Welcome to **E-XFL.COM** What is "Embedded - Microcontrollers"? "Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications. Applications of "<u>Embedded - Microcontrollers</u>" | Details | | |----------------------------|---| | Product Status | Obsolete | | Core Processor | PIC | | Core Size | 8-Bit | | Speed | 40MHz | | Connectivity | I ² C, SPI, UART/USART | | Peripherals | Brown-out Detect/Reset, LVD, POR, PWM, WDT | | Number of I/O | 22 | | Program Memory Size | 16KB (8K x 16) | | Program Memory Type | OTP | | EEPROM Size | - | | RAM Size | 512 x 8 | | Voltage - Supply (Vcc/Vdd) | 4.2V ~ 5.5V | | Data Converters | A/D 5x10b | | Oscillator Type | External | | Operating Temperature | -40°C ~ 125°C (TA) | | Mounting Type | Surface Mount | | Package / Case | 28-SOIC (0.295", 7.50mm Width) | | Supplier Device Package | 28-SOIC | | Purchase URL | https://www.e-xfl.com/product-detail/microchip-technology/pic18c242t-e-so | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong ## 4.13 STATUS Register The STATUS register, shown in Register 4-2, contains the arithmetic status of the ALU. The STATUS register can be the destination for any instruction, as with any other register. If the STATUS register is the destination for an instruction that affects the Z, DC, C, OV or N bits, then the write to these five bits is disabled. These bits are set or cleared according to the device logic. Therefore, the result of an instruction with the STATUS register as destination may be different than intended. For example, CLRF STATUS will clear the upper three bits and set the Z bit. This leaves the STATUS register as 000u uluu (where u = unchanged). It is recommended, therefore, that only BCF, BSF, SWAPF, MOVFF and MOVWF instructions are used to alter the STATUS register, because these instructions do not affect the Z, C, DC, OV or N bits from the STATUS register. For other instructions not affecting any status bits, see Table 19-2. Note: The C and DC bits operate as a borrow and digit borrow bit respectively, in subtraction. #### **REGISTER 4-2: STATUS REGISTER** | U-0 | U-0 | U-0 | R/W-x | R/W-x | R/W-x | R/W-x | R/W-x | |-------|-----|-----|-------|-------|-------|-------|-------| | _ | _ | _ | N | OV | Z | DC | С | | bit 7 | | | | | | | bit 0 | #### bit 7-5 Unimplemented: Read as '0' ### bit 4 N: Negative bit This bit is used for signed arithmetic (2's complement). It indicates whether the result was negative, (ALU MSB = 1). - 1 = Result was negative - 0 = Result was positive #### bit 3 **OV:** Overflow bit This bit is used for signed arithmetic (2's complement). It indicates an overflow of the 7-bit magnitude, which causes the sign bit (bit7) to change state. - 1 = Overflow occurred for signed arithmetic (in this arithmetic operation) - 0 = No overflow occurred #### bit 2 Z: Zero bit - 1 = The result of an arithmetic or logic operation is zero - 0 = The result of an arithmetic or logic operation is not zero #### bit 1 **DC:** Digit carry/borrow bit For ADDWF, ADDLW, SUBLW, and SUBWF instructions - 1 = A carry-out from the 4th low order bit of the result occurred - 0 = No carry-out from the 4th low order bit of the result #### Note: For borrow, the polarity is reversed. A subtraction is executed by adding the two's complement of the second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the bit 4 or bit 3 of the source register. #### bit 0 C: Carry/borrow bit For ADDWF, ADDLW, SUBLW, and SUBWF instructions - 1 = A carry-out from the Most Significant bit of the result occurred - 0 = No carry-out from the Most Significant bit of the result occurred #### Note: For borrow, the polarity is reversed. A subtraction is executed by adding the two's complement of the second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high or low order bit of the source register. | Led | Δr | h | • | |-----|----|----|---| | Leu | ш | ıu | | R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset '1' = Bit is set '0' = Bit is cleared x = Bit is unknown # PIC18CXX2 **NOTES:** #### 5.2.2.1 Operation The long write is what actually programs words of data into the internal memory. When a TBLWT to the MSB of the write block occurs, instruction execution is halted. During this time, programming voltage and the data stored in internal latches is applied to program memory. For a long write to occur: - MCLR/VPP pin must be at the programming voltage - 2. LWRT bit must be set - TBLWT to the address of the MSB of the write block If the LWRT bit is clear, a short write will occur and program memory will not be changed. If the TBLWT is not to the MSB of the write block, then the programming phase is not initiated. Setting the LWRT bit enables long writes when the MCLR pin is taken to VPP voltage. Once the LWRT bit is set, it can be cleared only by performing a POR or MCLR Reset. To ensure that the memory location has been well programmed, a minimum programming time is required. The long write can be terminated after the programming time has expired by a RESET or an interrupt. Having only one interrupt source enabled to terminate the long write ensures that no unintended interrupts will prematurely terminate the long write. #### 5.2.2.2 Sequence of Events The sequence of events for programming an internal program memory location should be: - Enable the interrupt that terminates the long write. Disable all other