

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	8051
Core Size	8-Bit
Speed	50MHz
Connectivity	EBI/EMI, I ² C, LINbus, SPI, UART/USART
Peripherals	CapSense, DMA, LCD, POR, PWM, WDT
Number of I/O	62
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 5.5V
Data Converters	A/D 16x12b; D/A 1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c3246axi-131t

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Contents

1. Architectural Overview	4
2. Pinouts	6
3. Pin Descriptions	12
4. CPU	13
4.1 8051 CPU	13
4.2 Addressing Modes	13
4.3 Instruction Set	14
4.4 DMA and PHUB	18
4.5 Interrupt Controller	20
5. Memory	24
5.1 Static RAM	24
5.2 Flash Program Memory	24
5.3 Flash Security	24
5.4 EEPROM	24
5.5 Nonvolatile Latches (NVLs)	25
5.6 External Memory Interface	26
5.7 Memory Map	26
6. System Integration	28
6.1 Clocking System	28
6.2 Power System	31
6.3 Reset	36
6.4 I/O System and Routing	37
7. Digital Subsystem	45
7.1 Example Peripherals	45
7.2 Universal Digital Block	47
7.3 UDB Array Description	50
7.4 DSI Routing Interface Description	50
7.5 USB	52
7.6 Timers, Counters, and PWMs	52
7.7 PC	53
8. Analog Subsystem	55
8.1 Analog Routing	56
8.2 Delta-sigma ADC	58
8.3 Comparators	59
8.4 LCD Direct Drive	60
	61
	01
0.7 DAC	01

9. Programming, Debug Interfaces, Resources	62
9.1 JTAG Interface	62
9.2 Serial Wire Debug Interface	64
9.3 Debug Features	65
9.4 Trace realures 9.5 Single Wire Viewer Interface	00 65
9.6 Programming Features	65
9.7 Device Security	65
9.8 CSP Package Bootloader	66
10. Development Support	66
10.1 Documentation	66
10.2 Online	66
10.3 Tools	66
11. Electrical Specifications	67
11.1 Absolute Maximum Ratings	67
11.2 Device Level Specifications	68
11.4 Inputs and Outputs	12 76
11.5 Analog Perinherals	70 84
11.6 Digital Peripherals	96
11.7 Memory	99
11.8 PSoC System Resources	105
11.9 Clocking	107
12. Ordering Information	111
12.1 Part Numbering Conventions	112
13. Packaging	113
14. Acronyms	117
15. Reference Documents	118
16. Document Conventions	119
16.1 Units of Measure	119
17. Revision History	120
18. Sales, Solutions, and Legal Information	128
Worldwide Sales and Design Support	128
Products	128
PSoC® Solutions	128
Cypress Developer Community	128
гесппісаі Support	128

1. Architectural Overview

Introducing the CY8C32 family of ultra low-power, flash Programmable System-on-Chip (PSoC[®]) devices, part of a scalable 8-bit PSoC 3 and 32-bit PSoC 5 platform. The CY8C32 family provides configurable blocks of analog, digital, and interconnect circuitry around a CPU subsystem. The combination of a CPU with a flexible analog subsystem, digital subsystem, routing, and I/O enables a high level of integration in a wide variety of consumer, industrial, and medical applications.

Figure 1-1. Simplified Block Diagram

Figure 1-1 illustrates the major components of the CY8C32 family. They are:

- 8051 CPU subsystem
- Nonvolatile subsystem
- Programming, debug, and test subsystem
- Inputs and outputs
- Clocking
- Power
- Digital subsystem
- Analog subsystem

PSoC's digital subsystem provides half of its unique configurability. It connects a digital signal from any peripheral to any pin through the Digital System Interconnect (DSI). It also provides functional flexibility through an array of small, fast, low-power UDBs. PSoC Creator provides a library of prebuilt and tested standard digital peripherals (UART, SPI, LIN, PRS, CRC, timer, counter, PWM, AND, OR, and so on) that are mapped to the UDB array. You can also easily create a digital circuit using boolean primitives by means of graphical design entry. Each UDB contains programmable array logic (PAL)/programmable logic device (PLD) functionality, together with a small state machine engine to support a wide variety of peripherals.

Notes

- 5. Pins are Do Not Use (DNU) on devices without USB. The pin must be left floating.
- The center pad on the QFN package should be connected to digital ground (VSSD) for best mechanical, thermal, and electrical performance. If not connected to ground, it should be electrically floated and not connected to any other signal. For more information, see AN72845, Design Guidelines for QFN Devices.

4.3.1.3 Data Transfer Instructions

The data transfer instructions are of three types: the core RAM, xdata RAM, and the lookup tables. The core RAM transfer includes transfer between any two core RAM locations or SFRs. These instructions can use direct, indirect, register, and immediate addressing. The xdata RAM transfer includes only the transfer between the accumulator and the xdata RAM location. It can use only indirect addressing. The lookup tables involve nothing but the read of program memory using the Indexed

addressing mode. Table 4-3 lists the various data transfer instructions available.

4.3.1.4 Boolean Instructions

The 8051 core has a separate bit-addressable memory location. It has 128 bits of bit addressable RAM and a set of SFRs that are bit addressable. The instruction set includes the whole menu of bit operations such as move, set, clear, toggle, OR, and AND instructions and the conditional jump instructions. Table 4-4 on page 17Table 4-4 lists the available Boolean instructions.

