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What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor 8051

Core Size 8-Bit

Speed 50MHz

Connectivity EBI/EMI, I²C, LINbus, SPI, UART/USART

Peripherals CapSense, DMA, LCD, POR, PWM, WDT

Number of I/O 25

Program Memory Size 64KB (64K x 8)

Program Memory Type FLASH

EEPROM Size 2K x 8

RAM Size 8K x 8

Voltage - Supply (Vcc/Vdd) 1.71V ~ 5.5V

Data Converters A/D 16x12b; D/A 1x8b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 48-VFQFN Exposed Pad

Supplier Device Package 48-QFN (7x7)

Purchase URL https://www.e-xfl.com/product-detail/infineon-technologies/cy8c3246lti-162t

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/cy8c3246lti-162t-4451458
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers


PSoC® 3: CY8C32 Family Data Sheet

Document Number: 001-56955 Rev. *Y Page 6 of 128

This enables the device to be powered directly from a single 
battery or solar cell. In addition, you can use the boost converter 
to generate other voltages required by the device, such as a 
3.3-V supply for LCD glass drive. The boost’s output is available 
on the VBOOST pin, allowing other devices in the application to 
be powered from the PSoC.

PSoC supports a wide range of low-power modes. These include 
a 200-nA hibernate mode with RAM retention and a 1-µA sleep 
mode with RTC. In the second mode the optional 32.768-kHz 
watch crystal runs continuously and maintains an accurate RTC.

Power to all major functional blocks, including the programmable 
digital and analog peripherals, can be controlled independently 
by firmware. This allows low-power background processing 
when some peripherals are not in use. This, in turn, provides a 
total device current of only 1.2 mA when the CPU is running at 
6 MHz, or 0.8 mA running at 3 MHz.

The details of the PSoC power modes are covered in the “Power 
System” section on page 31 of this datasheet.

PSoC uses JTAG (4-wire) or SWD (2-wire) interfaces for 
programming, debug, and test. The 1-wire SWV may also be 
used for “printf” style debugging. By combining SWD and SWV, 
you can implement a full debugging interface with just three pins. 
Using these standard interfaces enables you to debug or 
program the PSoC with a variety of hardware solutions from 
Cypress or third party vendors. PSoC supports on-chip break 
points and 4-KB instruction and data race memory for debug. 
Details of the programming, test, and debugging interfaces are 
discussed in the “Programming, Debug Interfaces, Resources” 
section on page 62 of this datasheet.

2.  Pinouts

Each VDDIO pin powers a specific set of I/O pins. (The USBIOs 
are powered from VDDD.) Using the VDDIO pins, a single PSoC 
can support multiple voltage levels, reducing the need for 
off-chip level shifters. The black lines drawn on the pinout 
diagrams in Figure 2-3 through Figure 2-6, as well as Table 2-1, 
show the pins that are powered by each VDDIO.

Each VDDIO may source up to 100 mA total to its associated I/O 
pins, as shown in Figure 2-1.

Figure 2-1. VDDIO Current Limit

Conversely, for the 100-pin and 68-pin devices, the set of I/O 
pins associated with any VDDIO may sink up to 100 mA total, as 
shown in Figure 2-2.

Figure 2-2. I/O Pins Current Limit

For the 48-pin devices, the set of I/O pins associated with 
VDDIO0 plus VDDIO2 may sink up to 100 mA total. The set of 
I/O pins associated with VDDIO1 plus VDDIO3 may sink up to a 
total of 100 mA.
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4.3  Instruction Set

The 8051 instruction set is highly optimized for 8-bit handling and 
Boolean operations. The types of instructions supported include:

 Arithmetic instructions

 Logical instructions

 Data transfer instructions

 Boolean instructions

 Program branching instructions

4.3.1  Instruction Set Summary

4.3.1.1 Arithmetic Instructions

Arithmetic instructions support the direct, indirect, register, 
immediate constant, and register-specific instructions. 
Arithmetic modes are used for addition, subtraction, 
multiplication, division, increment, and decrement operations. 
Table 4-1 lists the different arithmetic instructions.

Table 4-1.  Arithmetic Instructions 

Mnemonic Description Bytes Cycles

ADD A,Rn Add register to accumulator 1 1

ADD A,Direct Add direct byte to accumulator 2 2

ADD A,@Ri Add indirect RAM to accumulator 1 2

ADD A,#data Add immediate data to accumulator 2 2

ADDC A,Rn Add register to accumulator with carry 1 1

ADDC A,Direct Add direct byte to accumulator with carry 2 2

ADDC A,@Ri Add indirect RAM to accumulator with carry 1 2

ADDC A,#data Add immediate data to accumulator with carry 2 2

SUBB A,Rn Subtract register from accumulator with borrow 1 1

SUBB A,Direct Subtract direct byte from accumulator with borrow 2 2

SUBB A,@Ri Subtract indirect RAM from accumulator with borrow 1 2

SUBB A,#data Subtract immediate data from accumulator with borrow 2 2

INC A Increment accumulator 1 1

INC Rn Increment register 1 2

INC Direct Increment direct byte 2 3

INC @Ri Increment indirect RAM 1 3

DEC A Decrement accumulator 1 1

DEC Rn Decrement register 1 2

DEC Direct Decrement direct byte 2 3

DEC @Ri Decrement indirect RAM 1 3

INC DPTR Increment data pointer 1 1

MUL Multiply accumulator and B 1 2

DIV Divide accumulator by B 1 6

DAA Decimal adjust accumulator 1 3
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4.4.2  DMA Features

 24 DMA channels

 Each channel has one or more transaction descriptors (TDs) 
to configure channel behavior. Up to 128 total TDs can be 
defined

 TDs can be dynamically updated

 Eight levels of priority per channel

 Any digitally routable signal, the CPU, or another DMA channel, 
can trigger a transaction

 Each channel can generate up to two interrupts per transfer

 Transactions can be stalled or canceled

 Supports transaction size of infinite or 1 to 64k bytes

 TDs may be nested and/or chained for complex transactions

4.4.3  Priority Levels

The CPU always has higher priority than the DMA controller 
when their accesses require the same bus resources. Due to the 
system architecture, the CPU can never starve the DMA. DMA 
channels of higher priority (lower priority number) may interrupt 
current DMA transfers. In the case of an interrupt, the current 
transfer is allowed to complete its current transaction. To ensure 
latency limits when multiple DMA accesses are requested 
simultaneously, a fairness algorithm guarantees an interleaved 
minimum percentage of bus bandwidth for priority levels 2 
through 7. Priority levels 0 and 1 do not take part in the fairness 
algorithm and may use 100 percent of the bus bandwidth. If a tie 
occurs on two DMA requests of the same priority level, a simple 
round robin method is used to evenly share the allocated 
bandwidth. The round robin allocation can be disabled for each 
DMA channel, allowing it to always be at the head of the line. 
Priority levels 2 to 7 are guaranteed the minimum bus bandwidth 
shown in Table 4-7 after the CPU and DMA priority levels 0 and 
1 have satisfied their requirements. 

When the fairness algorithm is disabled, DMA access is granted 
based solely on the priority level; no bus bandwidth guarantees 
are made.

4.4.4  Transaction Modes Supported

The flexible configuration of each DMA channel and the ability to 
chain multiple channels allow the creation of both simple and 
complex use cases. General use cases include, but are not 
limited to:

4.4.4.1 Simple DMA

In a simple DMA case, a single TD transfers data between a 
source and sink (peripherals or memory location). The basic 
timing diagrams of DMA read and write cycles are shown in 
Figure 4-1. For more description on other transfer modes, refer 
to the Technical Reference Manual.

Figure 4-1. DMA Timing Diagram

4.4.4.2 Auto Repeat DMA

Auto repeat DMA is typically used when a static pattern is 
repetitively read from system memory and written to a peripheral. 
This is done with a single TD that chains to itself.

4.4.4.3 Ping Pong DMA

A ping pong DMA case uses double buffering to allow one buffer 
to be filled by one client while another client is consuming the 

data previously received in the other buffer. In its simplest form, 
this is done by chaining two TDs together so that each TD calls 
the opposite TD when complete.

4.4.4.4 Circular DMA

Circular DMA is similar to ping pong DMA except it contains more 
than two buffers. In this case there are multiple TDs; after the last 
TD is complete it chains back to the first TD.

Table 4-7.  Priority Levels

Priority Level % Bus Bandwidth

0 100.0

1 100.0

2 50.0

3 25.0

4 12.5

5 6.2

6 3.1

7 1.5
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Figure 6-3. 32kHzECO Block Diagram

It is recommended that the external 32.768-kHz watch crystal 
have a load capacitance (CL) of 6 pF or 12.5 pF. Check the 
crystal manufacturer's datasheet. The two external capacitors, 
CL1 and CL2, are typically of the same value, and their total 
capacitance, CL1CL2 / (CL1 + CL2), including pin and trace 
capacitance, should equal the crystal CL value. For more 
information, refer to application note AN54439: PSoC 3 and 
PSoC 5 External Oscillators. See also pin capacitance 
specifications in the “GPIO” section on page 76.

6.1.2.3 Digital System Interconnect

The DSI provides routing for clocks taken from external clock 
oscillators connected to I/O. The oscillators can also be 
generated within the device in the digital system and Universal 
Digital Blocks. 

While the primary DSI clock input provides access to all clocking 
resources, up to eight other DSI clocks (internally or externally 
generated) may be routed directly to the eight digital clock 
dividers. This is only possible if there are multiple precision clock 
sources.

6.1.3  Clock Distribution 

All seven clock sources are inputs to the central clock distribution 
system. The distribution system is designed to create multiple 
high precision clocks. These clocks are customized for the 
design’s requirements and eliminate the common problems 
found with limited resolution prescalers attached to peripherals. 
The clock distribution system generates several types of clock 
trees.

 The master clock is used to select and supply the fastest clock 
in the system for general clock requirements and clock 
synchronization of the PSoC device. 

 Bus Clock 16-bit divider uses the master clock to generate the 
bus clock used for data transfers. Bus clock is the source clock 
for the CPU clock divider.

 Eight fully programmable 16-bit clock dividers generate digital 
system clocks for general use in the digital system, as 
configured by the design’s requirements. Digital system clocks 
can generate custom clocks derived from any of the seven 
clock sources for any purpose. Examples include baud rate 
generators, accurate PWM periods, and timer clocks, and 
many others. If more than eight digital clock dividers are 
required, the Universal Digital Blocks (UDBs) and fixed function 
Timer/Counter/PWMs can also generate clocks. 

 Four 16-bit clock dividers generate clocks for the analog system 
components that require clocking, such as ADC. The analog 
clock dividers include skew control to ensure that critical analog 
events do not occur simultaneously with digital switching 
events. This is done to reduce analog system noise.

Each clock divider consists of an 8-input multiplexer, a 16-bit 
clock divider (divide by 2 and higher) that generates ~50 percent 
duty cycle clocks, master clock resynchronization logic, and 
deglitch logic. The outputs from each digital clock tree can be 
routed into the digital system interconnect and then brought back 
into the clock system as an input, allowing clock chaining of up 
to 32 bits. 

6.1.4  USB Clock Domain 

The USB clock domain is unique in that it operates largely 
asynchronously from the main clock network. The USB logic 
contains a synchronous bus interface to the chip, while running 
on an asynchronous clock to process USB data. The USB logic 
requires a 48 MHz frequency. This frequency can be generated 
from different sources, including DSI clock at 48 MHz or doubled 
value of 24 MHz from internal oscillator, DSI signal, or crystal 
oscillator.

6.2  Power System

The power system consists of separate analog, digital, and I/O 
supply pins, labeled VDDA, VDDD, and VDDIOX, respectively. It 
also includes two internal 1.8 V regulators that provide the digital 
(VCCD) and analog (VCCA) supplies for the internal core logic. 
The output pins of the regulators (VCCD and VCCA) and the 
VDDIO pins must have capacitors connected as shown in 
Figure 6-4. The two VCCD pins must be shorted together, with 
as short a trace as possible, and connected to a 1-µF 
±10-percent X5R capacitor. The power system also contains a 
sleep regulator, an I2C regulator, and a hibernate regulator.

