



#### Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Obsolete                                                               |
|----------------------------|------------------------------------------------------------------------|
| Core Processor             | PIC                                                                    |
| Core Size                  | 8-Bit                                                                  |
| Speed                      | 40MHz                                                                  |
| Connectivity               | I²C, SPI, UART/USART                                                   |
| Peripherals                | Brown-out Detect/Reset, LVD, POR, PWM, WDT                             |
| Number of I/O              | 22                                                                     |
| Program Memory Size        | 16KB (8K x 16)                                                         |
| Program Memory Type        | EPROM, UV                                                              |
| EEPROM Size                | -                                                                      |
| RAM Size                   | 512 x 8                                                                |
| Voltage - Supply (Vcc/Vdd) | 4.2V ~ 5.5V                                                            |
| Data Converters            | A/D 5x10b                                                              |
| Oscillator Type            | External                                                               |
| Operating Temperature      | 0°C ~ 70°C (TA)                                                        |
| Mounting Type              | Through Hole                                                           |
| Package / Case             | 28-CDIP (0.300", 7.62mm) Window                                        |
| Supplier Device Package    | 28-CerDip                                                              |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic18c242-jw |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

| Register | Ар  | olicabl | e Devi | ces | Power-on Reset,<br>Brown-out Reset | MCLR Resets<br>WDT Reset<br>RESET Instruction<br>Stack Resets | Wake-up via WDT<br>or Interrupt |  |
|----------|-----|---------|--------|-----|------------------------------------|---------------------------------------------------------------|---------------------------------|--|
| TOSU     | 242 | 442     | 252    | 452 | 0 0000                             | 0 0000                                                        | 0 uuuu <b>(3)</b>               |  |
| TOSH     | 242 | 442     | 252    | 452 | 0000 0000                          | 0000 0000                                                     | uuuu uuuu <b>(3)</b>            |  |
| TOSL     | 242 | 442     | 252    | 452 | 0000 0000                          | 0000 0000                                                     | uuuu uuuu <b>(3)</b>            |  |
| STKPTR   | 242 | 442     | 252    | 452 | 00-0 0000                          | 00-0 0000                                                     | uu-u uuuu <b>(3)</b>            |  |
| PCLATU   | 242 | 442     | 252    | 452 | 0 0000                             | 0 0000                                                        | u uuuu                          |  |
| PCLATH   | 242 | 442     | 252    | 452 | 0000 0000                          | 0000 0000                                                     | uuuu uuuu                       |  |
| PCL      | 242 | 442     | 252    | 452 | 0000 0000                          | 0000 0000                                                     | PC + 2 <sup>(2)</sup>           |  |
| TBLPTRU  | 242 | 442     | 252    | 452 | 00 0000                            | 00 0000                                                       | uu uuuu                         |  |
| TBLPTRH  | 242 | 442     | 252    | 452 | 0000 0000                          | 0000 0000                                                     | uuuu uuuu                       |  |
| TBLPTRL  | 242 | 442     | 252    | 452 | 0000 0000                          | 0000 0000                                                     | uuuu uuuu                       |  |
| TABLAT   | 242 | 442     | 252    | 452 | 0000 0000                          | 0000 0000                                                     | uuuu uuuu                       |  |
| PRODH    | 242 | 442     | 252    | 452 | xxxx xxxx                          | սսսս սսսս                                                     | սսսս սսսս                       |  |
| PRODL    | 242 | 442     | 252    | 452 | xxxx xxxx                          | սսսս սսսս                                                     | սսսս սսսս                       |  |
| INTCON   | 242 | 442     | 252    | 452 | 0000 000x                          | 0000 000u                                                     | uuuu uuuu <b>(1)</b>            |  |
| INTCON2  | 242 | 442     | 252    | 452 | 1111 -1-1                          | 1111 -1-1                                                     | uuuu -u-u <sup>(1)</sup>        |  |
| INTCON3  | 242 | 442     | 252    | 452 | 11-0 0-00                          | 11-0 0-00                                                     | uu-u u-uu <sup>(1)</sup>        |  |
| INDF0    | 242 | 442     | 252    | 452 | N/A                                | N/A                                                           | N/A                             |  |
| POSTINC0 | 242 | 442     | 252    | 452 | N/A                                | N/A                                                           | N/A                             |  |
| POSTDEC0 | 242 | 442     | 252    | 452 | N/A                                | N/A                                                           | N/A                             |  |
| PREINC0  | 242 | 442     | 252    | 452 | N/A                                | N/A                                                           | N/A                             |  |
| PLUSW0   | 242 | 442     | 252    | 452 | N/A                                | N/A                                                           | N/A                             |  |
| FSR0H    | 242 | 442     | 252    | 452 | 0000                               | 0000                                                          | uuuu                            |  |
| FSR0L    | 242 | 442     | 252    | 452 | xxxx xxxx                          | uuuu uuuu                                                     | սսսս սսսս                       |  |
| WREG     | 242 | 442     | 252    | 452 | xxxx xxxx                          | uuuu uuuu                                                     | սսսս սսսս                       |  |
| INDF1    | 242 | 442     | 252    | 452 | N/A                                | N/A                                                           | N/A                             |  |
| POSTINC1 | 242 | 442     | 252    | 452 | N/A                                | N/A                                                           | N/A                             |  |
| POSTDEC1 | 242 | 442     | 252    | 452 | N/A                                | N/A                                                           | N/A                             |  |
| PREINC1  | 242 | 442     | 252    | 452 | N/A                                | N/A                                                           | N/A                             |  |
| PLUSW1   | 242 | 442     | 252    | 452 | N/A                                | N/A                                                           | N/A                             |  |

### TABLE 3-3: INITIALIZATION CONDITIONS FOR ALL REGISTERS

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition

Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).

**3:** When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.

4: See Table 3-2 for RESET value for specific condition.