Mnemonic	Description	Bytes	Cycles
MOV A,Rn	Move register to accumulator	1	1
MOV A,Direct	Move direct byte to accumulator	2	2
MOV A,@Ri	Move indirect RAM to accumulator	1	2
MOV A,#data	Move immediate data to accumulator	2	2
MOV Rn,A	Move accumulator to register	1	1
MOV Rn,Direct	Move direct byte to register	2	3
MOV Rn, #data	Move immediate data to register	2	2
MOV Direct, A	Move accumulator to direct byte	2	2
MOV Direct, Rn	Move register to direct byte	2	2
MOV Direct, Direct	Move direct byte to direct byte	3	3
MOV Direct, @Ri	Move indirect RAM to direct byte	2	3
MOV Direct, #data	Move immediate data to direct byte	3	3
MOV @Ri, A	Move accumulator to indirect RAM	1	2
MOV @Ri, Direct	Move direct byte to indirect RAM	2	3
MOV @Ri, #data	Move immediate data to indirect RAM	2	2
MOV DPTR, #data16	Load data pointer with 16-bit constant	3	3
MOVC A, @A+DPTR	Move code byte relative to DPTR to accumulator	1	5
MOVC A, @A + PC	Move code byte relative to PC to accumulator	1	4
MOVX A,@Ri	Move external RAM (8-bit) to accumulator	1	4
MOVX A, @DPTR	Move external RAM (16-bit) to accumulator	1	3
MOVX @Ri, A	Move accumulator to external RAM (8-bit)	1	5
MOVX @DPTR, A	Move accumulator to external RAM (16-bit)	1	4
PUSH Direct	Push direct byte onto stack	2	3
POP Direct	Pop direct byte from stack	2	2
XCH A, Rn	Exchange register with accumulator	1	2
XCH A, Direct	Exchange direct byte with accumulator	2	3
XCH A, @Ri	Exchange indirect RAM with accumulator	1	3
XCHD A, @Ri	Exchange low order indirect digit RAM with accumulator	1	3

Table 4-3. Data Transfer Instructions

Table 4-4. Boolean Instructions

Mnemonic	Description	Bytes	Cycles
CLR C	Clear carry	1	1
CLR bit	Clear direct bit	2	3
SETB C	Set carry	1	1
SETB bit	Set direct bit	2	3
CPL C	Complement carry	1	1
CPL bit	Complement direct bit	2	3
ANL C, bit	AND direct bit to carry	2	2
ANL C, /bit	AND complement of direct bit to carry	2	2
ORL C, bit	OR direct bit to carry	2	2
ORL C, /bit	OR complement of direct bit to carry	2	2
MOV C, bit	Move direct bit to carry	2	2
MOV bit, C	Move carry to direct bit	2	3
JC rel	Jump if carry is set	2	3
JNC rel	Jump if no carry is set	2	3
JB bit, rel	Jump if direct bit is set	3	5
JNB bit, rel	Jump if direct bit is not set	3	5
JBC bit, rel	Jump if direct bit is set and clear bit	3	5

Figure 6-3. 32kHzECO Block Diagram

It is recommended that the external 32.768-kHz watch crystal have a load capacitance (CL) of 6 pF or 12.5 pF. Check the crystal manufacturer's datasheet. The two external capacitors, CL1 and CL2, are typically of the same value, and their total capacitance, CL1CL2 / (CL1 + CL2), including pin and trace capacitance, should equal the crystal CL value. For more information, refer to application note AN54439: PSoC 3 and PSoC 5 External Oscillators. See also pin capacitance specifications in the "GPIO" section on page 76.

6.1.2.3 Digital System Interconnect

The DSI provides routing for clocks taken from external clock oscillators connected to I/O. The oscillators can also be generated within the device in the digital system and Universal Digital Blocks.

While the primary DSI clock input provides access to all clocking resources, up to eight other DSI clocks (internally or externally generated) may be routed directly to the eight digital clock dividers. This is only possible if there are multiple precision clock sources.

6.1.3 Clock Distribution

All seven clock sources are inputs to the central clock distribution system. The distribution system is designed to create multiple high precision clocks. These clocks are customized for the design's requirements and eliminate the common problems found with limited resolution prescalers attached to peripherals. The clock distribution system generates several types of clock trees.

The master clock is used to select and supply the fastest clock in the system for general clock requirements and clock synchronization of the PSoC device.

- Bus Clock 16-bit divider uses the master clock to generate the bus clock used for data transfers. Bus clock is the source clock for the CPU clock divider.
- Eight fully programmable 16-bit clock dividers generate digital system clocks for general use in the digital system, as configured by the design's requirements. Digital system clocks can generate custom clocks derived from any of the seven clock sources for any purpose. Examples include baud rate generators, accurate PWM periods, and timer clocks, and many others. If more than eight digital clock dividers are required, the Universal Digital Blocks (UDBs) and fixed function Timer/Counter/PWMs can also generate clocks.
- Four 16-bit clock dividers generate clocks for the analog system components that require clocking, such as ADC. The analog clock dividers include skew control to ensure that critical analog events do not occur simultaneously with digital switching events. This is done to reduce analog system noise.

Each clock divider consists of an 8-input multiplexer, a 16-bit clock divider (divide by 2 and higher) that generates ~50 percent duty cycle clocks, master clock resynchronization logic, and deglitch logic. The outputs from each digital clock tree can be routed into the digital system interconnect and then brought back into the clock system as an input, allowing clock chaining of up to 32 bits.

6.1.4 USB Clock Domain

The USB clock domain is unique in that it operates largely asynchronously from the main clock network. The USB logic contains a synchronous bus interface to the chip, while running on an asynchronous clock to process USB data. The USB logic requires a 48 MHz frequency. This frequency can be generated from different sources, including DSI clock at 48 MHz or doubled value of 24 MHz from internal oscillator, DSI signal, or crystal oscillator.

6.2 Power System

The power system consists of separate analog, digital, and I/O supply pins, labeled VDDA, VDDD, and VDDIOX, respectively. It also includes two internal 1.8 V regulators that provide the digital (VCCD) and analog (VCCA) supplies for the internal core logic. The output pins of the regulators (VCCD and VCCA) and the VDDIO pins must have capacitors connected as shown in Figure 6-4. The two VCCD pins must be shorted together, with as short a trace as possible, and connected to a 1- μ F ±10-percent X5R capacitor. The power system also contains a sleep regulator, an I²C regulator, and a hibernate regulator.

The USBIO pins (P15[7] and P15[6]), when enabled for I/O mode, have limited drive mode control. The drive mode is set using the PRT15.DM0[7, 6] register. A resistive pull option is also available at the USBIO pins, which can be enabled using the PRT15.DM1[7, 6] register. When enabled for USB mode, the drive mode control has no impact on the configuration of the USB pins. Unlike the GPIO and SIO configurations, the port wide configuration registers do not configure the USB drive mode bits. Table 6-7 shows the drive mode configuration for the USBIO pins.

PRT15.DM1[7,6] Pull up enable	PRT15.DM0[7,6] Drive Mode enable	PRT15.DR[7,6] = 1	PRT15.DR[7,6] = 0	Description
0	0	High Z	Strong Low	Open Drain, Strong Low
0	1	Strong High	Strong Low	Strong Outputs
1	0	Res High (5k)	Strong Low	Resistive Pull Up, Strong Low
1	1	Strong High	Strong Low	Strong Outputs

Table 6-7. USBIO Drive Modes (P15[7] and P15[6])

High Impedance Analog

The default reset state with both the output driver and digital input buffer turned off. This prevents any current from flowing in the I/O's digital input buffer due to a floating voltage. This state is recommended for pins that are floating or that support an analog voltage. High impedance analog pins do not provide digital input functionality.

To achieve the lowest chip current in sleep modes, all I/Os must either be configured to the high impedance analog mode, or have their pins driven to a power supply rail by the PSoC device or by external circuitry.

High Impedance Digital

The input buffer is enabled for digital signal input. This is the standard high impedance (HiZ) state recommended for digital inputs.

Resistive pull-up or resistive pull-down

Resistive pull-up or pull-down, respectively, provides a series resistance in one of the data states and strong drive in the other. Pins can be used for digital input and output in these modes. Interfacing to mechanical switches is a common application for these modes. Resistive pull-up and pull-down are not available with SIO in regulated output mode.

Open Drain, Drives High and Open Drain, Drives Low

Open drain modes provide high impedance in one of the data states and strong drive in the other. Pins can be used for digital input and output in these modes. A common application for these modes is driving the I^2C bus signal lines.

Strong Drive

Provides a strong CMOS output drive in either high or low state. This is the standard output mode for pins. Strong Drive mode pins must not be used as inputs under normal circumstances. This mode is often used to drive digital output signals or external FETs.

Resistive pull-up and pull-down

Similar to the resistive pull-up and resistive pull-down modes except the pin is always in series with a resistor. The high data state is pull-up while the low data state is pull-down. This mode is most often used when other signals that may cause shorts can drive the bus. Resistive pull-up and pull-down are not available with SIO in regulated output mode.

6.4.2 Pin Registers

Registers to configure and interact with pins come in two forms that may be used interchangeably.

All I/O registers are available in the standard port form, where each bit of the register corresponds to one of the port pins. This register form is efficient for quickly reconfiguring multiple port pins at the same time.

I/O registers are also available in pin form, which combines the eight most commonly used port register bits into a single register for each pin. This enables very fast configuration changes to individual pins with a single register write.

6.4.3 Bidirectional Mode

High-speed bidirectional capability allows pins to provide both the high impedance digital drive mode for input signals and a second user selected drive mode such as strong drive (set using PRT×DM[2:0] registers) for output signals on the same pin, based on the state of an auxiliary control bus signal. The bidirectional capability is useful for processor busses and communications interfaces such as the SPI Slave MISO pin that requires dynamic hardware control of the output buffer.

The auxiliary control bus routes up to 16 UDB or digital peripheral generated output enable signals to one or more pins.

6.4.4 Slew Rate Limited Mode

GPIO and SIO pins have fast and slow output slew rate options for strong and open drain drive modes, not resistive drive modes. Because it results in reduced EMI, the slow edge rate option is recommended for signals that are not speed critical, generally less than 1 MHz. The fast slew rate is for signals between 1 MHz and 33 MHz. The slew rate is individually configurable for each pin, and is set by the PRT×SLW registers.

6.4.5 Pin Interrupts

All GPIO and SIO pins are able to generate interrupts to the system. All eight pins in each port interface to their own Port Interrupt Control Unit (PICU) and associated interrupt vector. Each pin of the port is independently configurable to detect rising edge, falling edge, both edge interrupts, or to not generate an interrupt.

Depending on the configured mode for each pin, each time an interrupt event occurs on a pin, its corresponding status bit of the interrupt status register is set to "1" and an interrupt request is sent to the interrupt controller. Each PICU has its own interrupt vector in the interrupt controller and the pin status register providing easy determination of the interrupt source down to the pin level.

Port pin interrupts remain active in all sleep modes allowing the PSoC device to wake from an externally generated interrupt.

While level sensitive interrupts are not directly supported; Universal Digital Blocks (UDB) provide this functionality to the system when needed.

6.4.6 Input Buffer Mode

GPIO and SIO input buffers can be configured at the port level for the default CMOS input thresholds or the optional LVTTL input thresholds. All input buffers incorporate Schmitt triggers for input hysteresis. Additionally, individual pin input buffers can be disabled in any drive mode.

6.4.7 I/O Power Supplies

Up to four I/O pin power supplies are provided depending on the device and package. Each I/O supply must be less than or equal to the voltage on the chip's analog (VDDA) pin. This feature allows users to provide different I/O voltage levels for different pins on the device. Refer to the specific device package pinout to determine VDDIO capability for a given port and pin.

The SIO port pins support an additional regulated high output capability, as described in Adjustable Output Level.

6.4.8 Analog Connections

These connections apply only to GPIO pins. All GPIO pins may be used as analog inputs or outputs. The analog voltage present on the pin must not exceed the VDDIO supply voltage to which the GPIO belongs. Each GPIO may connect to one of the analog global busses or to one of the analog mux buses to connect any pin to any internal analog resource such as ADC or comparators. In addition, one select pin provides direct connection to the high current DAC.

6.4.9 CapSense

This section applies only to GPIO pins. All GPIO pins may be used to create CapSense buttons and sliders. See the "CapSense" section on page 61 for more information.

6.4.10 LCD Segment Drive

This section applies only to GPIO pins. All GPIO pins may be used to generate Segment and Common drive signals for direct glass drive of LCD glass. See the "LCD Direct Drive" section on page 60 for details.

6.4.11 Adjustable Output Level

This section applies only to SIO pins. SIO port pins support the ability to provide a regulated high output level for interface to external signals that are lower in voltage than the SIO's respective VDDIO. SIO pins are individually configurable to output either the standard VDDIO level or the regulated output, which is based on an internally generated reference. Typically the voltage DAC (VDAC) is used to generate the reference (see Figure 6-13). The "DAC" section on page 61 has more details on VDAC use and reference routing to the SIO pins. Resistive pull-up and pull-down drive modes are not available with SIO in regulated output mode.

6.4.12 Adjustable Input Level

This section applies only to SIO pins. SIO pins by default support the standard CMOS and LVTTL input levels but also support a differential mode with programmable levels. SIO pins are grouped into pairs. Each pair shares a reference generator block which, is used to set the digital input buffer reference level for interface to external signals that differ in voltage from VDDIO. The reference sets the pins voltage threshold for a high logic level (see Figure 6-13). Available input thresholds are:

- 0.5 × VDDIO
- 0.4 × VDDIO
- 0.5 × VREF
- VREF

Typically the voltage DAC (VDAC) generates the V_{REF} reference. The "DAC" section on page 61 has more details on VDAC use and reference routing to the SIO pins.

Figure 6-13. SIO Reference for Input and Output

7. Digital Subsystem

The digital programmable system creates application specific combinations of both standard and advanced digital peripherals and custom logic functions. These peripherals and logic are then interconnected to each other and to any pin on the device, providing a high level of design flexibility and IP security.

The features of the digital programmable system are outlined here to provide an overview of capabilities and architecture. You do not need to interact directly with the programmable digital system at the hardware and register level. PSoC Creator provides a high level schematic capture graphical interface to automatically place and route resources similar to PLDs.

The main components of the digital programmable system are:

- Universal Digital Blocks (UDB) These form the core functionality of the digital programmable system. UDBs are a collection of uncommitted logic (PLD) and structural logic (Datapath) optimized to create all common embedded peripherals and customized functionality that are application or design specific.
- Universal Digital Block Array UDB blocks are arrayed within a matrix of programmable interconnect. The UDB array structure is homogeneous and allows for flexible mapping of digital functions onto the array. The array supports extensive and flexible routing interconnects between UDBs and the Digital System Interconnect.
- Digital System Interconnect (DSI) Digital signals from Universal Digital Blocks (UDBs), fixed function peripherals, I/O pins, interrupts, DMA, and other system core signals are attached to the Digital System Interconnect to implement full featured device connectivity. The DSI allows any digital function to any pin or other feature routability when used with the Universal Digital Block Array.

Figure 7-1. CY8C32 Digital Programmable Architecture

7.1 Example Peripherals

The flexibility of the CY8C32 family's Universal Digital Blocks (UDBs) and Analog Blocks allow the user to create a wide range of components (peripherals). The most common peripherals were built and characterized by Cypress and are shown in the PSoC Creator component catalog, however, users may also create their own custom components using PSoC Creator. Using PSoC Creator, users may also create their own components for reuse within their organization, for example sensor interfaces, proprietary algorithms, and display interfaces.

The number of components available through PSoC Creator is too numerous to list in the datasheet, and the list is always growing. An example of a component available for use in CY8C32 family, but, not explicitly called out in this datasheet is the UART component.

7.1.1 Example Digital Components

The following is a sample of the digital components available in PSoC Creator for the CY8C32 family. The exact amount of hardware resources (UDBs, routing, RAM, flash) used by a component varies with the features selected in PSoC Creator for the component.

- Communications
 - □ I²C
 - UART
 - 🛛 SPI
- Functions
 - 🛛 EMIF
 - PWMs
 - Timers
 - Counters
- Logic

- 7.1.2 Example Analog Components

The following is a sample of the analog components available in PSoC Creator for the CY8C32 family. The exact amount of hardware resources (routing, RAM, flash) used by a component varies with the features selected in PSoC Creator for the component.

- ADC
 - Delta-sigma
- DACs
- Current
- Voltage
- D PWM
- Comparators
- 7.1.3 Example System Function Components

The following is a sample of the system function components available in PSoC Creator for the CY8C32 family. The exact amount of hardware resources (UDBs, routing, RAM, flash) used by a component varies with the features selected in PSoC Creator for the component.

- CapSense
- LCD Drive
- LCD Control

Independent of the ALU operation, these functions are available:

- Shift left
- Shift right
- Nibble swap
- Bitwise OR mask

7.2.2.3 Conditionals

Each datapath has two compares, with bit masking options. Compare operands include the two accumulators and the two data registers in a variety of configurations. Other conditions include zero detect, all ones detect, and overflow. These conditions are the primary datapath outputs, a selection of which can be driven out to the UDB routing matrix. Conditional computation can use the built in chaining to neighboring UDBs to operate on wider data widths without the need to use routing resources.

7.2.2.4 Variable MSB

The most significant bit of an arithmetic and shift function can be programmatically specified. This supports variable width CRC and PRS functions, and in conjunction with ALU output masking, can implement arbitrary width timers, counters and shift blocks.

7.2.2.5 Built in CRC/PRS

The datapath has built in support for single cycle Cyclic Redundancy Check (CRC) computation and Pseudo Random Sequence (PRS) generation of arbitrary width and arbitrary polynomial. CRC/PRS functions longer than 8 bits may be implemented in conjunction with PLD logic, or built in chaining may be use to extend the function into neighboring UDBs.

7.2.2.6 Input/Output FIFOs

Each datapath contains two four-byte deep FIFOs, which can be independently configured as an input buffer (system bus writes to the FIFO, datapath internal reads the FIFO), or an output buffer (datapath internal writes to the FIFO, the system bus reads from the FIFO). The FIFOs generate status that are selectable as datapath outputs and can therefore be driven to the routing, to interact with sequencers, interrupts, or DMA.

Figure 7-5. Example FIFO Configurations

7.2.2.7 Chaining

The datapath can be configured to chain conditions and signals such as carries and shift data with neighboring datapaths to create higher precision arithmetic, shift, CRC/PRS functions.

7.2.2.8 Time Multiplexing

In applications that are over sampled, or do not need high clock rates, the single ALU block in the datapath can be efficiently shared with two sets of registers and condition generators. Carry and shift out data from the ALU are registered and can be selected as inputs in subsequent cycles. This provides support for 16-bit functions in one (8-bit) datapath.

7.2.2.9 Datapath I/O

There are six inputs and six outputs that connect the datapath to the routing matrix. Inputs from the routing provide the configuration for the datapath operation to perform in each cycle, and the serial data inputs. Inputs can be routed from other UDB blocks, other device peripherals, device I/O pins, and so on. The outputs to the routing can be selected from the generated conditions, and the serial data outputs. Outputs can be routed to other UDB blocks, device peripherals, interrupt and DMA controller, I/O pins, and so on.

7.2.3 Status and Control Module

The primary purpose of this circuitry is to coordinate CPU firmware interaction with internal UDB operation.

Figure 7-6. Status and Control Registers

The bits of the control register, which may be written to by the system bus, are used to drive into the routing matrix, and thus provide firmware with the opportunity to control the state of UDB processing. The status register is read-only and it allows internal UDB state to be read out onto the system bus directly from internal routing. This allows firmware to monitor the state of UDB processing. Each bit of these registers has programmable connections to the routing matrix and routing connections are made depending on the requirements of the application.

7.2.3.1 Usage Examples

As an example of control input, a bit in the control register can be allocated as a function enable bit. There are multiple ways to enable a function. In one method the control bit output would be routed to the clock control block in one or more UDBs and serve as a clock enable for the selected UDB blocks. A status example is a case where a PLD or datapath block generated a condition, such as a "compare true" condition that is captured and latched by the status register and then read (and cleared) by CPU firmware.

8.1 Analog Routing

The CY8C32 family of devices has a flexible analog routing architecture that provides the capability to connect GPIOs and different analog blocks, and also route signals between different analog blocks. One of the strong points of this flexible routing architecture is that it allows dynamic routing of input and output connections to the different analog blocks.

For information on how to make pin selections for optimal analog routing, refer to the application note, AN58304 - PSoC® 3 and PSoC® 5 - Pin Selection for Analog Designs.

- 8.1.1 Features
- Flexible, configurable analog routing architecture
- 16 analog globals (AG) and two analog mux buses (AMUXBUS) to connect GPIOs and the analog blocks
- Each GPIO is connected to one analog global and one analog mux bus

- Eight analog local buses (abus) to route signals between the different analog blocks
- Multiplexers and switches for input and output selection of the analog blocks

8.1.2 Functional Description

Analog globals (AGs) and analog mux buses (AMUXBUS) provide analog connectivity between GPIOs and the various analog blocks. There are 16 AGs in the CY8C32 family. The analog routing architecture is divided into four quadrants as shown in Figure 8-2. Each quadrant has four analog globals (AGL[0..3], AGL[4..7], AGR[0..3], AGR[4..7]). Each GPIO is connected to the corresponding AG through an analog switch. The analog mux bus is a shared routing resource that connects to every GPIO through an analog switch. There are two AMUXBUS routes in CY8C32, one in the left half (AMUXBUSL) and one in the right half (AMUXBUSR), as shown in Figure 8-2.

11.2 Device Level Specifications

Specifications are valid for –40 $^{\circ}C \le T_A \le 85 ~^{\circ}C$ and $T_J \le 100 ~^{\circ}C$, except where noted. Specifications are valid for 1.71 V to 5.5 V, except where noted.

11.2.1 Device Level Specifications

Table 11-2. DC Specifications

Parameter	Description	Conditions		Min	Typ ^[22]	Max	Units
V _{DDA}	Analog supply voltage and input to analog core regulator	Analog core regulato	r enabled	1.8	_	5.5	V
V _{DDA}	Analog supply voltage, analog regulator bypassed	Analog core regulato	r disabled	1.71	1.8	1.89	V
V		Digital core regulator	enabled	1.8	-	V _{DDA} ^[18]	V
V DDD	Digital supply voltage relative to v _{SSD}		enableu	-	-	V _{DDA} + 0.1 ^[24]	v
V _{DDD}	Digital supply voltage, digital regulator bypassed	Digital core regulator	disabled	1.71	1.8	1.89	V
V[19]				1.71	-	V _{DDA} ^[18]	V
ADDIO.				-	_	V _{DDA} + 0.1 ^[24]	
V _{CCA}	Direct analog core voltage input (Analog regulator bypass)	Analog core regulato	r disabled	1.71	1.8	1.89	V
V _{CCD}	Direct digital core voltage input (Digital regulator bypass)	Digital core regulator disabled		1.71	1.8	1.89	V
	Active Mode						
	Only IMO and CPU clock enabled. CPU executing simple loop from instruction buffer.	$V_{DDX} = 2.7 V - 5.5 V; F_{CPU} = 6 MHz^{[23]} T = 85 °C$	T = -40 °C	-	1.2	2.9	
			T = 25 °C	_	1.2	3.1	
			T = 85 °C	-	4.9	7.7	
		$V_{DDX} = 2.7 V - 5.5 V; \frac{T = -40 °C}{T = 25 °C}$ F _{CPU} = 3 MHz ^[23] T = 85 °C	T = -40 °C	-	1.3	2.9	
			T = 25 °C	I	1.6	3.2	
			T = 85 °C	I	4.8	7.5	
		$V_{DDX} = 2.7 V - 5.5 V;$ $F_{CPU} = 6 MHz$ T = -40 °C T = 25 °C T = 85 °C	T = -40 °C	-	2.1	3.7	
			-	2.3	3.9		
I _{DD} ^[20, 21]			T = 85 °C	1	5.6	8.5	mΔ
	IMO enabled, bus clock and CPU clock	$V_{DDX} = 2.7 V - 5.5 V;$	T = -40 °C	-	3.5	5.2	
	enabled. CPU executing program from	$F_{CPU} = 12 \text{ MHz}^{(23)}$	T = 25 °C	_	3.8	5.5	
	flash.		T = 85 °C	_	7.1	9.8	
		$V_{DDX} = 2.7 V - 5.5 V;$	T = -40 °C	_	6.3	8.1	
		F _{CPU} = 24 MHz ^[23]	T = 25 °C	-	6.6	8.3	
			T = 85 °C	-	10	13	
		$V_{DDX} = 2.7 V - 5.5 V; T = -40 °C$		-	11.5	13.5	
		F _{CPU} = 48 MHz ^[23]	T = 25 °C	-	12	14	
		T = 85 °C		-	15.5	18.5	

Notes

18. The power supplies can be brought up in any sequence however once stable V_{DDA} must be greater than or equal to all other supplies. 19. The V_{DDIO} supply voltage must be greater than the maximum voltage on the associated GPIO pins. Maximum voltage on GPIO pin $\leq V_{DDIO} \leq V_{DDA}$. 20. Total current for all power domains: digital (I_{DDD}), analog (I_{DDA}), and I/Os ($I_{DDIO0, 1, 2, 3}$). Boost not included. All I/Os floating.

21. The current consumption of additional peripherals that are implemented only in programmed logic blocks can be found in their respective datasheets, available in PSoC Creator, the integrated design environment. To estimate total current, find the CPU current at the frequency of interest and add peripheral currents for your particular system from the device datasheet and component datasheets.

