 10 in EEPROM AC specs table.<br>Changed "Device supply for USB operation" to "Device supply (VDDD) for USB<br>operation" in USB DC Specifications.<br>Clarified power supply sequencing and margin for VDDA and VDDD.<br>Updated Serial Wire Debug Interface with limitations of debugging on Port 15.<br>Updated Section 11.7.5.<br>Updated Delta-sigma ADC DC Specifications.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |