

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	22
Program Memory Size	16KB (8K x 16)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 5x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18c242-e-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.0 DEVICE OVERVIEW

This document contains device specific information for the following four devices:

- 1. PIC18C242
- 2. PIC18C252
- 3. PIC18C442
- 4. PIC18C452

These devices come in 28-pin and 40-pin packages. The 28-pin devices do not have a Parallel Slave Port (PSP) implemented and the number of Analog-to-Digital (A/D) converter input channels is reduced to 5. An overview of features is shown in Table 1-1.

The following two figures are device block diagrams sorted by pin count: 28-pin for Figure 1-1 and 40-pin for Figure 1-2. The 28-pin and 40-pin pinouts are listed in Table 1-2 and Table 1-3, respectively.

Features	PIC18C242	PIC18C252	PIC18C442	PIC18C452
Operating Frequency	DC - 40 MHz	DC - 40 MHz	DC - 40 MHz	DC - 40 MHz
Program Memory (Bytes)	16K	32K	16K	32K
Program Memory (Instructions)	8192	16384	8192	16384
Data Memory (Bytes)	512	1536	512	1536
Interrupt Sources	16	16	17	17
I/O Ports	Ports A, B, C	Ports A, B, C	Ports A, B, C, D, E	Ports A, B, C, D, E
Timers	4	4	4	4
Capture/Compare/PWM Modules	2	2	2	2
Serial Communications	MSSP,	MSSP,	MSSP,	MSSP,
	Addressable	Addressable	Addressable	Addressable
	USART	USART	USART	USART
Parallel Communications	—		PSP	PSP
10-bit Analog-to-Digital Module	5 input channels	5 input channels	8 input channels	8 input channels
RESETS (and Delays)	POR, BOR,	POR, BOR,	POR, BOR,	POR, BOR,
	RESET Instruction,	RESET Instruction,	RESET Instruction,	RESET Instruction,
	Stack Full,	Stack Full,	Stack Full,	Stack Full,
	Stack Underflow	Stack Underflow	Stack Underflow	Stack Underflow
	(PWRT, OST)	(PWRT, OST)	(PWRT, OST)	(PWRT, OST)
Programmable Low Voltage Detect	Yes	Yes	Yes	Yes
Programmable Brown-out Reset	Yes	Yes	Yes	Yes
Instruction Set	75 Instructions	75 Instructions	75 Instructions	75 Instructions
Packages	28-pin DIP	28-pin DIP	40-pin DIP	40-pin DIP
	28-pin SOIC	28-pin SOIC	44-pin PLCC	44-pin PLCC
	28-pin JW	28-pin JW	44-pin TQFP	44-pin TQFP
		1	40-pin JW	40-pin JW

TABLE 1-1: DEVICE FEATURES

NOTES:

3.1 Power-on Reset (POR)

A Power-on Reset pulse is generated on-chip when VDD rise is detected. To take advantage of the POR circuitry, just tie the MCLR pin directly (or through a resistor) to VDD. This will eliminate external RC components usually needed to create a Power-on Reset delay. A minimum rise rate for VDD is specified (parameter D004). For a slow rise time, see Figure 3-2.

When the device starts normal operation (i.e., exits the RESET condition), device operating parameters (voltage, frequency, temperature, etc.) must be met to ensure operation. If these conditions are not met, the device must be held in reset until the operating conditions are met.

FIGURE 3-2: EXTERNAL POWER-ON RESET CIRCUIT (FOR SLOW VDD POWER-UP)

ing into MCLR from external capacitor C in the event of MCLR/VPP pin breakdown, due to Electrostatic Discharge (ESD) or Electrical Overstress (EOS).

3.2 Power-up Timer (PWRT)

The Power-up Timer provides a fixed nominal time-out (parameter #33) only on power-up from the POR. The Power-up Timer operates on an internal RC oscillator. The chip is kept in reset as long as the PWRT is active. The PWRT's time delay allows VDD to rise to an acceptable level. A configuration bit is provided to enable/ disable the PWRT.

The power-up time delay will vary from chip-to-chip due to VDD, temperature and process variation. See DC parameter #33 for details.

3.3 Oscillator Start-up Timer (OST)

The Oscillator Start-up Timer (OST) provides a 1024 oscillator cycle (from OSC1 input) delay after the PWRT delay is over (parameter #32). This ensures that the crystal oscillator or resonator has started and stabilized.

The OST time-out is invoked only for XT, LP and HS modes and only on Power-on Reset or wake-up from SLEEP.

3.4 PLL Lock Time-out

With the PLL enabled, the time-out sequence following a Power-on Reset is different from other oscillator modes. A portion of the Power-up Timer is used to provide a fixed time-out that is sufficient for the PLL to lock to the main oscillator frequency. This PLL lock time-out (TPLL) is typically 2 ms and follows the oscillator startup time-out (OST).

3.5 Brown-out Reset (BOR)

A configuration bit, BOREN, can disable (if clear/ programmed), or enable (if set) the Brown-out Reset circuitry. If VDD falls below parameter D005 for greater than parameter #35, the brown-out situation will reset the chip. A RESET may not occur if VDD falls below parameter D005 for less than parameter #35. The chip will remain in Brown-out Reset until VDD rises above BVDD. The Power-up Timer will then be invoked and will keep the chip in RESET an additional time delay (parameter #33). If VDD drops below BVDD while the Power-up Timer is running, the chip will go back into a Brown-out Reset and the Power-up Timer will be initialized. Once VDD rises above BVDD, the Power-up Timer will execute the additional time delay.

3.6 Time-out Sequence

On power-up, the time-out sequence is as follows: First, PWRT time-out is invoked after the POR time delay has expired. Then, OST is activated. The total time-out will vary based on oscillator configuration and the status of the PWRT. For example, in RC mode with the PWRT disabled, there will be no time-out at all. Figure 3-3, Figure 3-4, Figure 3-5, Figure 3-6 and Figure 3-7 depict time-out sequences on power-up.

Since the time-outs occur from the POR pulse, if $\overline{\text{MCLR}}$ is kept low long enough, the time-outs will expire. Bringing $\overline{\text{MCLR}}$ high will begin execution immediately (Figure 3-5). This is useful for testing purposes or to synchronize more than one PIC18CXXX device operating in parallel.

Table 3-2 shows the RESET conditions for some Special Function Registers, while Table 3-3 shows the RESET conditions for all the registers.

FIGURE 4-1: PROGRAM MEMORY MAP AND STACK FOR PIC18C442/242

FIGURE 4-2: **PROGRAM MEMORY MAP** AND STACK FOR PIC18C452/252 PC<20:0> 21 CALL, RCALL, RETURN RETFIE, RETLW Stack Level 1 Stack Level 31 0000h **RESET** Vector High Priority Interrupt Vector 0008h Low Priority Interrupt Vector 0018h On-chip Program Memory Memory Space ⇐ User 7FFFh 8000h Read '0' 1FFFFFh 200000h

4.2 Return Address Stack

The return address stack allows any combination of up to 31 program calls and interrupts to occur. The PC (Program Counter) is pushed onto the stack when a CALL or RCALL instruction is executed, or an interrupt is acknowledged. The PC value is pulled off the stack on a RETURN, RETLW or a RETFIE instruction. PCLATU and PCLATH are not affected by any of the call or return instructions.

The stack operates as a 31-word by 21-bit RAM and a 5-bit stack pointer, with the stack pointer initialized to 00000b after all RESETS. There is no RAM associated with stack pointer 00000b. This is only a RESET value. During a CALL type instruction causing a push onto the stack, the stack pointer is first incremented and the RAM location pointed to by the stack pointer is written with the contents of the PC. During a RETURN type instruction causing a pop from the stack, the contents of the RAM location pointed to by the STKPTR is transferred to the PC and then the stack pointer is decremented.

The stack space is not part of either program or data space. The stack pointer is readable and writable, and the address on the top of the stack is readable and writable through SFR registers. Data can also be pushed to, or popped from, the stack, using the top-of-stack SFRs. Status bits indicate if the stack pointer is at, or beyond the 31 levels provided.

4.2.1 TOP-OF-STACK ACCESS

The top of the stack is readable and writable. Three register locations, TOSU, TOSH and TOSL hold the contents of the stack location pointed to by the STKPTR register. This allows users to implement a software stack, if necessary. After a CALL, RCALL or interrupt, the software can read the pushed value by reading the TOSU, TOSH and TOSL registers. These values can be placed on a user defined software stack. At return time, the software can replace the TOSU, TOSH and TOSL and do a return.

The user must disable the global interrupt enable bits during this time to prevent inadvertent stack operations.

4.2.2 RETURN STACK POINTER (STKPTR)

The STKPTR register contains the stack pointer value, the STKFUL (stack full) status bit, and the STKUNF (stack underflow) status bits. Register 4-1 shows the STKPTR register. The value of the stack pointer can be 0 through 31. The stack pointer increments when values are pushed onto the stack and decrements when values are popped off the stack. At RESET, the stack pointer value will be 0. The user may read and write the stack pointer value. This feature can be used by a Real Time Operating System for return stack maintenance.

After the PC is pushed onto the stack 31 times (without popping any values off the stack), the STKFUL bit is set. The STKFUL bit can only be cleared in software or by a POR.

The action that takes place when the stack becomes full, depends on the state of the STVREN (Stack Overflow Reset Enable) configuration bit. Refer to Section 18.0 for a description of the device configuration bits. If STVREN is set (default), the 31st push will push the (PC + 2) value onto the stack, set the STKFUL bit, and reset the device. The STKFUL bit will remain set and the stack pointer will be set to 0.

If STVREN is cleared, the STKFUL bit will be set on the 31st push and the stack pointer will increment to 31. Any additional pushes will not overwrite the 31st push and STKPTR will remain at 31.

When the stack has been popped enough times to unload the stack, the next pop will return a value of zero to the PC and sets the STKUNF bit, while the stack pointer remains at 0. The STKUNF bit will remain set until cleared in software or a POR occurs.

Note: Returning a value of zero to the PC on an underflow, has the effect of vectoring the program to the RESET vector, where the stack conditions can be verified and appropriate actions can be taken.

4.6 Instruction Flow/Pipelining

An "Instruction Cycle" consists of four Q cycles (Q1, Q2, Q3 and Q4). The instruction fetch and execute are pipelined such that fetch takes one instruction cycle, while decode and execute takes another instruction cycle. However, due to the pipelining, each instruction effectively executes in one cycle. If an instruction causes the program counter to change (e.g. GOTO), then two cycles are required to complete the instruction (Example 4-2).

A fetch cycle begins with the program counter (PC) incrementing in Q1.

In the execution cycle, the fetched instruction is latched into the "Instruction Register" (IR) in cycle Q1. This instruction is then decoded and executed during the Q2, Q3, and Q4 cycles. Data memory is read during Q2 (operand read) and written during Q4 (destination write).

EXAMPLE 4-2: INSTRUCTION PIPELINE FLOW

4.7 Instructions in Program Memory

The program memory is addressed in bytes. Instructions are stored as two bytes or four bytes in program memory. The Least Significant Byte of an instruction word is always stored in a program memory location with an even address (LSB ='0'). Figure 4-5 shows an example of how instruction words are stored in the program memory. To maintain alignment with instruction boundaries, the PC increments in steps of 2 and the LSB will always read '0' (see Section 4.4). The CALL and GOTO instructions have an absolute program memory address embedded into the instruction. Since instructions are always stored on word boundaries, the data contained in the instruction is a word address. The word address is written to PC<20:1>, which accesses the desired byte address in program memory. Instruction #2 in Figure 4-5 shows how the instruction "GOTO 00006h" is encoded in the program memory. Program branch instructions, which encode a relative address offset, operate in the same manner. The offset value stored in a branch instruction represents the number of single word instructions that the PC will be offset by. Section 19.0 provides further details of the instruction set.

FIGURE 4-5: INSTRUCTIONS IN PROGRAM MEMORY

			LSB = 1	LSB = 0	Word Address \downarrow
	Program N	lemory			000000h
	Byte Locat	ions \rightarrow			000002h
					000004h
					000006h
Instruction 1:	MOVLW	055h	0Fh	55h	000008h
Instruction 2:	GOTO	000006h	EFh	03h	00000Ah
			F0h	00h	00000Ch
Instruction 3:	MOVFF	123h, 456h	Clh	23h	00000Eh
			F4h	56h	000010h
					000012h
					000014h

FIGURE 4-7: DATA MEMORY MAP FOR PIC18C252/452

7.6 INT0 Interrupt

External interrupts on the RB0/INT0, RB1/INT1 and RB2/INT2 pins are edge triggered: either rising, if the corresponding INTEDGx bit is set in the INTCON2 register, or falling, if the INTEDGx bit is clear. When a valid edge appears on the RBx/INTx pin, the corresponding flag bit INTxF is set. This interrupt can be disabled by clearing the corresponding enable bit INTxE. Flag bit INTxF must be cleared in software in the Interrupt Service Routine before re-enabling the interrupt. All external interrupts (INT0, INT1 and INT2) can wake-up the processor from SLEEP, if bit INTxE was set prior to going into SLEEP. If the global interrupt enable bit GIE set, the processor will branch to the interrupt vector following wake-up.

Interrupt priority for INT1 and INT2 is determined by the value contained in the interrupt priority bits, INT1IP (INTCON3<6>) and INT2IP (INTCON3<7>). There is no priority bit associated with INT0. It is always a high priority interrupt source.

7.7 TMR0 Interrupt

In 8-bit mode (which is the default), an overflow (FFh \rightarrow 00h) in the TMR0 register will set flag bit TMR0IF. In 16-bit mode, an overflow (FFFFh \rightarrow 0000h) in the TMR0H:TMR0L registers will set flag bit TMR0IF. The interrupt can be enabled/disabled by setting/clearing enable bit TOIE (INTCON<5>). Interrupt priority for Timer0 is determined by the value contained in the interrupt priority bit TMR0IP (INTCON2<2>). See Section 8.0 for further details on the Timer0 module.

7.8 PORTB Interrupt-on-Change

An input change on PORTB<7:4> sets flag bit RBIF (INTCON<0>). The interrupt can be enabled/disabled by setting/clearing enable bit, RBIE (INTCON<3>). Interrupt priority for PORTB Interrupt-on-change is determined by the value contained in the interrupt priority bit, RBIP (INTCON2<0>).

7.9 Context Saving During Interrupts

During an interrupt, the return PC value is saved on the stack. Additionally, the WREG, STATUS and BSR registers are saved on the fast return stack. If a fast return from interrupt is not used (see Section 4.3), the user may need to save the WREG, STATUS and BSR registers in software. Depending on the user's application, other registers may also need to be saved. Example 7-1 saves and restores the WREG, STATUS and BSR registers during an Interrupt Service Routine.

EXAMPLE 7-1:	SAVING STATUS, WREG AND BSR REGISTERS IN RAM
--------------	--

MOVWF	W_TEMP	; W_TEMP is in virtual bank
MOVFF	STATUS, STATUS_TEMP	; STATUS_TEMP located anywhere
MOVFF	BSR, BSR_TEMP	; BSR located anywhere
;		
; USER	ISR CODE	
;		
MOVFF	BSR_TEMP, BSR	; Restore BSR
MOVF	W_TEMP, W	; Restore WREG
MOVFF	STATUS_TEMP, STATUS	; Restore STATUS

TABLE 8-1: PORTA FUNCTIONS

Name	Bit#	Buffer	Function
RA0/AN0	bit0	TTL	Input/output or analog input.
RA1/AN1	bit1	TTL	Input/output or analog input.
RA2/AN2/VREF-	bit2	TTL	Input/output or analog input or VREF
RA3/AN3/VREF+	bit3	TTL	Input/output or analog input or VREF+.
RA4/T0CKI	bit4	ST	Input/output or external clock input for Timer0. Output is open drain type.
RA5/SS/AN4/LVDIN	bit5	TTL	Input/output or slave select input for synchronous serial port or analog input, or low voltage detect input.
OSC2/CLKO/RA6	bit6	TTL	OSC2 or clock output or I/O pin.

Legend: TTL = TTL input, ST = Schmitt Trigger input

TABLE 8-2: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other RESETS
PORTA	—	RA6	RA5	RA4	RA3	RA2	RA1	RA0	0x 0000	0u 0000
LATA	—	Latch A	Data Out	out Regis	ster				xx xxxx	uu uuuu
TRISA	—	PORTA	PORTA Data Direction Register						11 1111	11 1111
ADCON1	ADFM	ADCS2		—	PCFG3	PCFG2	PCFG1	PCFG0	0- 0000	0- 0000

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTA.

 $\ensuremath{\textcircled{}^\circ}$ 1999-2013 Microchip Technology Inc.

NOTES:

15.2 USART Asynchronous Mode

In this mode, the USART uses standard non-return-tozero (NRZ) format (one START bit, eight or nine data bits and one STOP bit). The most common data format is 8-bits. An on-chip dedicated 8-bit baud rate generator can be used to derive standard baud rate frequencies from the oscillator. The USART transmits and receives the LSb first. The USART's transmitter and receiver are functionally independent, but use the same data format and baud rate. The baud rate generator produces a clock, either x16 or x64 of the bit shift rate, depending on bit BRGH (TXSTA<2>). Parity is not supported by the hardware, but can be implemented in software (and stored as the ninth data bit). Asynchronous mode is stopped during SLEEP.

Asynchronous mode is selected by clearing bit SYNC (TXSTA<4>).

The USART Asynchronous module consists of the following important elements:

- Baud Rate Generator
- Sampling Circuit
- Asynchronous Transmitter
- Asynchronous Receiver

15.2.1 USART ASYNCHRONOUS TRANSMITTER

The USART transmitter block diagram is shown in Figure 15-1. The heart of the transmitter is the transmit (serial) shift register (TSR). The shift register obtains its data from the read/write transmit buffer, TXREG. The TXREG register is loaded with data in software. The TSR register is not loaded until the STOP bit has been transmitted from the previous load. As soon as the STOP bit is transmitted, the TSR is loaded with new

data from the TXREG register (if available). Once the TXREG register transfers the data to the TSR register (occurs in one TcY), the TXREG register is empty and flag bit TXIF (PIR1<4>) is set. This interrupt can be enabled/disabled by setting/clearing enable bit, TXIE (PIE1<4>). Flag bit TXIF will be set, regardless of the state of enable bit TXIE and cannot be cleared in software. It will reset only when new data is loaded into the TXREG register. While flag bit TXIF indicated the status of the TXREG register, another bit TRMT (TXSTA<1>) shows the status of the TSR register. Status bit TRMT is a read only bit, which is set when the TSR register is empty. No interrupt logic is tied to this bit, so the user has to poll this bit in order to determine if the TSR register is empty.

Note 1: The TSR register is not mapped in data memory, so it is not available to the user.2: Flag bit TXIF is set when enable bit TXEN is set.

To set up an asynchronous transmission:

- 1. Initialize the SPBRG register for the appropriate baud rate. If a high speed baud rate is desired, set bit BRGH (Section 15.1).
- 2. Enable the asynchronous serial port by clearing bit SYNC and setting bit SPEN.
- 3. If interrupts are desired, set enable bit TXIE.
- If 9-bit transmission is desired, set transmit bit TX9. Can be used as address/data bit.
- 5. Enable the transmission by setting bit TXEN, which will also set bit TXIF.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit TX9D.
- 7. Load data to the TXREG register (starts transmission).

The value that is in the ADRESH/ADRESL registers is not modified for a Power-on Reset. The ADRESH/ ADRESL registers will contain unknown data after a Power-on Reset.

After the A/D module has been configured as desired, the selected channel must be acquired before the conversion is started. The analog input channels must have their corresponding TRIS bits selected as an input. To determine acquisition time, see Section 16.1. After this acquisition time has elapsed, the A/D conversion can be started. The following steps should be followed for doing an A/D conversion:

- 1. Configure the A/D module:
 - · Configure analog pins, voltage reference and digital I/O (ADCON1)
 - Select A/D input channel (ADCON0)
 - Select A/D conversion clock (ADCON0)
 - Turn on A/D module (ADCON0)
- 2. Configure A/D interrupt (if desired):
 - · Clear ADIF bit
 - Set ADIE bit
 - · Set GIE bit
- 3. Wait the required acquisition time.
- 4. Start conversion:
 - Set GO/DONE bit (ADCON0)
- 5. Wait for A/D conversion to complete, by either:
 - Polling for the GO/DONE bit to be cleared

OR

- Waiting for the A/D interrupt
- 6. Read A/D Result registers (ADRESH/ADRESL); clear bit ADIF if required.
- 7. For next conversion, go to step 1 or step 2, as required. The A/D conversion time per bit is defined as TAD. A minimum wait of 2TAD is required before next acquisition starts.

FIGURE 16-2: ANALOG INPUT MODEL

16.1 A/D Acquisition Requirements

For the A/D converter to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The analog input model is shown in Figure 16-2. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD). The source impedance affects the offset voltage at the analog input (due to pin leakage current). The maximum recommended impedance for analog sources is 2.5 k Ω . After the analog input channel is selected (changed), this acquisition must be done before the conversion can be started.

When the conversion is started, the hold-Note: ing capacitor is disconnected from the input pin.

19.1 Instruction Set

ADDLW ADD literal to WREG								
Synt	ax:	[label] A	[<i>label</i>] ADDLW k					
Ope	rands:	$0 \le k \le 25$	55					
Ope	ration:	(WREG) ·	+ k \rightarrow W	/REG				
Statu	us Affected:	N,OV, C,	DC, Z					
Enco	oding:	0000	1111	kkk	ck	kkkk		
Description: The contents of to the 8-bit literal placed in WREG				/REG k' and	are I the	e added result is		
Wor	ds:	1						
Cycl	es:	1	1					
QC	cycle Activity:							
	Q1	Q2	Q	3	-	Q4		
	Decode	Read literal 'k'	Proce Data	ess a	V V	/rite to VREG		
<u>Exa</u>	<u>mple</u> :	ADDLW	0x15					
	Before Instru	iction						
	WREG =	0x10						
	After Instruct	ion						
	WREG =	0x25						

ADDWF		EG to f					
Syntax:	[label] Al	[<i>label</i>] ADDWF f [,d [,a] f [,d [,a]					
Operands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$	5					
Operation:	(WREG) +	$+$ (f) \rightarrow c	lest				
Status Affected:	N,OV, C, I	DC, Z					
Encoding:	0010	01da	fff	f	ffff		
	the result is 1, the re ister 'f' (de Access Ba is 1, the B	is stored esult is s efault). If ank will SR is us	d in V stored 'a' is be se sed.	VRE I bao 0, t lect	G. If 'd' ck in reg- he ed. If 'a'		
Words:	1						
Cycles:	1						
Q Cycle Activity	:						
Q1	Q2	Q3	3		Q4		
Decode	Read register 'f'	Proce Data	ess a	V des	/rite to stination		
<u>Example</u> :	ADDWF	REG,	0, 0				
Before Instru	uction						
WREG REG After Instruc	= 0x17 = 0xC2						

WREG	=	0xD9
REG	=	0xC2

BCF	Bit Clear	f					
Syntax:	[<i>label</i>] E	BCF f,	b[,a]				
Operands:	$\begin{array}{l} 0 \leq f \leq 25 \\ 0 \leq b \leq 7 \\ a \in [0,1] \end{array}$	$\begin{array}{l} 0 \leq f \leq 255 \\ 0 \leq b \leq 7 \\ a \in [0,1] \end{array}$					
Operation:	$0 \rightarrow f < b >$	$0 \rightarrow f < b >$					
Status Affected:	ed: None						
Encoding:	1001	bbba	ffff	ffff			
Description:	Bit 'b' in register 'f' is cleared. If 'a' is 0, the Access Bank will be selected, overriding the BSR value. If 'a' = 1, then the bank will be selected as per the BSR value (default)						
Words:	1						
Cycles:	1						
Q Cycle Activity:							
Q1	Q2	Q3	3	Q4			
Decode	Read register 'f'	Proce Data	ss a reg	Write gister 'f'			
Example:	BCF	FLAG_RE	G, 7, (0			
Before Instruction FLAG_REG = 0xC7 After Instruction FLAG_REG = 0x47							

BN		Branch if	Branch if Negative					
Syntax:		[<i>label</i>] B	[<i>label</i>] BN n					
Ope	rands:	-128 ≤ n ≤	127					
Ope	ration:	if negative (PC) + 2 +	bit is '1' $2n \rightarrow PC$					
Statu	us Affected:	None						
Enco	oding:	1110	0110 nn	nn nnnn				
		program w The 2's co added to th have incre instruction PC+2+2n. a two-cycl	program will branch. The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC+2+2n. This instruction is then a two-cycle instruction.					
Word	ds:	1	1					
Cycl	es:	1(2)						
Q C If Ju	ycle Activity	:						
	Q1	Q2	Q3	Q4				
	Decode	Read literal 'n'	Process Data	Write to PC				
	No	No	No	No				
	operation	operation	operation	operation				
If No	o Jump:							
i	Q1	Q2	Q3	Q4				
	Decode	Read literal	Process	No				
		'n	Data	operation				
<u>Exar</u>	<u>mple</u> :	HERE	BN Jump					
	Before Instru	uction						

PC		=	address	(HERE)
After In	struction			
If	Negative PC	e = =	1; address	(Jump)
If	Negative PC	==	0; address	(HERE+2)

MOVFF	Move f to f				
Syntax:	[<i>label</i>] MOVFF f _s ,f _d				
Operands:	$\begin{array}{l} 0 \leq f_{S} \leq 4095 \\ 0 \leq f_{d} \leq 4095 \end{array}$				
Operation:	$(f_s) \rightarrow f_d$				
Status Affected:	None				
Encoding: 1st word (source) 2nd word (destin.)	1100 1111	ffff ffff	ffff ffff	ffff _s ffff _d	
Description:	The contents of source register ' f_s ' are moved to destination register ' f_d '. Location of source ' f_s ' can be anywhere in the 4096 byte data space (000h to FFFh), and location of destination ' f_d ' can also be any-				

where from 000h to FFFh. Either source or destination can be WREG (a useful special situation). MOVFF is particularly useful for transferring a data memory location to a peripheral register (such as the transmit buffer or an I/O port).

The MOVFF instruction cannot use the PCL, TOSU, TOSH or TOSL as the destination register.

Words:

Cycles:

Q Cycle Activity:

Q1

Q1	Q2	Q3	Q4
Decode	Read register 'f' (src)	Process Data	No operation
Decode	No operation No dummy read	No operation	Write register 'f' (dest)

Example:

MOVFF REG1, REG2

Before Instruction

REG1 REG2	= =	0x33 0x11
After Instruction		
REG1	=	0x33,
REG2	=	0x33

2

2 (3)

MO۱	/LB	Move lite	ral to lo	w nibl	ble in BSR
Synt	ax:	[label]	MOVLB	k	
Ope	rands:	$0 \le k \le 25$	5		
Ope	ration:	$k \to BSR$			
Statu	us Affected:	None			
Enco	oding:	0000	0001	kkkl	k kkkk
Description:		The 8-bit the Bank	literal 'k' Select F	is load Registe	ded into er (BSR).
Wor	ds:	1			
Cycl	es:	1			
QC	ycle Activity:	:			
	Q1	Q2	Q3		Q4
	Decode	Read literal 'k'	Proce Data	SS I	Write literal 'k' to BSR
Exar	mple:	MOVLB	5		