- 5: Bit 6 of PORTA, LATA, and TRISA are enabled in ECIO and RCIO oscillator modes only. In all other oscillator modes, they are disabled and read '0'.
- 6: The long write enable is only reset on a POR or MCLR Reset.
- 7: Bit 6 of PORTA, LATA and TRISA are not available on all devices. When unimplemented, they are read as '0'.

| Register                | Applicable Devices |     |     | ces | Power-on Reset,<br>Brown-out Reset | MCLR Resets<br>WDT Reset<br>RESET Instruction<br>Stack Resets | Wake-up via WDT<br>or Interrupt |
|-------------------------|--------------------|-----|-----|-----|------------------------------------|---------------------------------------------------------------|---------------------------------|
| TRISE                   | 242                | 442 | 252 | 452 | 0000 -111                          | 0000 -111                                                     | uuuu -uuu                       |
| TRISD                   | 242                | 442 | 252 | 452 | 1111 1111                          | 1111 1111                                                     | սսսս սսսս                       |
| TRISC                   | 242                | 442 | 252 | 452 | 1111 1111                          | 1111 1111                                                     | uuuu uuuu                       |
| TRISB                   | 242                | 442 | 252 | 452 | 1111 1111                          | 1111 1111                                                     | uuuu uuuu                       |
| TRISA <sup>(5, 7)</sup> | 242                | 442 | 252 | 452 | -111 1111 <b>(5)</b>               | -111 1111 <b>(5)</b>                                          | -uuu uuuu <b>(5)</b>            |
| LATE                    | 242                | 442 | 252 | 452 | xxx                                | uuu                                                           | uuu                             |
| LATD                    | 242                | 442 | 252 | 452 | xxxx xxxx                          | սսսս սսսս                                                     | սսսս սսսս                       |
| LATC                    | 242                | 442 | 252 | 452 | xxxx xxxx                          | uuuu uuuu                                                     | uuuu uuuu                       |
| LATB                    | 242                | 442 | 252 | 452 | xxxx xxxx                          | սսսս սսսս                                                     | uuuu uuuu                       |
| LATA <sup>(5, 7)</sup>  | 242                | 442 | 252 | 452 | -xxx xxxx(5)                       | -uuu uuuu <b>(5)</b>                                          | -uuu uuuu <b>(5)</b>            |
| PORTE                   | 242                | 442 | 252 | 452 | 000                                | 000                                                           | uuu                             |
| PORTD                   | 242                | 442 | 252 | 452 | xxxx xxxx                          | սսսս սսսս                                                     | uuuu uuuu                       |
| PORTC                   | 242                | 442 | 252 | 452 | xxxx xxxx                          | นนนน นนนน                                                     | นนนน นนนน                       |
| PORTB                   | 242                | 442 | 252 | 452 | xxxx xxxx                          | uuuu uuuu                                                     | uuuu uuuu                       |
| PORTA <sup>(5, 7)</sup> | 242                | 442 | 252 | 452 | -x0x 0000 <b>(5)</b>               | -u0u 0000 <b>(5)</b>                                          | -uuu uuuu <b>(5)</b>            |

 TABLE 3-3:
 INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition

Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).

**3:** When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.

4: See Table 3-2 for RESET value for specific condition.

5: Bit 6 of PORTA, LATA, and TRISA are enabled in ECIO and RCIO oscillator modes only. In all other oscillator modes, they are disabled and read '0'.

**6:** The long write enable is only reset on a POR or  $\overline{MCLR}$  Reset.

7: Bit 6 of PORTA, LATA and TRISA are not available on all devices. When unimplemented, they are read as '0'.

# 4.0 MEMORY ORGANIZATION

There are two memory blocks in Enhanced MCU devices. These memory blocks are:

- Program Memory
- Data Memory

Program and data memory use separate buses so that concurrent access can occur.

# 4.1 Program Memory Organization

A 21-bit program counter is capable of addressing the 2-Mbyte program memory space. Accessing a location between the physically implemented memory and the 2-Mbyte address will cause a read of all '0's (a NOP instruction).

PIC18C252 and PIC18C452 have 32 Kbytes of EPROM, while PIC18C242 and PIC18C442 have 16 Kbytes of EPROM. This means that PIC18CX52 devices can store up to 16K of single word instructions, and PIC18CX42 devices can store up to 8K of single word instructions.

The RESET vector address is at 0000h and the interrupt vector addresses are at 0008h and 0018h.

Figure 4-1 shows the Program Memory Map for PIC18C242/442 devices and Figure 4-2 shows the Program Memory Map for PIC18C252/452 devices.

# 4.2 Return Address Stack

The return address stack allows any combination of up to 31 program calls and interrupts to occur. The PC (Program Counter) is pushed onto the stack when a CALL or RCALL instruction is executed, or an interrupt is acknowledged. The PC value is pulled off the stack on a RETURN, RETLW or a RETFIE instruction. PCLATU and PCLATH are not affected by any of the call or return instructions.

The stack operates as a 31-word by 21-bit RAM and a 5-bit stack pointer, with the stack pointer initialized to 00000b after all RESETS. There is no RAM associated with stack pointer 00000b. This is only a RESET value. During a CALL type instruction causing a push onto the stack, the stack pointer is first incremented and the RAM location pointed to by the stack pointer is written with the contents of the PC. During a RETURN type instruction causing a pop from the stack, the contents of the RAM location pointed to by the STKPTR is transferred to the PC and then the stack pointer is decremented.

The stack space is not part of either program or data space. The stack pointer is readable and writable, and the address on the top of the stack is readable and writable through SFR registers. Data can also be pushed to, or popped from, the stack, using the top-of-stack SFRs. Status bits indicate if the stack pointer is at, or beyond the 31 levels provided.

## 4.2.1 TOP-OF-STACK ACCESS

The top of the stack is readable and writable. Three register locations, TOSU, TOSH and TOSL hold the contents of the stack location pointed to by the STKPTR register. This allows users to implement a software stack, if necessary. After a CALL, RCALL or interrupt, the software can read the pushed value by reading the TOSU, TOSH and TOSL registers. These values can be placed on a user defined software stack. At return time, the software can replace the TOSU, TOSH and TOSL and do a return.

The user must disable the global interrupt enable bits during this time to prevent inadvertent stack operations.

# 4.2.2 RETURN STACK POINTER (STKPTR)

The STKPTR register contains the stack pointer value, the STKFUL (stack full) status bit, and the STKUNF (stack underflow) status bits. Register 4-1 shows the STKPTR register. The value of the stack pointer can be 0 through 31. The stack pointer increments when values are pushed onto the stack and decrements when values are popped off the stack. At RESET, the stack pointer value will be 0. The user may read and write the stack pointer value. This feature can be used by a Real Time Operating System for return stack maintenance.

After the PC is pushed onto the stack 31 times (without popping any values off the stack), the STKFUL bit is set. The STKFUL bit can only be cleared in software or by a POR.

The action that takes place when the stack becomes full, depends on the state of the STVREN (Stack Overflow Reset Enable) configuration bit. Refer to Section 18.0 for a description of the device configuration bits. If STVREN is set (default), the 31st push will push the (PC + 2) value onto the stack, set the STKFUL bit, and reset the device. The STKFUL bit will remain set and the stack pointer will be set to 0.

If STVREN is cleared, the STKFUL bit will be set on the 31st push and the stack pointer will increment to 31. Any additional pushes will not overwrite the 31st push and STKPTR will remain at 31.

When the stack has been popped enough times to unload the stack, the next pop will return a value of zero to the PC and sets the STKUNF bit, while the stack pointer remains at 0. The STKUNF bit will remain set until cleared in software or a POR occurs.

**Note:** Returning a value of zero to the PC on an underflow, has the effect of vectoring the program to the RESET vector, where the stack conditions can be verified and appropriate actions can be taken.



#### FIGURE 4-7: DATA MEMORY MAP FOR PIC18C252/452

# REGISTER 7-7: PERIPHERAL INTERRUPT ENABLE REGISTER 2 (PIE2)

|         | U-0                                                                                                           | U-0         | U-0          | U-0         | R/W-0       | R/W-0     | R/W-0        | R/W-0  |  |  |  |  |  |
|---------|---------------------------------------------------------------------------------------------------------------|-------------|--------------|-------------|-------------|-----------|--------------|--------|--|--|--|--|--|
|         | _                                                                                                             | _           | —            | —           | BCLIE       | LVDIE     | TMR3IE       | CCP2IE |  |  |  |  |  |
|         | bit 7                                                                                                         |             |              |             |             |           |              | bit 0  |  |  |  |  |  |
|         |                                                                                                               |             |              |             |             |           |              |        |  |  |  |  |  |
| bit 7-4 | Unimplem                                                                                                      | ented: Rea  | d as '0'     |             |             |           |              |        |  |  |  |  |  |
| bit 3   | it 3 BCLIE: Bus Collision Interrupt Enable bit                                                                |             |              |             |             |           |              |        |  |  |  |  |  |
|         | 1 = Enabled<br>0 = Disabled                                                                                   |             |              |             |             |           |              |        |  |  |  |  |  |
| bit 2   | LVDIE: Low Voltage Detect Interrupt Enable bit                                                                |             |              |             |             |           |              |        |  |  |  |  |  |
|         | 1 = Enabled                                                                                                   |             |              |             |             |           |              |        |  |  |  |  |  |
|         | 0 = Disable                                                                                                   | ed          |              |             |             |           |              |        |  |  |  |  |  |
| bit 1   | TMR3IE: T                                                                                                     | MR3 Overflo | ow Interrupt | Enable bit  |             |           |              |        |  |  |  |  |  |
|         | <ul> <li>1 = Enables the TMR3 overflow interrupt</li> <li>0 = Disables the TMR3 overflow interrupt</li> </ul> |             |              |             |             |           |              |        |  |  |  |  |  |
| bit 0   | CCP2IE: C                                                                                                     | CP2 Interru | pt Enable bi | t           |             |           |              |        |  |  |  |  |  |
|         | 1 = Enables                                                                                                   | s the CCP2  | interrupt    |             |             |           |              |        |  |  |  |  |  |
|         | 0 = Disable                                                                                                   | s the CCP2  | interrupt    |             |             |           |              |        |  |  |  |  |  |
|         | Legend:                                                                                                       |             |              |             |             |           |              |        |  |  |  |  |  |
|         | R = Readal                                                                                                    | ble bit     | W = W        | ritable bit | U = Unim    | plemented | bit, read as | ʻ0'    |  |  |  |  |  |
|         | - n = Value                                                                                                   | at POR      | '1' = Bi     | it is set   | '0' = Bit i | s cleared | x = Bit is u | nknown |  |  |  |  |  |

## 14.3.4 MASTER MODE

The master can initiate the data transfer at any time because it controls the SCK. The master determines when the slave (Processor 2, Figure 14-2) is to broad-cast data by the software protocol.

In Master mode, the data is transmitted/received as soon as the SSPBUF register is written to. If the SPI is only going to receive, the SDO output could be disabled (programmed as an input). The SSPSR register will continue to shift in the signal present on the SDI pin at the programmed clock rate. As each byte is received, it will be loaded into the SSPBUF register as if a normal received byte (interrupts and status bits appropriately set). This could be useful in receiver applications as a "Line Activity Monitor" mode.

The clock polarity is selected by appropriately programming the CKP bit (SSPCON1<4>). This then, would give waveforms for SPI communication as shown in Figure 14-3, Figure 14-5, and Figure 14-6, where the MSB is transmitted first. In Master mode, the SPI clock rate (bit rate) is user programmable to be one of the following:

- Fosc/4 (or Tcy)
- Fosc/16 (or 4 Tcy)
- Fosc/64 (or 16 Tcy)
- Timer2 output/2

This allows a maximum data rate (at 40 MHz) of 10.00 Mbps.

Figure 14-3 shows the waveforms for Master mode. When the CKE bit is set, the SDO data is valid before there is a clock edge on SCK. The change of the input sample is shown based on the state of the SMP bit. The time when the SSPBUF is loaded with the received data is shown.







# FIGURE 15-3: ASYNCHRONOUS TRANSMISSION (BACK TO BACK)



# TABLE 15-6: REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION

| Name   | Bit 7                | Bit 6         | Bit 5      | Bit 4  | Bit 3 | Bit 2  | Bit 1  | Bit 0  | Value on<br>POR,<br>BOR |    | alue on Value on POR, all other BOR RESETS |      |
|--------|----------------------|---------------|------------|--------|-------|--------|--------|--------|-------------------------|----|--------------------------------------------|------|
| INTCON | GIE/GIEH             | PEIE/<br>GIEL | TMR0IE     | INT0IE | RBIE  | TMR0IF | INTOIF | RBIF   | 0000 000                | x  | 0000                                       | 000u |
| PIR1   | PSPIF <sup>(1)</sup> | ADIF          | RCIF       | TXIF   | SSPIF | CCP1IF | TMR2IF | TMR1IF | 0000 000                | 00 | 0000                                       | 0000 |
| PIE1   | PSPIE <sup>(1)</sup> | ADIE          | RCIE       | TXIE   | SSPIE | CCP1IE | TMR2IE | TMR1IE | 0000 000                | 00 | 0000                                       | 0000 |
| IPR1   | PSPIP <sup>(1)</sup> | ADIP          | RCIP       | TXIP   | SSPIP | CCP1IP | TMR2IP | TMR1IP | 0000 000                | 00 | 0000                                       | 0000 |
| RCSTA  | SPEN                 | RX9           | SREN       | CREN   | ADDEN | FERR   | OERR   | RX9D   | 0000 -00                | )x | 0000                                       | -00x |
| TXREG  | USART Tra            | insmit Re     | egister    |        |       |        |        |        | 0000 000                | 00 | 0000                                       | 0000 |
| TXSTA  | CSRC                 | TX9           | TXEN       | SYNC   | _     | BRGH   | TRMT   | TX9D   | 0000 -01                | 0  | 0000                                       | -010 |
| SPBRG  | Baud Rate            | Generato      | or Registe | r      |       |        |        |        | 0000 000                | 00 | 0000                                       | 0000 |

Legend: x = unknown, - = unimplemented locations read as '0'.

Shaded cells are not used for Asynchronous Transmission.

**Note 1:** The PSPIF, PSPIE and PSPIP bits are reserved on the PIC18C2X2 devices. Always maintain these bits clear.



## FIGURE 15-5: ASYNCHRONOUS RECEPTION

### TABLE 15-7: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION

| Name   | Bit 7                | Bit 6         | Bit 5  | Bit 4   | Bit 3 | Bit 2  | Bit 1  | Bit 0  | Value on<br>POR,<br>BOR |    | Value on Value on POR, all other BOR RESETS |      |
|--------|----------------------|---------------|--------|---------|-------|--------|--------|--------|-------------------------|----|---------------------------------------------|------|
| INTCON | GIE/GIEH             | PEIE/<br>GIEL | TMR0IE | INTOIE  | RBIE  | TMR0IF | INTOIF | RBIF   | 0000 00                 | 0x | 0000                                        | 000u |
| PIR1   | PSPIF <sup>(1)</sup> | ADIF          | RCIF   | TXIF    | SSPIF | CCP1IF | TMR2IF | TMR1IF | 0000 00                 | 00 | 0000                                        | 0000 |
| PIE1   | PSPIE <sup>(1)</sup> | ADIE          | RCIE   | TXIE    | SSPIE | CCP1IE | TMR2IE | TMR1IE | 0000 00                 | 00 | 0000                                        | 0000 |
| IPR1   | PSPIP <sup>(1)</sup> | ADIP          | RCIP   | TXIP    | SSPIP | CCP1IP | TMR2IP | TMR1IP | 0000 00                 | 00 | 0000                                        | 0000 |
| RCSTA  | SPEN                 | RX9           | SREN   | CREN    | ADDEN | FERR   | OERR   | RX9D   | 0000 -0                 | 0x | 0000                                        | -00x |
| RCREG  | USART Re             | eceive Re     | gister |         |       |        |        |        | 0000 00                 | 00 | 0000                                        | 0000 |
| TXSTA  | CSRC                 | TX9           | TXEN   | SYNC    |       | BRGH   | TRMT   | TX9D   | 0000 -0                 | 10 | 0000                                        | -010 |
| SPBRG  | Baud Rate            | Generate      |        | 0000 00 | 00    | 0000   | 0000   |        |                         |    |                                             |      |

Legend: x = unknown, - = unimplemented locations read as '0'.

Shaded cells are not used for Asynchronous Reception.

Note 1: The PSPIF, PSPIE and PSPIP bits are reserved on the PIC18C2X2 devices. Always maintain these bits clear.

# 16.0 COMPATIBLE 10-BIT ANALOG-TO-DIGITAL CONVERTER (A/D) MODULE

The analog-to-digital (A/D) converter module has five inputs for the PIC18C2x2 devices and eight for the PIC18C4x2 devices. This module has the ADCON0 and ADCON1 register definitions that are compatible with the mid-range A/D module.

The A/D allows conversion of an analog input signal to a corresponding 10-bit digital number.

#### REGISTER 16-1: ADCON0 REGISTER

The A/D module has four registers. These registers are:

- A/D Result High Register (ADRESH)
- A/D Result Low Register (ADRESL)
- A/D Control Register 0 (ADCON0)
- A/D Control Register 1 (ADCON1)

The ADCON0 register, shown in Register 16-1, controls the operation of the A/D module. The ADCON1 register, shown in Register 16-2, configures the functions of the port pins.

| R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0   | U-0 | R/W-0 |
|-------|-------|-------|-------|-------|---------|-----|-------|
| ADCS1 | ADCS0 | CHS2  | CHS1  | CHS0  | GO/DONE | —   | ADON  |
| bit 7 |       |       |       |       |         |     | bit 0 |

#### bit 7-6 ADCS1:ADCS0: A/D Conversion Clock Select bits (ADCON0 bits in **bold**)

| ADCON1<br><adcs2></adcs2> | ADCON0<br><adcs1:adcs0></adcs1:adcs0> | Clock Conversion                                        |
|---------------------------|---------------------------------------|---------------------------------------------------------|
| 0                         | 00                                    | Fosc/2                                                  |
| 0                         | 01                                    | Fosc/8                                                  |
| 0                         | 10                                    | Fosc/32                                                 |
| 0                         | 11                                    | FRC (clock derived from the internal A/D RC oscillator) |
| 1                         | 00                                    | Fosc/4                                                  |
| 1                         | 01                                    | Fosc/16                                                 |
| 1                         | 10                                    | Fosc/64                                                 |
| 1                         | 11                                    | FRC (clock derived from the internal A/D RC oscillator) |

bit 5-3 CHS2:CHS0: Analog Channel Select bits

- 000 = channel 0 (AN0)
- 001 = channel 1 (AN1)
- 010 = channel 2 (AN2)
- 011 = channel 3 (AN3)
- 100 = channel 4 (AN4)
- 101 = channel 5 (AN5)
- 110 = channel 6 (AN6)
- 111 = channel 7 (AN7)
- **Note:** The PIC18C2X2 devices do not implement the full 8 A/D channels; the unimplemented selections are reserved. Do not select any unimplemented channel.

bit 2 GO/DONE: A/D Conversion Status bit

When ADON = 1:

- 1 = A/D conversion in progress (setting this bit starts the A/D conversion which is automatically cleared by hardware when the A/D conversion is complete)
- 0 = A/D conversion not in progress

bit 1 Unimplemented: Read as '0'

bit 0 ADON: A/D On bit

1 = A/D converter module is powered up

0 = A/D converter module is shut-off and consumes no operating current

| Legend:                  |                  |                       |                    |
|--------------------------|------------------|-----------------------|--------------------|
| R = Readable bit         | W = Writable bit | U = Unimplemented bit | , read as '0'      |
| - n = Value at POR reset | '1' = Bit is set | '0' = Bit is cleared  | x = Bit is unknown |

The value that is in the ADRESH/ADRESL registers is not modified for a Power-on Reset. The ADRESH/ ADRESL registers will contain unknown data after a Power-on Reset.

After the A/D module has been configured as desired, the selected channel must be acquired before the conversion is started. The analog input channels must have their corresponding TRIS bits selected as an input. To determine acquisition time, see Section 16.1. After this acquisition time has elapsed, the A/D conversion can be started. The following steps should be followed for doing an A/D conversion:

- 1. Configure the A/D module:
  - · Configure analog pins, voltage reference and digital I/O (ADCON1)
  - Select A/D input channel (ADCON0)
  - Select A/D conversion clock (ADCON0)
  - Turn on A/D module (ADCON0)
- 2. Configure A/D interrupt (if desired):
  - · Clear ADIF bit
  - Set ADIE bit
  - · Set GIE bit
- 3. Wait the required acquisition time.
- 4. Start conversion:
  - Set GO/DONE bit (ADCON0)
- 5. Wait for A/D conversion to complete, by either:
  - Polling for the GO/DONE bit to be cleared

OR

- Waiting for the A/D interrupt
- 6. Read A/D Result registers (ADRESH/ADRESL); clear bit ADIF if required.
- 7. For next conversion, go to step 1 or step 2, as required. The A/D conversion time per bit is defined as TAD. A minimum wait of 2TAD is required before next acquisition starts.



#### **FIGURE 16-2:** ANALOG INPUT MODEL

#### 16.1 A/D Acquisition Requirements

For the A/D converter to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The analog input model is shown in Figure 16-2. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD). The source impedance affects the offset voltage at the analog input (due to pin leakage current). The maximum recommended impedance for analog sources is 2.5 k $\Omega$ . After the analog input channel is selected (changed), this acquisition must be done before the conversion can be started.

When the conversion is started, the hold-Note: ing capacitor is disconnected from the input pin.

To calculate the minimum acquisition time, Equation 16-1 may be used. This equation assumes that 1/2 LSb error is used (1024 steps for the A/D). The 1/2 LSb error is the maximum error allowed for the A/D to meet its specified resolution.

### EQUATION 16-1: ACQUISITION TIME

| TACQ | = | Amplifier Settling Time + Holding Capacitor Charging Time + Temperature Coefficient |
|------|---|-------------------------------------------------------------------------------------|
|      | = | TAMP + TC + TCOFF                                                                   |

## EQUATION 16-2: A/D MINIMUM CHARGING TIME

```
VHOLD = (VREF - (VREF/2048)) \cdot (1 - e^{(-Tc/CHOLD(RIC + RSS + RS))})
or
TC = -(120 \text{ pF})(1 \text{ k}\Omega + \text{Rss} + \text{Rs}) \ln(1/2047)
```

Example 16-1 shows the calculation of the minimum required acquisition time TACQ. This calculation is based on the following application system assumptions:

| • | CHOLD            | =      | 120 pF  |
|---|------------------|--------|---------|
| • | Rs               | =      | 2.5 kΩ  |
| • | Conversion Error | $\leq$ | 1/2 LSb |
|   |                  |        |         |

- VDD =  $5V \rightarrow Rss = 7 k\Omega$
- Temperature = 50°C (system max.)
- VHOLD = 0V @ time = 0

## EXAMPLE 16-1: CALCULATING THE MINIMUM REQUIRED ACQUISITION TIME

 $\begin{array}{rcl} {\rm TACQ} &=& {\rm TAMP} + {\rm TC} + {\rm TCOFF} \\ \\ {\rm Temperature \ coefficient \ is \ only \ required \ for \ temperatures > 25^{\circ}{\rm C}. \\ \\ {\rm TACQ} &=& 2\ \mu{\rm s} + {\rm Tc} + [({\rm Temp} - 25^{\circ}{\rm C})(0.05\ \mu{\rm s}/^{\circ}{\rm C})] \\ \\ {\rm TC} &=& -{\rm CHOLD}\ ({\rm RIC} + {\rm RSS} + {\rm RS})\ \ln(1/2047) \\ &\quad -120\ {\rm pF}\ (1\ k\Omega + 7\ k\Omega + 2.5\ k\Omega)\ \ln(0.0004885) \\ &\quad -120\ {\rm pF}\ (10.5\ k\Omega)\ \ln(0.0004885) \\ &\quad -1.26\ \mu{\rm s}\ (-7.6241) \\ &\quad 9.61\ \mu{\rm s} \\ \end{array}$ 

| Name   | Bit 7                | Bit 6         | Bit 5        | Bit 4       | Bit 3 | Bit 2       | Bit 1         | Bit 0  | Value on<br>POR, BOR | Value on all<br>other<br>RESETS |
|--------|----------------------|---------------|--------------|-------------|-------|-------------|---------------|--------|----------------------|---------------------------------|
| INTCON | GIE/<br>GIEH         | PEIE/<br>GIEL | TMR0IE       | INTOIE      | RBIE  | TMR0IF      | INT0IF        | RBIF   | 0000 000x            | 0000 000u                       |
| PIR1   | PSPIF <sup>(1)</sup> | ADIF          | RCIF         | TXIF        | SSPIF | CCP1IF      | TMR2IF        | TMR1IF | 0000 0000            | 0000 0000                       |
| PIE1   | PSPIE <sup>(1)</sup> | ADIE          | RCIE         | TXIE        | SSPIE | CCP1IE      | TMR2IE        | TMR1IE | 0000 0000            | 0000 0000                       |
| IPR1   | PSPIP <sup>(1)</sup> | ADIP          | RCIP         | TXIP        | SSPIP | CCP1IP      | TMR2IP        | TMR1IP | 0000 0000            | 0000 0000                       |
| PIR2   | _                    | —             | —            | _           | BCLIF | LVDIF       | TMR3IF        | CCP2IF | 0000                 | 0000                            |
| PIE2   | _                    | —             | —            | _           | BCLIE | LVDIE       | TMR3IE        | CCP2IE | 0000                 | 0000                            |
| IPR2   | _                    | —             | —            | _           | BCLIP | LVDIP       | TMR3IP        | CCP2IP | 0000                 | 0000                            |
| ADRESH | A/D Result           | t Register    |              |             |       |             |               |        | xxxx xxxx            | uuuu uuuu                       |
| ADRESL | A/D Result           | t Register    |              |             |       |             |               |        | xxxx xxxx            | uuuu uuuu                       |
| ADCON0 | ADCS1                | ADCS0         | CHS2         | CHS1        | CHS0  | GO/<br>DONE | —             | ADON   | 0000 00-0            | 0000 00-0                       |
| ADCON1 | ADFM                 | ADCS2         | —            | _           | PCFG3 | PCFG2       | PCFG1         | PCFG0  | 000                  | 000                             |
| PORTA  | _                    | RA6           | RA5          | RA4         | RA3   | RA2         | RA1           | RA0    | 0x 0000              | 0u 0000                         |
| TRISA  | _                    | PORTA D       | ata Directio | on Register |       |             |               |        | 11 1111              | 11 1111                         |
| PORTE  | _                    | —             | —            | _           | —     | RE2         | RE1           | RE0    | 000                  | 000                             |
| LATE   | _                    | —             | _            | _           | _     | LATE2       | LATE1         | LATE0  | xxx                  | uuu                             |
| TRISE  | IBF                  | OBF           | IBOV         | PSPMODE     | _     | PORTE Da    | ata Direction | n bits | 0000 -111            | 0000 -111                       |

# TABLE 16-3: SUMMARY OF A/D REGISTERS

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used for A/D conversion.