22. V_{DDX} = 3.3 V. 23. Based on device characterizations (Not production tested).

24. Guaranteed by design, not production tested.

Figure 11-11. Efficiency vs V_{BAT}, L_{BOOST} = 4.7 μ H ^[35]

Figure 11-13. Efficiency vs V_{BAT}, L_{BOOST} = 22 μ H ^[35]

Figure 11-12. Efficiency vs V_{BAT} , L_{BOOST} = 10 μ H ^[35]

Figure 11-14. V_{RIPPLE} vs V_{BAT} ^[35]

Note

35. Typical example. Actual values may vary depending on external component selection, PCB layout, and other design parameters.

Figure 11-28. IDAC DNL vs Input Code, Range = 255 $\mu\text{A},$ Source Mode

Figure 11-30. IDAC INL vs Temperature, Range = 255 $\mu A,$ High speed mode

Figure 11-29. IDAC DNL vs Input Code, Range = 255 $\mu\text{A},$ Sink Mode

Figure 11-31. IDAC DNL vs Temperature, Range = 255 $\mu\text{A},$ High speed mode

11.5.6 Voltage Digital to Analog Converter (VDAC)

See the VDAC component datasheet in PSoC Creator for full electrical specifications and APIs.

Unless otherwise specified, all charts and graphs show typical values.

Table 11-28. VDAC DC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
	Resolution		-	8	-	bits
INL1	Integral nonlinearity	1 V scale	-	±2.1	±2.5	LSB
INL4	Integral nonlinearity ^[52]	4 V scale	-	±2.1	±2.5	LSB
DNL1	Differential nonlinearity	1 V scale	-	±0.3	±1	LSB
DNL4	Differential nonlinearity ^[52]	4 V scale	-	±0.3	±1	LSB
Rout	Output resistance	1 V scale	-	4	-	kΩ
		4 V scale	-	16	-	kΩ
V _{OUT}	Output voltage range, code = 255	1 V scale	-	1.02	-	V
		4 V scale, V _{DDA} = 5 V	-	4.08	-	V
	Monotonicity		_	_	Yes	-
V _{OS}	Zero scale error		_	0	±0.9	LSB
Eg	Gain error	1 V scale	-	-	±2.5	%
		4 V scale	_	_	±2.5	%
TC_Eg	Temperature coefficient, gain error	1 V scale	_	_	0.03	%FSR / °C
		4 V scale	-	-	0.03	%FSR/°C
I _{DD}	Operating current	Low speed mode	-	-	100	μA
		High speed mode	_	_	500	μA

Figure 11-40. VDAC INL vs Input Code, 1 V Mode

Figure 11-41. VDAC DNL vs Input Code, 1 V Mode

Note 52. Based on device characterization (Not production tested).

11.5.7 Temperature Sensor

Table 11-30. Temperature Sensor Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
	Temp sensor accuracy	Range: –40 °C to +85 °C	-	±5	_	°C

11.5.8 LCD Direct Drive

Table 11-31. LCD Direct Drive DC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
I _{CC}	LCD system operating current	Device sleep mode with wakeup at 400-Hz rate to refresh LCDs, bus clock = 3 MHz, $V_{DDIO} = V_{DDA} = 3 V$, 4 commons, 16 segments, 1/4 duty cycle, 50 Hz frame rate, no glass connected	_	38	-	μΑ
I _{CC_SEG}	Current per segment driver	Strong drive mode	-	260	-	μA
V _{BIAS}	LCD bias range (V _{BIAS} refers to the main output voltage(V0) of LCD DAC)	$V_{DDA} \geq 3~V$ and $V_{DDA} \geq V_{BIAS}$	2	_	5	V
	LCD bias step size	$V_{DDA} \ge 3 \text{ V} \text{ and } V_{DDA} \ge V_{BIAS}$	-	$9.1 \times V_{DDA}$	-	mV
	LCD capacitance per segment/common driver	Drivers may be combined	-	500	5000	pF
	Long term segment offset		-	-	20	mV
I _{OUT}	Output drive current per segment driver)	V _{DDIO} = 5.5V, strong drive mode	355	_	710	μA

Table 11-32. LCD Direct Drive AC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
f _{LCD}	LCD frame rate		10	50	150	Hz

11.7.5 External Memory Interface

Figure 11-53. Asynchronous Write and Read Cycle Timing, No Wait States

Table 11-53.	Asynchronous	Write and Rea	d Timing	Specifications ^[56]
				•

Parameter	Description	Conditions	Min	Тур	Max	Units
Fbus_clock	Bus clock frequency ^[57]		-	-	33	MHz
Tbus_clock	Bus clock period ^[58]		30.3	_	-	ns
Twr_Setup	Time from EM_data valid to rising edge of EM_WE and EM_CE		Tbus_clock – 10	-	-	ns
Trd_setup	Time that EM_data must be valid before rising edge of EM_OE		5	-	_	ns
Trd_hold	Time that EM_data must be valid after rising edge of EM_OE		5	-	-	ns

Notes

56. Based on device characterization (Not production tested).
57. EMIF signal timings are limited by GPIO frequency limitations. See "GPIO" section on page 76.
58. EMIF output signals are generally synchronized to bus clock, so EMIF signal timings are dependent on bus clock frequency.