Before Ir	nstruction		
BSR	register	=	0x02
After Ins	truction		
BSR	register	=	0x05

21.0 ELECTRICAL CHARACTERISTICS

(±)

Absolute Maximum Ratings (1)	
Ambient temperature under bias	55°C to +125°C
Storage temperature	-65°C to +150°C
Voltage on any pin with respect to Vss (except VDD, MCLR, and RA4)	-0.3 V to (VDD + 0.3 V)
Voltage on VDD with respect to Vss	-0.3 V to +7.5 V
Voltage on MCLR with respect to Vss (Note 2)	0 V to +13.25 V
Voltage on RA4 with respect to Vss	0 V to +8.5 V
Total power dissipation (Note 1)	
Maximum current out of Vss pin	
Maximum current into VDD pin	
Input clamp current, Iık (VI < 0 or VI > VDD)	±20 mA
Output clamp current, Iok (Vo < 0 or Vo > VDD)	±20 mA
Maximum output current sunk by any I/O pin	
Maximum output current sourced by any I/O pin	
Maximum current sunk by PORTA, PORTB, and PORTE (Note 3) (combined)	
Maximum current sourced by PORTA, PORTB, and PORTE (Note 3) (combined)	
Maximum current sunk by PORTC and PORTD (Note 3) (combined)	
Maximum current sourced by PORTC and PORTD (Note 3) (combined)	
Note 1: Power dissipation is calculated as follows:	

- Pdis = VDD x {IDD \sum IOH} + \sum {(VDD-VOH) x IOH} + \sum (VOI x IOL)
- **2:** Voltage spikes below Vss at the MCLR/VPP pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50-100Ω should be used when applying a "low" level to the MCLR/VPP pin, rather than pulling this pin directly to Vss.
- **3:** PORTD and PORTE not available on the PIC18C2X2 devices.

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

TABLE 21-16: I²C BUS DATA REQUIREMENTS (SLAVE MODE)

Param. No.	Symbol	Characteristic		Min	Max	Units	Conditions
100	Тнідн	Clock high time	100 kHz mode	4.0	—	μs	PIC18CXXX must operate at a minimum of 1.5 MHz
			400 kHz mode	0.6	_	μS	PIC18CXXX must operate at a minimum of 10 MHz
			SSP Module	1.5Tcy			
101	TLOW	Clock low time	100 kHz mode	4.7	—	μs	PIC18CXXX must operate at a minimum of 1.5 MHz
			400 kHz mode	1.3	—	μs	PIC18CXXX must operate at a minimum of 10 MHz
			SSP Module	1.5Tcy			
102	TR	SDA and SCL rise	100 kHz mode	—	1000	ns	
		time	400 kHz mode	20 + 0.1Св	300	ns	CB is specified to be from 10 to 400 pF
103	TF	SDA and SCL fall time	100 kHz mode	—	300	ns	
			400 kHz mode	20 + 0.1Св	300	ns	CB is specified to be from 10 to 400 pF
90	TSU:STA	START condition	100 kHz mode	4.7	_	μs	Only relevant for Repeated
		setup time	400 kHz mode	0.6		μS	START condition
91	THD:STA	START condition hold	100 kHz mode	4.0	—	μS	After this period the first clock
		time	400 kHz mode	0.6	—	μs	pulse is generated
106	THD:DAT	Data input hold time	100 kHz mode	0		ns	
			400 kHz mode	0	0.9	μS	
107	TSU:DAT	Data input setup time	100 kHz mode	250	—	ns	(Note 2)
			400 kHz mode	100	—	ns	
92	TSU:STO	STOP condition setup	100 kHz mode	4.7	—	μs	-
		time	400 kHz mode	0.6	—	μs	
109	ΤΑΑ	Output valid from	100 kHz mode		3500	ns	(Note 1)
		CIOCK	400 kHz mode	—	—	ns	
110	TBUF	Bus free time	100 kHz mode	4.7	—	μS	Time the bus must be free before
	-		400 kHz mode	1.3	—	μS	a new transmission can start
D102	Св	Bus capacitive loading		—	400	pF	

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of START or STOP conditions.

2: A fast mode I²C bus device can be used in a standard mode I²C bus system, but the requirement Tsu:DAT ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line. TR max. + Tsu:DAT = 1000 + 250 = 1250 ns (according to the standard mode I²C bus specification) before the SCL line is

IR max. + ISU:DAT = 1000 + 250 = 1250 ns (according to the standard mode I²C bus specification) before the SCL line is released.

40-Lead Ceramic Dual In-line with Window (JW) - 600 mil (CERDIP)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		INCHES*		N	IILLIMETERS	6
Dimension	Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		40			40	
Pitch	р		.100			2.54	
Top to Seating Plane	А	.185	.205	.225	4.70	5.21	5.72
Ceramic Package Height	A2	.155	.160	.165	3.94	4.06	4.19
Standoff	A1	.030	.045	.060	0.76	1.14	1.52
Shoulder to Shoulder Width	E	.595	.600	.625	15.11	15.24	15.88
Ceramic Pkg. Width	E1	.514	.520	.526	13.06	13.21	13.36
Overall Length	D	2.040	2.050	2.060	51.82	52.07	52.32
Tip to Seating Plane	L	.135	.140	.145	3.43	3.56	3.68
Lead Thickness	С	.008	.011	.014	0.20	0.28	0.36
Upper Lead Width	B1	.050	.053	.055	1.27	1.33	1.40
Lower Lead Width	В	.016	.020	.023	0.41	0.51	0.58
Overall Row Spacing §	eB	.610	.660	.710	15.49	16.76	18.03
Window Diameter	W	.340	.350	.360	8.64	8.89	9.14

Significant Characteristic JEDEC Equivalent: MO-103 Drawing No. C04-014

44-Lead Plastic Leaded Chip Carrier (L) – Square (PLCC)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		INCHES*			MILLIMETERS		
Dimension	Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		44			44	
Pitch	р		.050			1.27	
Pins per Side	n1		11			11	
Overall Height	А	.165	.173	.180	4.19	4.39	4.57
Molded Package Thickness	A2	.145	.153	.160	3.68	3.87	4.06
Standoff §	A1	.020	.028	.035	0.51	0.71	0.89
Side 1 Chamfer Height	A3	.024	.029	.034	0.61	0.74	0.86
Corner Chamfer 1	CH1	.040	.045	.050	1.02	1.14	1.27
Corner Chamfer (others)	CH2	.000	.005	.010	0.00	0.13	0.25
Overall Width	E	.685	.690	.695	17.40	17.53	17.65
Overall Length	D	.685	.690	.695	17.40	17.53	17.65
Molded Package Width	E1	.650	.653	.656	16.51	16.59	16.66
Molded Package Length	D1	.650	.653	.656	16.51	16.59	16.66
Footprint Width	E2	.590	.620	.630	14.99	15.75	16.00
Footprint Length	D2	.590	.620	.630	14.99	15.75	16.00
Lead Thickness	С	.008	.011	.013	0.20	0.27	0.33
Upper Lead Width	B1	.026	.029	.032	0.66	0.74	0.81
Lower Lead Width	В	.013	.020	.021	0.33	0.51	0.53
Mold Draft Angle Top	α	0	5	10	0	5	10
Mold Draft Angle Bottom	β	0	5	10	0	5	10

* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side.

JEDEC Equivalent: MO-047

Drawing No. C04-048

PIC18CXX2 PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO. Device	− X /XX XX	 Examples: a) PIC18LC452 - I/P 301 = Industrial temp., PDIP package, 4 MHz, Extended VDD limits, QTP pattern #301. b) PIC18LC242, USO = Industrial temp.
Device	PIC18CXX2 ⁽¹⁾ , PIC18CXX2T ⁽²⁾ ; VDD range 4.2V to 5.5V PIC18LCXX2 ⁽¹⁾ , PIC18LCXX2T ⁽²⁾ ; VDD range 2.5V to 5.5V	 b) FICTOLC242 - 1/30 = Industrial temp., SOIC package, Extended VDD limits. c) PIC18C442 - E/P = Extended temp., PDIP package, 40MHz, normal VDD limits.
Temperature Range	$I = -40^{\circ}C \text{ to } +85^{\circ}C (Industrial)$ $E = -40^{\circ}C \text{ to } +125^{\circ}C (Extended)$	
Package	JW = Windowed CERDIP ⁽³⁾ PT = TQFP (Thin Quad Flatpack) SO = SOIC SP = Skinny plastic dip P = PDIP L = PLCC	 Note 1: C = Standard Voltage range LC = Wide Voltage Range 2: T = in tape and reel - SOIC, PLCC, and TQFP packages only. 3: JW Devices are UV erasable and can be programmed to any device configu-
Pattern	QTP, SQTP, Code or Special Requirements (blank otherwise)	ration. JW Devices meet the electrical requirement of each oscillator type (including LC devices).

Sales and Support

Data Sheets

Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

- 1. Your local Microchip sales office
- 2. The Microchip Worldwide Site (www.microchip.com)