Xo
(Pin P15[2])

32 kHz 
Crystal Osc

XCLK32K

32 kHz 
crystal

Capacitors

External 
Components

Xi
(Pin P15[3])
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Figure 6-5. Power Mode Transitions

6.2.1.1 Active Mode 

Active mode is the primary operating mode of the device. When 
in active mode, the active configuration template bits control 
which available resources are enabled or disabled. When a 
resource is disabled, the digital clocks are gated, analog bias 
currents are disabled, and leakage currents are reduced as 
appropriate. User firmware can dynamically control subsystem 
power by setting and clearing bits in the active configuration 
template. The CPU can disable itself, in which case the CPU is 
automatically reenabled at the next wakeup event.

When a wakeup event occurs, the global mode is always 
returned to active, and the CPU is automatically enabled, 
regardless of its template settings. Active mode is the default 
global power mode upon boot. 

6.2.1.2 Alternate Active Mode

Alternate Active mode is very similar to Active mode. In alternate 
active mode, fewer subsystems are enabled, to reduce power 
consumption. One possible configuration is to turn off the CPU 
and flash, and run peripherals at full speed.

6.2.1.3 Sleep Mode 

Sleep mode reduces power consumption when a resume time of 
15 µs is acceptable. The wake time is used to ensure that the 
regulator outputs are stable enough to directly enter active 
mode.

6.2.1.4 Hibernate Mode 

In hibernate mode nearly all of the internal functions are 
disabled. Internal voltages are reduced to the minimal level to 
keep vital systems alive. Configuration state is preserved in 
hibernate mode and SRAM memory is retained. GPIOs 
configured as digital outputs maintain their previous values and 
external GPIO pin interrupt settings are preserved. The device 
can only return from hibernate mode in response to an external 
I/O interrupt. The resume time from hibernate mode is less than 
100 µs.

To achieve an extremely low current, the hibernate regulator has 
limited capacity. This limits the frequency of any signal present 
on the input pins - no GPIO should toggle at a rate greater than 
10 kHz while in hibernate mode. If pins must be toggled at a high 
rate while in a low power mode, use sleep mode instead.

6.2.1.5 Wakeup Events
Wakeup events are configurable and can come from an interrupt 
or device reset. A wakeup event restores the system to active 
mode. Firmware enabled interrupt sources include internally 
generated interrupts, power supervisor, central timewheel, and 
I/O interrupts. Internal interrupt sources can come from a variety 
of peripherals, such as analog comparators and UDBs. The 
central timewheel provides periodic interrupts to allow the 
system to wake up, poll peripherals, or perform real-time 
functions. Reset event sources include the external reset I/O pin 
(XRES), WDT, and Precision Reset (PRES). 

6.2.2  Boost Converter

Applications that use a supply voltage of less than 1.71 V, such
as solar panels or single cell battery supplies, may use the
on-chip boost converter to generate a minimum of 1.8 V supply
voltage. The boost converter may also be used in any system
that requires a higher operating voltage than the supply provides
such as driving 5.0 V LCD glass in a 3.3 V system. With the
addition of an inductor, Schottky diode, and capacitors, it
produces a selectable output voltage sourcing enough current to
operate the PSoC and other on-board components. 

The boost converter accepts an input voltage VBAT from 0.5 V to
3.6 V, and can start up with VBAT as low as 0.5 V. The converter
provides a user configurable output voltage of 1.8 to 5.0 V (VOUT)
in 100 mV increments. VBAT is typically less than VOUT; if VBAT is
greater than or equal to VOUT, then VOUT will be slightly less than
VBAT due to resistive losses in the boost converter. The block can
deliver up to 50 mA (IBOOST) depending on configuration to both
the PSoC device and external components. The sum of all
current sinks in the design including the PSoC device, PSoC I/O
pin loads, and external component loads must be less than the
IBOOST specified maximum current.

Four pins are associated with the boost converter: VBAT, VSSB,
VBOOST, and IND. The boosted output voltage is sensed at the
VBOOST pin and must be connected directly to the chip’s supply
inputs, VDDA, VDDD, and VDDIO, if used to power the PSoC
device. 

The boost converter requires four components in addition to
those required in a non-boost design, as shown in Figure 6-6 on
page 35. A 22-µF capacitor (CBAT) is required close to the VBAT
pin to provide local bulk storage of the battery voltage and
provide regulator stability. A diode between the battery and VBAT
pin should not be used for reverse polarity protection because
the diodes forward voltage drop reduces the VBAT voltage.
Between the VBAT and IND pins, an inductor of 4.7 µH, 10 µH,
or 22 µH is required. The inductor value can be optimized to
increase the boost converter efficiency based on input voltage,
output voltage, temperature, and current. Inductor size is
determined by following the design guidance in this section and
the electrical specifications. The inductor must be placed within
1 cm of the VBAT and IND pins and have a minimum saturation
current of 750 mA. Between the IND and VBOOST pins, place a
Schottky diode within 1 cm of the pins. This diode shall have a
forward current rating of at least 1.0 A and a reverse voltage of
at least 20 V. Connect a 22-µF bulk capacitor (CBOOST) close
to VBOOST to provide regulator output stability. It is important to
sum the total capacitance connected to the VBOOST pin and
ensure the maximum CBOOST specification is not exceeded. All
capacitors must be rated for a minimum of 10 V to minimize
capacitive losses due to voltage de-rating.

Active

Manual

Hibernate

Alternate 
Active

Sleep
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7.2  Universal Digital Block

The Universal Digital Block (UDB) represents an evolutionary 
step to the next generation of PSoC embedded digital peripheral 
functionality. The architecture in first generation PSoC digital 
blocks provides coarse programmability in which a few fixed 
functions with a small number of options are available. The new 
UDB architecture is the optimal balance between configuration 
granularity and efficient implementation. A cornerstone of this 
approach is to provide the ability to customize the devices digital 
operation to match application requirements.

To achieve this, UDBs consist of a combination of uncommitted 
logic (PLD), structured logic (Datapath), and a flexible routing 
scheme to provide interconnect between these elements, I/O 
connections, and other peripherals. UDB functionality ranges 
from simple self contained functions that are implemented in one 
UDB, or even a portion of a UDB (unused resources are 
available for other functions), to more complex functions that 
require multiple UDBs. Examples of basic functions are timers, 
counters, CRC generators, PWMs, dead band generators, and 
communications functions, such as UARTs, SPI, and I2C. Also, 
the PLD blocks and connectivity provide full featured general 
purpose programmable logic within the limits of the available 
resources. 

Figure 7-2. UDB Block Diagram

The main component blocks of the UDB are:

 PLD blocks – There are two small PLDs per UDB. These blocks 
take inputs from the routing array and form registered or 
combinational sum-of-products logic. PLDs are used to 
implement state machines, state bits, and combinational logic 
equations. PLD configuration is automatically generated from 
graphical primitives.

 Datapath Module – This 8-bit wide datapath contains structured 
logic to implement a dynamically configurable ALU, a variety 
of compare configurations and condition generation. This block 
also contains input/output FIFOs, which are the primary parallel 
data interface between the CPU/DMA system and the UDB.

 Status and Control Module – The primary role of this block is 
to provide a way for CPU firmware to interact and synchronize 
with UDB operation.

 Clock and Reset Module – This block provides the UDB clocks 
and reset selection and control.

7.2.1  PLD Module

The primary purpose of the PLD blocks is to implement logic 
expressions, state machines, sequencers, lookup tables, and 
decoders. In the simplest use model, consider the PLD blocks as 
a standalone resource onto which general purpose RTL is 
synthesized and mapped. The more common and efficient use 
model is to create digital functions from a combination of PLD 
and datapath blocks, where the PLD implements only the 
random logic and state portion of the function while the datapath 
(ALU) implements the more structured elements.

Figure 7-3. PLD 12C4 Structure

One 12C4 PLD block is shown in Figure 7-3. This PLD has 12 
inputs, which feed across eight product terms. Each product term 
(AND function) can be from 1 to 12 inputs wide, and in a given 
product term, the true (T) or complement (C) of each input can 
be selected. The product terms are summed (OR function) to 
create the PLD outputs. A sum can be from 1 to 8 product terms 
wide. The 'C' in 12C4 indicates that the width of the OR gate (in 
this case 8) is constant across all outputs (rather than variable 
as in a 22V10 device). This PLA like structure gives maximum 
flexibility and insures that all inputs and outputs are permutable 
for ease of allocation by the software tools. There are two 12C4 
PLDs in each UDB.
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Figure 7-17. Connection of Devices to the I2C Bus

For most designs, the default values in Table 7-2 will provide
excellent performance without any calculations. The default
values were chosen to use standard resistor values between the
minimum and maximum limits. The values in Table 7-2 work for
designs with 1.8 V to 5.0V VDD, less than 200-pF bus capaci-
tance (CB), up to 25 µA of total input leakage (IIL), up to 0.4 V
output voltage level (VOL), and a max VIH of 0.7 * VDD. Standard
Mode and Fast Mode can use either GPIO or SIO PSoC pins.
Fast Mode Plus requires use of SIO pins to meet the VOL spec
at 20 mA. Calculation of custom pull-up resistor values is
required; if your design does not meet the default assumptions,
you use series resistors (RS) to limit injected noise, or you need
to maximize the resistor value for low power consumption.

Calculation of the ideal pull-up resistor value involves finding a
value between the limits set by three equations detailed in the
NXP I2C specification. These equations are:

Equation 1:

Equation 2:

Equation 3:

Equation parameters:

VDD = Nominal supply voltage for I2C bus

VOL = Maximum output low voltage of bus devices. 

IOL= Low-level output current from I2C specification

TR = Rise Time of bus from I2C specification

CB = Capacitance of each bus line including pins and PCB traces

VIH = Minimum high-level input voltage of all bus devices

VNH = Minimum high-level input noise margin from I2C specifi-
cation

IIH = Total input leakage current of all devices on the bus

The supply voltage (VDD) limits the minimum pull-up resistor
value due to bus devices maximum low output voltage (VOL)
specifications. Lower pull-up resistance increases current
through the pins and can, therefore, exceed the spec conditions
of VOL. Equation 1 is derived using Ohm's law to determine the
minimum resistance that will still meet the VOL specification at
3 mA for standard and fast modes, and 20 mA for fast mode plus
at the given VDD.

Equation 2 determines the maximum pull-up resistance due to
bus capacitance. Total bus capacitance is comprised of all pin,
wire, and trace capacitance on the bus. The higher the bus
capacitance, the lower the pull-up resistance required to meet
the specified bus speeds rise time due to RC delays. Choosing
a pull-up resistance higher than allowed can result in failing
timing requirements resulting in communication errors. Most
designs with five or less I2C devices and up to 20 centimeters of
bus trace length have less than 100 pF of bus capacitance.

A secondary effect that limits the maximum pull-up resistor value
is total bus leakage calculated in Equation 3. The primary source
of leakage is I/O pins connected to the bus. If leakage is too high,
the pull-ups will have difficulty maintaining an acceptable VIH
level causing communication errors. Most designs with five or
less I2C devices on the bus have less than 10 µA of total leakage
current.

Table 7-2.  Recommended default Pull-up Resistor Values

RP Units

Standard Mode – 100 kbps 4.7 k, 5% Ω

Fast Mode – 400 kbps 1.74 k, 1% Ω

Fast Mode Plus – 1 Mbps 620, 5% Ω

RPMIN VDD max  VOL– max   IOL min  =

RPMAX TR max  0.8473 CB max =

RPMAX VDD min  VIH min – VNH min  IIH max +=
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Analog local buses (abus) are routing resources located within 
the analog subsystem and are used to route signals between 
different analog blocks. There are eight abus routes in CY8C32, 
four in the left half (abusl [0:3]) and four in the right half (abusr 
[0:3]) as shown in Figure 8-2. Using the abus saves the analog 
globals and analog mux buses from being used for 
interconnecting the analog blocks.

Multiplexers and switches exist on the various buses to direct 
signals into and out of the analog blocks. A multiplexer can have 
only one connection on at a time, whereas a switch can have 
multiple connections on simultaneously. In Figure 8-2, 
multiplexers are indicated by grayed ovals and switches are 
indicated by transparent ovals. 

8.2  Delta-sigma ADC

The CY8C32 device contains one delta-sigma ADC. This ADC 
offers differential input, high resolution and excellent linearity, 
making it a good ADC choice for measurement applications. The 
converter can be configured to output 12-bit resolution at data 
rates of up to 192 ksps. At a fixed clock rate, resolution can be 
traded for faster data rates as shown in Table 8-1 and Figure 8-3.

Figure 8-3. Delta-sigma ADC Sample Rates, Range = ±1.024 V

8.2.1  Functional Description

The ADC connects and configures three basic components,
input buffer, delta-sigma modulator, and decimator. The basic
block diagram is shown in Figure 8-4. The signal from the input
muxes is delivered to the delta-sigma modulator either directly or
through the input buffer. The delta-sigma modulator performs the
actual analog to digital conversion. The modulator over-samples
the input and generates a serial data stream output. This high

speed data stream is not useful for most applications without
some type of post processing, and so is passed to the decimator
through the Analog Interface block. The decimator converts the
high speed serial data stream into parallel ADC results. The
modulator/decimator frequency response is [(sin x)/x]4. 

Figure 8-4. Delta-sigma ADC Block Diagram

Resolution and sample rate are controlled by the Decimator.
Data is pipelined in the decimator; the output is a function of the
last four samples. When the input multiplexer is switched, the
output data is not valid until after the fourth sample after the
switch.

8.2.2  Operational Modes

The ADC can be configured by the user to operate in one of four
modes: Single Sample, Multi Sample, Continuous, or Multi
Sample (Turbo). All four modes are started by either a write to
the start bit in a control register or an assertion of the Start of
Conversion (SoC) signal. When the conversion is complete, a
status bit is set and the output signal End of Conversion (EoC)
asserts high and remains high until the value is read by either the
DMA controller or the CPU.

8.2.2.1 Single Sample

In Single Sample mode, the ADC performs one sample
conversion on a trigger. In this mode, the ADC stays in standby
state waiting for the SoC signal to be asserted. When SoC is
signaled the ADC performs four successive conversions. The
first three conversions prime the decimator. The ADC result is
valid and available after the fourth conversion, at which time the
EoC signal is generated. To detect the end of conversion, the
system may poll a control register for status or configure the
external EoC signal to generate an interrupt or invoke a DMA
request. When the transfer is done the ADC reenters the standby
state where it stays until another SoC event.

8.2.2.2 Continuous

Continuous sample mode is used to take multiple successive
samples of a single input signal. Multiplexing multiple inputs
should not be done with this mode. There is a latency of three
conversion times before the first conversion result is available.
This is the time required to prime the decimator. After the first
result, successive conversions are available at the selected
sample rate.

8.2.2.3 Multi Sample

Multi sample mode is similar to continuous mode except that the
ADC is reset between samples. This mode is useful when the
input is switched between multiple signals. The decimator is
re-primed between each sample so that previous samples do not
affect the current conversion. Upon completion of a sample, the
next sample is automatically initiated. The results can be
transferred using either firmware polling, interrupt, or DMA. 

Table 8-1.  Delta-sigma ADC Performance

Bits Maximum Sample Rate 
(sps) SINAD (dB)

12 192 k 66

8 384 k 43

Resolution, bits

100

1,000

10,000

100,000

1,000,000

7 8 9 10 11 12 13
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11.2  Device Level Specifications

Specifications are valid for –40 °C  TA  85 °C and TJ  100 °C, except where noted. Specifications are valid for 1.71 V to 5.5 V, 
except where noted.

11.2.1  Device Level Specifications 

Table 11-2.  DC Specifications

Parameter Description Conditions Min Typ[22] Max Units

VDDA
Analog supply voltage and input to analog 
core regulator Analog core regulator enabled 1.8 – 5.5 V

VDDA
Analog supply voltage, analog regulator 
bypassed Analog core regulator disabled 1.71 1.8 1.89 V

VDDD Digital supply voltage relative to VSSD Digital core regulator enabled
1.8 – VDDA

[18]

V
– – VDDA + 0.1[24]

VDDD
Digital supply voltage, digital regulator 
bypassed Digital core regulator disabled 1.71 1.8 1.89 V

VDDIO
[19] I/O supply voltage relative to VSSIO

1.71 – VDDA
[18] V

– – VDDA + 0.1[24]

VCCA
Direct analog core voltage input (Analog 
regulator bypass) Analog core regulator disabled 1.71 1.8 1.89 V

VCCD
Direct digital core voltage input (Digital 
regulator bypass) Digital core regulator disabled 1.71 1.8 1.89 V

IDD [20, 21]

Active Mode

Only IMO and CPU clock enabled. CPU 
executing simple loop from instruction 
buffer.

VDDX = 2.7 V – 5.5 V;
FCPU = 6 MHz[23]

T = –40 °C – 1.2 2.9

mA

T = 25 °C – 1.2 3.1

T = 85 °C – 4.9 7.7

IMO enabled, bus clock and CPU clock 
enabled. CPU executing program from 
flash.

VDDX = 2.7 V – 5.5 V;
FCPU = 3 MHz[23]

T = –40 °C – 1.3 2.9

T = 25 °C – 1.6 3.2

T = 85 °C – 4.8 7.5

VDDX = 2.7 V – 5.5 V;
FCPU = 6 MHz

T = –40 °C – 2.1 3.7

T = 25 °C – 2.3 3.9

T = 85 °C – 5.6 8.5

VDDX = 2.7 V – 5.5 V;
FCPU = 12 MHz[23]

T = –40 °C – 3.5 5.2

T = 25 °C – 3.8 5.5

T = 85 °C – 7.1 9.8

VDDX = 2.7 V – 5.5 V;
FCPU = 24 MHz[23]

T = –40 °C – 6.3 8.1

T = 25 °C – 6.6 8.3

T = 85 °C – 10 13

VDDX = 2.7 V – 5.5 V;
FCPU = 48 MHz[23]

T = –40 °C – 11.5 13.5

T = 25 °C – 12 14

T = 85 °C – 15.5 18.5

Notes
18. The power supplies can be brought up in any sequence however once stable VDDA must be greater than or equal to all other supplies.
19. The VDDIO supply voltage must be greater than the maximum voltage on the associated GPIO pins. Maximum voltage on GPIO pin VDDIO  VDDA.
20. Total current for all power domains: digital (IDDD), analog (IDDA), and I/Os (IDDIO0, 1, 2, 3). Boost not included. All I/Os floating.
21. The current consumption of additional peripherals that are implemented only in programmed logic blocks can be found in their respective datasheets, available in 

PSoC Creator, the integrated design environment. To estimate total current, find the CPU current at the frequency of interest and add peripheral currents for your 
particular system from the device datasheet and component datasheets.

22. VDDX = 3.3 V.
23. Based on device characterizations (Not production tested).
24. Guaranteed by design, not production tested.
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Figure 11-15. GPIO Output High Voltage and Current Figure 11-16. GPIO Output Low Voltage and Current

Table 11-10.  GPIO AC Specifications

Parameter Description Conditions Min Typ Max Units

TriseF Rise time in Fast Strong Mode[38] 3.3 V VDDIO Cload = 25 pF – – 6 ns

TfallF Fall time in Fast Strong Mode[38] 3.3 V VDDIO Cload = 25 pF – – 6 ns

TriseS Rise time in Slow Strong Mode[38] 3.3 V VDDIO Cload = 25 pF – – 60 ns

TfallS Fall time in Slow Strong Mode[38] 3.3 V VDDIO Cload = 25 pF – – 60 ns

Fgpioout

GPIO output operating frequency

2.7 V < VDDIO < 5.5 V, fast strong drive mode 90/10% VDDIO into 25 pF – – 33 MHz

1.71 V < VDDIO < 2.7 V, fast strong drive mode 90/10% VDDIO into 25 pF – – 20 MHz

3.3 V < VDDIO < 5.5 V, slow strong drive mode 90/10% VDDIO into 25 pF – – 7 MHz

1.71 V < VDDIO < 3.3 V, slow strong drive mode 90/10% VDDIO into 25 pF – – 3.5 MHz

Fgpioin
GPIO input operating frequency

1.71 V < VDDIO < 5.5 V 90/10% VDDIO – – 33 MHz

Note
38. Based on device characterization (Not production tested).
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Figure 11-20. SIO Output Rise and Fall Times, Fast Strong 
Mode, VDDIO = 3.3 V, 25 pF Load

Figure 11-21. SIO Output Rise and Fall Times, Slow Strong 
Mode, VDDIO = 3.3 V, 25 pF Load

Fsioout

SIO output operating frequency

2.7 V < VDDIO < 5.5 V, Unregu-
lated output (GPIO) mode, fast 
strong drive mode

90/10% VDDIO into 25 pF – – 33 MHz

1.71 V < VDDIO < 2.7 V, Unregu-
lated output (GPIO) mode, fast 
strong drive mode

90/10% VDDIO into 25 pF – – 16 MHz

3.3 V < VDDIO < 5.5 V, Unregu-
lated output (GPIO) mode, slow 
strong drive mode

90/10% VDDIO into 25 pF – – 5 MHz

1.71 V < VDDIO < 3.3 V, Unregu-
lated output (GPIO) mode, slow 
strong drive mode

90/10% VDDIO into 25 pF – – 4 MHz

2.7 V < VDDIO < 5.5 V, Regulated 
output mode, fast strong drive 
mode

Output continuously switching 
into 25 pF

– – 20 MHz

1.71 V < VDDIO < 2.7 V, Regulated 
output mode, fast strong drive 
mode

Output continuously switching 
into 25 pF

– – 10 MHz

1.71 V < VDDIO < 5.5 V, Regulated 
output mode, slow strong drive 
mode

Output continuously switching 
into 25 pF

– – 2.5 MHz

Fsioin
SIO input operating frequency

1.71 V < VDDIO < 5.5 V 90/10% VDDIO – – 33 MHz

Table 11-12.  SIO AC Specifications (continued)

Parameter Description Conditions Min Typ Max Units
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Figure 11-22. USBIO Output High Voltage and Current, GPIO 
Mode

Figure 11-23. USBIO Output Low Voltage and Current, GPIO 
Mode

Figure 11-24. USBIO Output Rise and Fall Times, GPIO Mode, 

Table 11-15.  USBIO AC Specifications

Parameter Description Conditions Min Typ Max Units
Tdrate Full-speed data rate average bit rate  12 – 0.25% 12 12 + 

0.25%
 MHz

Tjr1 Receiver data jitter tolerance to next 
transition

–8 – 8 ns

Tjr2 Receiver data jitter tolerance to pair 
transition

–5 – 5  ns

Tdj1 Driver differential jitter to next 
transition

–3.5 – 3.5  ns

Tdj2 Driver differential jitter to pair transition –4 – 4 ns
Tfdeop Source jitter for differential transition to 

SE0 transition
–2 – 5 ns

Tfeopt Source SE0 interval of EOP 160 – 175 ns
Tfeopr Receiver SE0 interval of EOP 82 – –  ns
Tfst Width of SE0 interval during differ-

ential transition
– – 14 ns

Fgpio_out GPIO mode output operating 
frequency

3 V  VDDD  5.5 V – – 20 MHz
VDDD = 1.71 V – – 6 MHz

Tr_gpio Rise time, GPIO mode, 10%/90% 
VDDD

VDDD > 3 V, 25 pF load – – 12 ns
VDDD = 1.71 V, 25 pF load – – 40 ns

Tf_gpio Fall time, GPIO mode, 90%/10% VDDD VDDD > 3 V, 25 pF load – – 12 ns
VDDD = 1.71 V, 25 pF load – – 40 ns
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Figure 11-32. IDAC Full Scale Error vs Temperature, Range 
= 255 µA, Source Mode

Figure 11-33. IDAC Full Scale Error vs Temperature, Range 
= 255 µA, Sink Mode

Figure 11-34. IDAC Operating Current vs Temperature, 
Range = 255 µA, Code = 0, Source Mode

Figure 11-35. IDAC Operating Current vs Temperature, 
Range = 255 µA, Code = 0, Sink Mode
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11.6.6  USB 

11.6.7  Universal Digital Blocks (UDBs)

PSoC Creator provides a library of pre-built and tested standard digital peripherals (UART, SPI, LIN, PRS, CRC, timer, counter, PWM, 
AND, OR, and so on) that are mapped to the UDB array. See the component datasheets in PSoC Creator for full AC/DC specifications, 
APIs, and example code.

Note
54. Rise/fall time matching (TR) not guaranteed, see USB Driver AC Specifications on page 83.

Table 11-43.  USB DC Specifications

Parameter Description Conditions Min Typ Max Units

VUSB_5 Device supply (VDDD) for USB 
operation

USB configured, USB regulator 
enabled

4.35 – 5.25 V

VUSB_3.3 USB configured, USB regulator 
bypassed

3.15 – 3.6 V

VUSB_3 USB configured, USB regulator 
bypassed[54]

2.85 – 3.6 V

IUSB_Configured Device supply current in device active 
mode, bus clock and IMO = 24 MHz

VDDD = 5 V, FCPU = 1.5 MHz – 10 – mA

VDDD = 3.3 V, FCPU = 1.5 MHz – 8 – mA

IUSB_Suspended Device supply current in device sleep 
mode

VDDD = 5 V, connected to USB 
host, PICU configured to wake on 
USB resume signal

– 0.5 – mA

VDDD = 5 V, disconnected from 
USB host

– 0.3 – mA

VDDD = 3.3 V, connected to USB 
host, PICU configured to wake on 
USB resume signal

– 0.5 – mA

VDDD = 3.3 V, disconnected from 
USB host

– 0.3 – mA

Table 11-44.  UDB AC Specifications

Parameter Description Conditions Min Typ Max Units

Datapath Performance

FMAX_TIMER Maximum frequency of 16-bit timer in 
a UDB pair

– – 50.01 MHz

FMAX_ADDER Maximum frequency of 16-bit adder in 
a UDB pair

– – 50.01 MHz

FMAX_CRC Maximum frequency of 16-bit 
CRC/PRS in a UDB pair

– – 50.01 MHz

PLD Performance

FMAX_PLD Maximum frequency of a two-pass 
PLD function in a UDB pair

– – 50.01 MHz

Clock to Output Performance

tCLK_OUT Propagation delay for clock in to data 
out, see Figure 11-52 on page 99.

25 °C, VDDD  2.7 V – 20 25 ns

tCLK_OUT Propagation delay for clock in to data 
out, see Figure 11-52 on page 99.

Worst-case placement, routing, 
and pin selection

– – 55 ns
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11.8  PSoC System Resources

Specifications are valid for –40 °C  TA  85 °C and TJ  100 °C, except where noted. Specifications are valid for 1.71 V to 5.5 V, 
except where noted.

11.8.1  POR with Brown Out

For brown out detect in regulated mode, VDDD and VDDA must be  2.0 V. Brown out detect is not available in externally regulated
mode.  

11.8.2  Voltage Monitors  

Table 11-57.  Precise Low-Voltage Reset (PRES) with Brown Out DC Specifications

Parameter Description Conditions Min Typ Max Units

PRESR Rising trip voltage Factory trim 1.64 – 1.68 V

PRESF Falling trip voltage 1.62 – 1.66 V

Table 11-58.  Power-on Reset (POR) with Brown Out AC Specifications

Parameter Description Conditions Min Typ Max Units

PRES_TR Response time – – 0.5 µs

VDDD/VDDA droop rate Sleep mode – 5 – V/sec

Note
64. Based on device characterization (Not production tested).

Table 11-59.  Voltage Monitors DC Specifications

Parameter Description Conditions Min Typ Max Units

LVI Trip voltage 

    LVI_A/D_SEL[3:0] = 0000b 1.68 1.73 1.77 V

    LVI_A/D_SEL[3:0] = 0001b 1.89 1.95 2.01 V

    LVI_A/D_SEL[3:0] = 0010b 2.14 2.20 2.27 V

    LVI_A/D_SEL[3:0] = 0011b 2.38 2.45 2.53 V

    LVI_A/D_SEL[3:0] = 0100b 2.62 2.71 2.79 V

    LVI_A/D_SEL[3:0] = 0101b 2.87 2.95 3.04 V

    LVI_A/D_SEL[3:0] = 0110b 3.11 3.21 3.31 V

    LVI_A/D_SEL[3:0] = 0111b 3.35 3.46 3.56 V

    LVI_A/D_SEL[3:0] = 1000b 3.59 3.70 3.81 V

    LVI_A/D_SEL[3:0] = 1001b 3.84 3.95 4.07 V

    LVI_A/D_SEL[3:0] = 1010b 4.08 4.20 4.33 V

    LVI_A/D_SEL[3:0] = 1011b 4.32 4.45 4.59 V

    LVI_A/D_SEL[3:0] = 1100b 4.56 4.70 4.84 V

    LVI_A/D_SEL[3:0] = 1101b 4.83 4.98 5.13 V

    LVI_A/D_SEL[3:0] = 1110b 5.05 5.21 5.37 V

    LVI_A/D_SEL[3:0] = 1111b 5.30 5.47 5.63 V

HVI Trip voltage 5.57 5.75 5.92 V

Table 11-60.  Voltage Monitors AC Specifications

Parameter Description Conditions Min Typ Max Units

Response time[64] – – 1 µs
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11.8.3   Interrupt Controller

11.8.4  JTAG Interface

Figure 11-57. JTAG Interface Timing

Table 11-61.  Interrupt Controller AC Specifications

Parameter Description Conditions Min Typ Max Units

Delay from interrupt signal input to ISR 
code execution from ISR code

Includes worse case completion of 
longest instruction DIV with 6 
cycles 

– – 25 Tcy CPU

Table 11-62.  JTAG Interface AC Specifications[65]

Parameter Description Conditions Min Typ Max Units

f_TCK TCK frequency 3.3 V  VDDD  5 V – – 14[66] MHz

1.71 V  VDDD < 3.3 V – – 7[66] MHz

T_TDI_setup TDI setup before TCK high (T/10) – 5 – – ns

T_TMS_setup TMS setup before TCK high T/4 – –

T_TDI_hold TDI, TMS hold after TCK high T = 1/f_TCK max T/4 – –

T_TDO_valid TCK low to TDO valid T = 1/f_TCK max – – 2T/5

T_TDO_hold TDO hold after TCK high T = 1/f_TCK max T/4 – –

TDI

TCK

T_TDI_setup

TDO

(1/f_TCK)

T_TDI_hold

T_TDO_valid T_TDO_hold

TMS

T_TMS_setup T_TMS_hold

Notes
65. Based on device characterization (Not production tested).
66. f_TCK must also be no more than 1/3 CPU clock frequency.
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11.9.4  kHz External Crystal Oscillator  

11.9.5  External Clock Reference 

11.9.6  Phase–Locked Loop  

Table 11-71.  kHzECO DC Specifications[72]

Parameter Description Conditions Min Typ Max Units

ICC Operating current Low-power mode; CL = 6 pF – 0.25 1.0 µA

DL Drive level – – 1 µW

Table 11-72.  kHzECO AC Specifications

Parameter Description Conditions Min Typ Max Units

F Frequency – 32.768 – kHz

TON Startup time High power mode – 1 – s 

Table 11-73.  External Clock Reference AC Specifications[72]

Parameter Description Conditions Min Typ Max Units

External frequency range 0 – 33 MHz

Input duty cycle range Measured at VDDIO/2 30 50 70 %

Input edge rate VIL to VIH 0.5 – – V/ns

Notes
72. Based on device characterization (Not production tested).
73. This specification is guaranteed by testing the PLL across the specified range using the IMO as the source for the PLL.
74. PLL input divider, Q, must be set so that the input frequency is divided down to the intermediate frequency range. Value for Q ranges from 1 to 16.

Table 11-74.  PLL DC Specifications

Parameter Description Conditions Min Typ Max Units

IDD PLL operating current In = 3 MHz, Out = 24 MHz – 200 – µA

Table 11-75.  PLL AC Specifications

Parameter Description Conditions Min Typ Max Units

Fpllin PLL input frequency[73] 1 – 48 MHz

PLL intermediate frequency[74] Output of prescaler 1 – 3 MHz

Fpllout PLL output frequency[73] 24 – 50 MHz

Lock time at startup – – 250 µs

Jperiod-rms Jitter (rms)[72] – – 250 ps
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Figure 13-1. 48-pin (300 mil) SSOP Package Outline

Figure 13-2. 48-pin QFN Package Outline

51-85061 *F

001-45616 *E
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16.  Document Conventions

16.1  Units of Measure

Table 16-1.  Units of Measure

Symbol Unit of Measure

°C degrees Celsius

dB decibels

fF femtofarads

Hz hertz

KB 1024 bytes

kbps kilobits per second

Khr kilohours

kHz kilohertz

k kilohms

ksps kilosamples per second

LSB least significant bit

Mbps megabits per second

MHz megahertz

M megaohms

Msps megasamples per second

µA microamperes

µF microfarads

µH microhenrys

µs microseconds

µV microvolts

µW microwatts

mA milliamperes

ms milliseconds

mV millivolts

nA nanoamperes

ns nanoseconds

nV nanovolts

 ohms

pF picofarads

ppm parts per million

ps picoseconds

s seconds

sps samples per second

sqrtHz square root of hertz

V volts

Table 16-1.  Units of Measure (continued)

Symbol Unit of Measure
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17.  Revision History

Description Title: PSoC® 3: CY8C32 Family Data Sheet Programmable System-on-Chip (PSoC®) 
Document Number: 001-56955

Revision ECN Submission 
Date

Orig. of 
Change Description of Change

** 2796903 11/04/09 MKEA New datasheet 

*A 2824546 12/09/09 MKEA Updated I2C section to reflect 1 Mbps. Updated Table 11-6 and 11- 7 (Boost AC 
and DC specs); also added Shottky Diode specs. Changed current for 
sleep/hibernate mode to include SIO; Added footnote to analog global specs.
Updated Figures 1-1, 6-2, 7-14, and 8-1. Updated Table 6-2 and Table 6-3 
(Hibernate and Sleep rows) and Power Modes section. Updated GPIO and SIO 
AC specifications. Updated Gain error in IDAC and VDAC specifications. Updated 
description of VDDA spec in Table 11-1 and removed GPIO Clamp Current 
parameter. Updated number of UDBs on page 1. 
Moved FILO from ILO DC to AC table. 
Added PCB Layout and PCB Schematic diagrams. 
Updated Fgpioout spec (Table 11-9). Added duty cycle frequency in PLL AC spec 
table. Added note for Sleep and Hibernate modes and Active Mode specs in Table 
11-2. Linked URL in Section 10.3 to PSoC Creator site. 
Updated Ja and Jc values in Table 13-1. Updated Single Sample Mode and Fast 
FIR Mode sections. Updated Input Resistance specification in Del-Sig ADC table. 
Added Tio_init parameter. Updated PGA and UGB AC Specs. Removed SPC 
ADC. Updated Boost Converter section.
Added section 'SIO as Comparator'; updated Hysteresis spec (differential mode) 
in Table 11-10. 
Updated VBAT condition and deleted Vstart parameter in Table 11-6. 
Added 'Bytes' column for Tables 4-1 to 4-5.

*B 2873322 02/04/10 MKEA Changed maximum value of PPOR_TR to '1'. Updated VBIAS specification. 
Updated PCB Schematic. Updated Figure 8-1 and Figure 6-3. Updated Interrupt 
Vector table, Updated Sales links. Updated JTAG and SWD specifications. 
Removed Jp-p and Jperiod from ECO AC Spec table. Added note on sleep timer 
in Table 11-2. Updated ILO AC and DC specifications. Added Resolution 
parameter in VDAC and IDAC tables. Updated IOUT typical and maximum values. 
Changed Temperature Sensor range to –40 °C to +85 °C. Removed Latchup 
specification from Table 11-1. Updated DAC details