Note 1: The PSPIF, PSPIE and PSPIP bits are reserved on the PIC18C2X2 devices. Always maintain these bits clear.

# 17.0 LOW VOLTAGE DETECT

In many applications, the ability to determine if the device voltage (VDD) is below a specified voltage level is a desirable feature. A window of operation for the application can be created, where the application software can do "housekeeping tasks" before the device voltage exits the valid operating range. This can be done using the Low Voltage Detect module.

This module is a software programmable circuitry, where a device voltage trip point can be specified. When the voltage of the device becomes lower then the specified point, an interrupt flag is set. If the interrupt is enabled, the program execution will branch to the interrupt vector address and the software can then respond to that interrupt source. The Low Voltage Detect circuitry is completely under software control. This allows the circuitry to be "turned off" by the software, which minimizes the current consumption for the device.

Figure 17-1 shows a possible application voltage curve (typically for batteries). Over time, the device voltage decreases. When the device voltage equals voltage VA, the LVD logic generates an interrupt. This occurs at time TA. The application software then has the time, until the device voltage is no longer in valid operating range, to shut-down the system. Voltage point VB is the minimum valid operating voltage specification. This occurs at time TB. The difference TB - TA is the total time for shut-down.





The block diagram for the LVD module is shown in Figure 17-2. A comparator uses an internally generated reference voltage as the set point. When the selected tap output of the device voltage crosses the set point (is lower than), the LVDIF bit is set.

Each node in the resistor divider represents a "trip point" voltage. The "trip point" voltage is the minimum supply voltage level at which the device can operate before the LVD module asserts an interrupt. When the supply voltage is equal to the trip point, the voltage tapped off of the resistor array is equal to the 1.2V internal reference voltage generated by the voltage reference module. The comparator then generates an interrupt signal setting the LVDIF bit. This voltage is software programmable to any one of 16 values (see Figure 17-2). The trip point is selected by programming the LVDL3:LVDL0 bits (LVDCON<3:0>).

# REGISTER 18-5: CONFIGURATION REGISTER 3 HIGH (CONFIG3H: BYTE ADDRESS 300005h)

| U-0   | U-0 | U-0 | U-0 | U-0 | U-0 | U-0 | R/P-1  |
|-------|-----|-----|-----|-----|-----|-----|--------|
| —     | —   | —   | —   | —   | —   |     | CCP2MX |
| bit 7 |     |     |     |     |     |     | bit 0  |

bit 7-1 Unimplemented: Read as '0'

bit 0 CCP2MX: CCP2 Mux bit

- 1 = CCP2 input/output is multiplexed with RC1
- 0 = CCP2 input/output is multiplexed with RB3

| Legend:               |                      |                                     |
|-----------------------|----------------------|-------------------------------------|
| R = Readable bit      | P = Programmable bit | U = Unimplemented bit, read as '0'  |
| - n = Value when devi | ce is unprogrammed   | u = Unchanged from programmed state |

### REGISTER 18-6: CONFIGURATION REGISTER 4 LOW (CONFIG4L: BYTE ADDRESS 300006h)

| U-0   | U-0 | U-0 | U-0 | U-0 | U-0 | R/P-1    | R/P-1  |
|-------|-----|-----|-----|-----|-----|----------|--------|
| _     |     | —   | —   | —   | —   | Reserved | STVREN |
| bit 7 |     |     |     |     |     |          | bit 0  |

- bit 7-2 Unimplemented: Read as '0'
- bit 1 Reserved: Maintain this bit set
- bit 0 STVREN: Stack Full/Underflow Reset Enable bit
  - 1 = Stack Full/Underflow will cause RESET
  - 0 = Stack Full/Underflow will not cause RESET

| Legend:                 |                      |                                     |
|-------------------------|----------------------|-------------------------------------|
| R = Readable bit        | P = Programmable bit | U = Unimplemented bit, read as '0'  |
| - n = Value when device | e is unprogrammed    | u = Unchanged from programmed state |

| GOT                  | GOTO Unconditional Branch               |                                                                                |                                                           |                                               |                                       |                                        |  |  |
|----------------------|-----------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------|---------------------------------------|----------------------------------------|--|--|
| Synt                 | ax:                                     | [ label ]                                                                      | GOTO                                                      | k                                             |                                       |                                        |  |  |
| Ope                  | rands:                                  | $0 \leq k \leq 1048575$                                                        |                                                           |                                               |                                       |                                        |  |  |
| Ope                  | ration:                                 | $k \rightarrow PC < 2$                                                         |                                                           |                                               |                                       |                                        |  |  |
| Statu                | us Affected:                            | None                                                                           |                                                           |                                               |                                       |                                        |  |  |
| Enco<br>1st v<br>2nd | oding:<br>vord (k<7:0>)<br>word(k<19:8> | 1110<br>•) 1111                                                                | 1111<br>k <sub>19</sub> kkk                               | k <sub>7</sub> k}<br>kkk                      | ck<br>k                               | kkkk <sub>0</sub><br>kkkk <sub>8</sub> |  |  |
| Deso                 | cription:                               | GOTO allo<br>branch ar<br>2 Mbyte n<br>value 'k' i<br>GOTO is a<br>instruction | ws an u<br>nywhere<br>nemory<br>s loaded<br>Iways a<br>n. | ncond<br>withir<br>range<br>I into I<br>two-c | lition<br>n en<br>. Th<br>PC<<br>ycle | nal<br>tire<br>ne 20-bit<br>:20:1>.    |  |  |
| Wore                 | ds:                                     | 2                                                                              |                                                           |                                               |                                       |                                        |  |  |
| Cycles:              |                                         | 2                                                                              |                                                           |                                               |                                       |                                        |  |  |
| QC                   | ycle Activity:                          |                                                                                |                                                           |                                               |                                       |                                        |  |  |
|                      | Q1                                      | Q2                                                                             | Q                                                         | 3                                             |                                       | Q4                                     |  |  |
|                      | Decode                                  | Read literal                                                                   | No                                                        | ion                                           | Rea                                   | ad literal                             |  |  |

| Decode    | Read literal<br>'k'<7:0>, | No<br>operation | Read literal<br>'k'<19:8>,<br>Write to PC |
|-----------|---------------------------|-----------------|-------------------------------------------|
| No        | No                        | No              | No                                        |
| operation | operation                 | operation       | operation                                 |

Example: GOTO THERE

After Instruction

PC = Address (THERE)

| INCF                | Incremen                                                                                                         | t f                                                                                             |                                                                                             |                                                                    |
|---------------------|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| Syntax:             | [ label ]                                                                                                        | INCF                                                                                            | f [,d [,a                                                                                   | ]                                                                  |
| Operands:           | $0 \le f \le 255$<br>$d \in [0,1]$<br>$a \in [0,1]$                                                              | 5                                                                                               |                                                                                             |                                                                    |
| Operation:          | (f) + 1 $\rightarrow$ 0                                                                                          | dest                                                                                            |                                                                                             |                                                                    |
| Status Affected:    | C,DC,N,C                                                                                                         | DV,Z                                                                                            |                                                                                             |                                                                    |
| Encoding:           | 0010                                                                                                             | 10da                                                                                            | ffff                                                                                        | ffff                                                               |
| Description.        | increment<br>placed in V<br>result is pl<br>(default). I<br>Bank will t<br>the BSR v<br>bank will t<br>BSR value | ed. If 'd'<br>WREG.<br>laced ba<br>lf 'a' is 0<br>be selec<br>value. If<br>be selec<br>e (defau | ' is 0, th<br>If 'd' is<br>ack in r<br>), the A<br>cted, ov<br>'a' = 1,<br>cted as<br>Ilt). | 1, the<br>egister 'f'<br>ccess<br>verriding<br>then the<br>per the |
| Words:              | 1                                                                                                                |                                                                                                 |                                                                                             |                                                                    |
| Cycles:             | 1                                                                                                                |                                                                                                 |                                                                                             |                                                                    |
| Q Cycle Activity:   |                                                                                                                  |                                                                                                 |                                                                                             |                                                                    |
| Q1                  | Q2                                                                                                               | Q                                                                                               | 3                                                                                           | Q4                                                                 |
| Decode              | Read<br>register 'f'                                                                                             | Proce<br>Data                                                                                   | ess<br>a c                                                                                  | Write to destination                                               |
| Example:            | INCF                                                                                                             | CNT,                                                                                            | 1, 0                                                                                        |                                                                    |
| Before Instru       | iction                                                                                                           |                                                                                                 |                                                                                             |                                                                    |
| CNT<br>Z<br>C<br>DC | = 0xFF<br>= 0<br>= ?<br>= ?                                                                                      |                                                                                                 |                                                                                             |                                                                    |

| After Instruc |   |      |
|---------------|---|------|
| CNT           | = | 0x00 |
| Z             | = | 1    |
| С             | = | 1    |
| DC            | = | 1    |
|               |   |      |



# FIGURE 22-13: IPD vs. VDD (SLEEP MODE, ALL PERIPHERALS DISABLED)





© 1999-2013 Microchip Technology Inc.



FIGURE 22-23: TYPICAL AND MAXIMUM Vol vs. lol (VDD = 3V, -40°C TO +125°C)





### 44-Lead Plastic Leaded Chip Carrier (L) – Square (PLCC)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



|                          | Units  |      | INCHES* |      | MILLIMETERS |       |       |  |
|--------------------------|--------|------|---------|------|-------------|-------|-------|--|
| Dimension                | Limits | MIN  | NOM     | MAX  | MIN         | NOM   | MAX   |  |
| Number of Pins           | n      |      | 44      |      |             | 44    |       |  |
| Pitch                    | р      |      | .050    |      |             | 1.27  |       |  |
| Pins per Side            | n1     |      | 11      |      |             | 11    |       |  |
| Overall Height           | Α      | .165 | .173    | .180 | 4.19        | 4.39  | 4.57  |  |
| Molded Package Thickness | A2     | .145 | .153    | .160 | 3.68        | 3.87  | 4.06  |  |
| Standoff §               | A1     | .020 | .028    | .035 | 0.51        | 0.71  | 0.89  |  |
| Side 1 Chamfer Height    | A3     | .024 | .029    | .034 | 0.61        | 0.74  | 0.86  |  |
| Corner Chamfer 1         | CH1    | .040 | .045    | .050 | 1.02        | 1.14  | 1.27  |  |
| Corner Chamfer (others)  | CH2    | .000 | .005    | .010 | 0.00        | 0.13  | 0.25  |  |
| Overall Width            | E      | .685 | .690    | .695 | 17.40       | 17.53 | 17.65 |  |
| Overall Length           | D      | .685 | .690    | .695 | 17.40       | 17.53 | 17.65 |  |
| Molded Package Width     | E1     | .650 | .653    | .656 | 16.51       | 16.59 | 16.66 |  |
| Molded Package Length    | D1     | .650 | .653    | .656 | 16.51       | 16.59 | 16.66 |  |
| Footprint Width          | E2     | .590 | .620    | .630 | 14.99       | 15.75 | 16.00 |  |
| Footprint Length         | D2     | .590 | .620    | .630 | 14.99       | 15.75 | 16.00 |  |
| Lead Thickness           | С      | .008 | .011    | .013 | 0.20        | 0.27  | 0.33  |  |
| Upper Lead Width         | B1     | .026 | .029    | .032 | 0.66        | 0.74  | 0.81  |  |
| Lower Lead Width         | В      | .013 | .020    | .021 | 0.33        | 0.51  | 0.53  |  |
| Mold Draft Angle Top     | α      | 0    | 5       | 10   | 0           | 5     | 10    |  |
| Mold Draft Angle Bottom  | β      | 0    | 5       | 10   | 0           | 5     | 10    |  |

\* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side.

JEDEC Equivalent: MO-047

Drawing No. C04-048

# S

| SCI. See USART.                              |       |
|----------------------------------------------|-------|
| SCK                                          | . 121 |
| SDI                                          | . 121 |
| SDO                                          | .121  |
| Serial Clock SCK                             | 121   |
| Serial Communication Interface, See LISART   |       |
| Sorial Data In SDI                           | 101   |
| Carial Data III, SDI                         | 404   |
| Serial Data Out, SDO                         | 121   |
| Serial Peripheral Interface. See SPI         |       |
| SETF                                         | .221  |
| Slave Select Synchronization                 | 125   |
| Slave Select, SS                             | . 121 |
| SLEEP                                        | 222   |
| Software Simulator (MPLAB SIM)               | 230   |
| Special Event Trigger See Compare            |       |
| Special Eastures of the CPU                  | 170   |
| Configuration Registers                      | 100   |
| Configuration Registers                      | -102  |
| Special Function Registers                   | 42    |
| Мар                                          | 45    |
| SPI                                          |       |
| Master Mode                                  | .124  |
| Serial Clock                                 | . 121 |
| Serial Data In                               | .121  |
| Serial Data Out                              | 121   |
| Slove Select                                 | 121   |
|                                              | 121   |
| SPI CIOCK                                    | 124   |
| SPI Mode                                     | 121   |
| SPI Master/Slave Connection                  | . 123 |
| SPI Module                                   |       |
| Master/Slave Connection                      | .123  |
| Slave Mode                                   | .125  |
| Slave Select Synchronization                 | 125   |
| Slave Synch Timing                           | 125   |
| Slave Timing with CKE = 0                    | 126   |
| Slave Timing with $CKE = 0$                  | 120   |
|                                              | . 120 |
| SS                                           | 121   |
| SSP                                          | . 115 |
| Block Diagram (SPI Mode)                     | .121  |
| I <sup>2</sup> C Mode. See I <sup>2</sup> C. |       |
| SPI Mode                                     | . 121 |
| Associated Registers                         | .127  |
| Block Diagram                                | 121   |
| SPI Modo, Soo SPI                            | 121   |
|                                              | 10/   |
|                                              | . 124 |
| SSPCON1                                      | 118   |
| SSPCON2 Register                             | . 120 |
| SSPSR                                        | . 124 |
| SSPSTAT                                      | . 116 |
| TMR2 Output for Clock Shift                  | 102   |
| SSP Module                                   |       |
| SPI Master Mode                              | 124   |
| SPI Master /Slave Connection                 | 127   |
| SPI Nasiel./Slave Connection                 | 120   |
|                                              | . 120 |
| SSPCON1 Register                             | .118  |
| SSPOV                                        | . 139 |
| SSPSTAT Register                             | . 116 |
| R/W Bit                                      | . 129 |
| STATUS Register                              | 52    |
| STKPTR Register                              | 38    |
| SUBEWB                                       | 222   |
|                                              | 222   |
|                                              | . 223 |
|                                              | .223  |
| SUBWFB                                       | .224  |
| SWAPF                                        | . 224 |
| Synchronous Serial Port, See SSP.            |       |
|                                              |       |

# Т

| TABLAT Register                                     |               |
|-----------------------------------------------------|---------------|
| Table Pointer Operations (Table)                    |               |
| Table Read Operation Diagram                        | 55            |
| Table Write Operation, Diagram                      |               |
| Table While Operation, Diagram                      |               |
| IBLPTR Register                                     |               |
| TBLRD                                               | 225           |
| TRI W/T                                             | 226           |
| Timor0                                              |               |
|                                                     |               |
| Clock Source Edge Select (T0SE Bit)                 | 95            |
| Clock Source Select (T0CS Bit)                      | 95            |
| Overflow Interrupt                                  | 95            |
| Dreageler, See Dreageler, TimerO                    |               |
| Prescaler. See Prescaler, Timero                    |               |
| T0CON Register                                      |               |
| Timing Diagram                                      |               |
| Timer1                                              | 97            |
| Dia ale Dia ana an                                  |               |
| Block Diagram                                       |               |
| Block Diagram (16-bit R/W Mode)                     |               |
| Oscillator97.                                       | 99.103.105    |
| Overflow Interrupt 97                               | 00 103 105    |
| Overnow Interrupt                                   | 99, 103, 105  |
| Prescaler.                                          |               |
| Special Event Trigger (CCP)                         | 99, 105, 110  |
| T1CON Register                                      | 97            |
| Timing Diagram                                      | 240           |
|                                                     |               |
| IMR1H Register                                      | 97, 103       |
| TMR1L Register                                      | 97, 103       |
| Timer2                                              | 101           |
| Accepted Registers                                  | 102           |
|                                                     |               |
| Block Diagram                                       | 102           |
| Postscaler. See Postscaler, Timer2.                 |               |
| PR2 Register                                        | 101 112       |
| Dreageler, See Dreageler, Timer?                    |               |
| Prescaler. See Prescaler, Timerz.                   |               |
| SSP Clock Shift                                     | 101, 102      |
| T2CON Register                                      | 101           |
| TMR2 Register                                       | 101           |
| TMD2 to DD2 Motch Interrupt                         | 101 100 110   |
| TMRZ to PRZ Match Interrupt                         | 101, 102, 112 |
| Timer3                                              | 103           |
| Associated Registers                                | 105           |
| Block Diagram                                       | 104           |
| Dia de Diagram (40 bit D/M/ Mada)                   |               |
| Block Diagram (16-bit R/W Wode)                     | 104           |
| T3CON Register                                      |               |
| Timing Diagrams                                     |               |
| Acknowledge Sequence Timing                         | 142           |
| Roud Data Concreter with Cleak Arbitration          | 100           |
| Baud Rale Generator with Clock Arbitration          | 1 130         |
| BRG Reset Due to SDA Collision                      |               |
| Bus Collision                                       |               |
| START Condition Timing                              | 145           |
| Bue Cellisian During a Deposted START               |               |
| Bus Collision During a Repeated START               |               |
| Condition (Case 1)                                  |               |
| Bus Collision During a Repeated START               |               |
| Condition (Case?)                                   | 147           |
|                                                     |               |
| Bus Collision During a START Condition              |               |
| (SCL = 0)                                           | 146           |
| Bus Collision During a STOP Condition               |               |
| Bus Collision for Transmit and Asknowledg           | 0 111         |
|                                                     | 0.000         |
| I <sup>2</sup> C Bus Data                           |               |
| I <sup>2</sup> C Master Mode First START Bit Timing | 137           |
| I <sup>2</sup> C Master Mode Reception Timing       |               |
| I <sup>2</sup> C Master Mode Transmission Timing    | 140           |
|                                                     | 140           |
| Master Mode Transmit Clock Arbitration              |               |
| Repeat START Condition                              | 138           |
| Slave Synchronization                               | 125           |
| CDI Mode Timing (Master Made) ODI Made              |               |
| SPI Wode Timing (Master Wode) SPI Mode              | ;             |
| Master Mode Timing Diagram                          | 124           |
| SPI Mode Timing (Slave Mode with CKE =              | 0) 126        |
| SPI Mode Timing (Slave Mode with CKE -              | 1) 126        |
|                                                     | .,            |