Figure 11-56. Synchronous Write Cycle Timing

Table 11-56.	Synchronous	Write Cycle	Specifications
--------------	-------------	-------------	----------------

Parameter	Description	Conditions	Min	Тур	Max	Units
Т	EMIF clock Period ^[63]	$V_{DDA} \ge 3.3 V$	30.3	-	-	ns
Tcp/2	EM_Clock pulse high		T/2	-	-	ns
Tceld	EM_CEn low to EM_Clock high		5	-	-	ns
Tcehd	EM_Clock high to EM_CEn high		T/2 – 5	-	-	ns
Taddrv	EM_Addr valid to EM_Clock high		5	-	-	ns
Taddriv	EM_Clock high to EM_Addr invalid		T/2 – 5	-	-	ns
Tweld	EM_WEn low to EM_Clock high		5	-	-	ns
Twehd	EM_Clock high to EM_WEn high		T/2 – 5	-	-	ns
Tds	Data valid before EM_Clock high		5	-	-	ns
Tdh	Data invalid after EM_Clock high		Т	-	-	ns
Tadscld	EM_ADSCn low to EM_Clock high		5	-	-	ns
Tadschd	EM_Clock high to EM_ADSCn high		T/2 – 5	_	_	ns

Description Title: PSoC [®] 3: CY8C32 Family Data Sheet Programmable System-on-Chip (PSoC [®]) (continued) Document Number: 001-56955				
Revision	ECN	Submission Date	Orig. of Change	Description of Change
*0	3732521	09/03/2012	MKEA	Replaced I _{DDDR} and I _{DDAR} specs in Table 11-2, "DC Specifications," on page 68 that were dropped out in *M revision. Updated Table 11-19, "12-bit Delta-sigma ADC DC Specifications," on page 84, I _{DD 12} Max value from 1.4 to 1.95 mA Replaced PSoC [®] 3 Programming AN62391 with TRM in footnote #55 and Section Table 9., "Programming, Debug Interfaces, Resources," on page 62 Removed Figure 11-8 (Efficiency vs Vout) Removed 62-MHz sub-row in Table 11-2, "DC Specifications," on page 68 Updated conditions for Storage Temperature in Table 11-1, "Absolute Maximum Ratings DC Specifications[15]," on page 67 Updated conditions and min values for NVL data retention time in Table 11-50, "NVL AC Specifications," on page 100 Updated Table 11-67, "ILO DC Specifications," on page 109. Removed the pruned part CY8C3245LTI-129 from the "Ordering Information" section on page 111. Updated PSoC 3 boost circuit value throughout the document. Updated package diagram 51-85061 to *F revision.
*P	3922905	03/06/2013	MKEA	Updated I _{DD_XX} parameters under Table 11-19, "12-bit Delta-sigma ADC DC Specifications," on page 84. Updated I2C section and updated GPIO and SIO DC specification tables.
*Q	4064707	07/18/2013	MKEA	Added USB test ID in Features. Updated schematic in Section 2 Added paragraph for device reset warning in Section 5.4. Added NVL bit for DEBUG_EN in Section 5.5. Updated UDB PLD array diagram in Section 7.2.1. Changed Tstartup specs in Section 11.2.1. Changed GPIO rise and fall time specs in Section 11.4. Added IMO spec condition: pre-assembly in Section 11.9.1. Added Appendix for CSP package (preliminary)
*R	4118845	09/10/2013	MKEA	Removed T _{STG} spec and added note clarifying the maximum storage temperature range in Table 11-1. Updated Vos spec conditions and TCVos in Table 11-19. Updated 100-TQFP package diagram.
*S	4188568	11/14/2013	MKEA	Updated delta-sigma Vos spec conditions. Added SIO Comparator specifications.
*T	4218210	12/12/2013	MKEA	Integrated 72-pin CSP package information in the datasheet.
*U	4385782	05/21/2014	MKEA	Updated General Description and Features. Added More Information and PSoC Creator sections. Updated 100-pin TQFP package diagram.
*V	4708125	03/31/2015	MKEA	Added INL4 and DNL4 specs in VDAC DC specs. Updated Fig 6-11. Added second note after Fig 6-4. Added a reference to Fig 6-1 in Section 6.1.1 and Section 6.1.2 Updated Section 6.2.2. Added Section 7.7.1. Updated Boost specifications.
*W	4807497	06/23/2015	MKEA	Added reference to code examples in More Information. Updated typ value of T _{WRITE} from 2 to 10 in EEPROM AC specs table. Changed "Device supply for USB operation" to "Device supply (VDDD) for USB operation" in USB DC Specifications. Clarified power supply sequencing and margin for VDDA and VDDD. Updated Serial Wire Debug Interface with limitations of debugging on Port 15. Updated Section 11.7.5. Updated Delta-sigma ADC DC Specifications.

Description Title: PSoC [®] 3: CY8C32 Family Data Sheet Programmable System-on-Chip (PSoC [®]) (continued) Document Number: 001-56955					
Revision	ECN	Submission Date	Orig. of Change	Description of Change	
*X	4932879	09/24/2015	MKEA	Changed the Regulator Output Capacitor min and max from "-" to 0.9 and 1.1, respectively. Added reference to AN54439 in Section 11.9.3. Added MHz ECO DC specs table. Removed references to IPOR rearm issues in Section 6.3.1.1. Table 6-1: Changed DSI Fmax to 33 MHz. Figure 6-1: Changed External I/O or DSI to 0-33 MHz. Table 11-10: Changed Fgpioin Max to 33 MHz. Table 11-12: Changed Fsioin Max to 33 MHz.	
*Y	5322536	06/27/2016	MKEA	Updated More Information. Corrected typos in External Electrical Connections. Added links to CAD Libraries in Section 2.	