interrupts. - 2. Clear the source interrupt flag. - If Interrupt Service Routine execution is desired when the device wakes, enable global interrupts. - 4. Set LWRT bit in the RCON register. - 5. Raise MCLR/VPP pin to the programming voltage, VPP. - 6. Clear the WDT (if enabled). - Set the interrupt source to interrupt at the required time. - 8. Execute the Table Write for the lower (even) byte. This will be a short write. - 9. Execute the Table Write for the upper (odd) byte. This will be a long write. The microcontroller will then halt internal operations. (This is not the same as SLEEP mode, as the clocks and peripherals will continue to run.) The interrupt will cause the microcontroller to resume operation. - 10. If GIE was set, service the interrupt request. - 11. Lower MCLR/VPP pin to VDD. - 12. Verify the memory location (Table Read). ### 7.0 INTERRUPTS The PIC18CXX2 devices have multiple interrupt sources and an interrupt priority feature that allows each interrupt source to be assigned a high priority level, or a low priority level. The high priority interrupt vector is at 000008h and the low priority interrupt vector is at 000018h. High priority interrupt events will override any low priority interrupts that may be in progress. There are ten registers which are used to control interrupt operation. These registers are: - RCON - INTCON - INTCON2 - INTCON3 - PIR1, PIR2 - PIE1, PIE2 - IPR1, IPR2 It is recommended that the Microchip header files supplied with MPLAB® IDE be used for the symbolic bit names in these registers. This allows the assembler/compiler to automatically take care of the placement of these bits within the specified register. Each interrupt source has three bits to control its operation. The functions of these bits are: - Flag bit to indicate that an interrupt event occurred - Enable bit that allows program execution to branch to the interrupt vector address when the flag bit is set - · Priority bit to select high priority or low priority The interrupt priority feature is enabled by setting the IPEN bit (RCON<7>). When interrupt priority is enabled, there are two bits which enable interrupts globally. Setting the GIEH bit (INTCON<7>) enables all interrupts that have the priority bit set. Setting the GIEL bit (INTCON<6>) enables all interrupts that have the priority bit cleared. When the interrupt flag, enable bit and appropriate global interrupt enable bit are set, the interrupt will vector immediately to address 000008h or 000018h, depending on the priority level. Individual interrupts can be disabled through their corresponding enable bits. When the IPEN bit is cleared (default state), the interrupt priority feature is disabled and interrupts are compatible with PIC® mid-range devices. In Compatibility mode, the interrupt priority bits for each source have no effect. INTCON<6> is the PEIE bit, which enables/disables all peripheral interrupt sources. INTCON<7> is the GIE bit, which enables/disables all interrupt sources. All interrupts branch to address 000008h in Compatibility mode. When an interrupt is responded to, the Global Interrupt Enable bit is cleared to disable further interrupts. If the IPEN bit is cleared, this is the GIE bit. If interrupt priority levels are used, this will be either the GIEH, or GIEL bit. High priority interrupt sources can interrupt a low priority interrupt. The return address is pushed onto the stack and the PC is loaded with the interrupt vector address (000008h or 000018h). Once in the Interrupt Service Routine, the source(s) of the interrupt can be determined by polling the interrupt flag bits. The interrupt flag bits must be cleared in software before re-enabling interrupts to avoid recursive interrupts. The "return from interrupt" instruction, RETFIE, exits the interrupt routine and sets the GIE bit (GIEH or GIEL if priority levels are used), which re-enables interrupts. For external interrupt events, such as the INT pins or the PORTB input change interrupt, the interrupt latency will be three to four instruction cycles. The exact latency is the same for one or two-cycle instructions. Individual interrupt flag bits are set, regardless of the status of their corresponding enable bit or the GIE bit. # 7.1 INTCON Registers The INTCON Registers are readable and writable registers, which contains various enable, priority, and flag bits. #### **REGISTER 7-1: INTCON REGISTER** | GIE/GIEH | PEIE/GIEL | TMR0IE | INT0IE | RBIE | TMR0IF | INT0IF | RBIF | |----------|-----------|--------|--------|------|--------|--------|-------| | bit 7 | | | | | | | bit 0 | bit 7 GIE/GIEH: Global Interrupt Enable bit When IPEN = 0: 1 = Enables all unmasked interrupts 0 = Disables all interrupts When IPEN = 1: 1 = Enables all high priority interrupts 0 = Disables all high priority interrupts bit 6 **PEIE/GIEL:** Peripheral Interrupt Enable bit When IPEN = 0: 1 = Enables all unmasked peripheral interrupts 0 = Disables all peripheral interrupts When IPEN = 1: 1 = Enables all low priority peripheral interrupts 0 = Disables all low priority peripheral interrupts bit 5 TMR0IE: TMR0 Overflow Interrupt Enable bit 1 = Enables the TMR0 overflow interrupt 0 = Disables the TMR0 overflow interrupt bit 4 INT0IE: INT0 External Interrupt Enable bit 1 = Enables the INT0 external interrupt 0 = Disables the INT0 external interrupt bit 3 RBIE: RB Port Change Interrupt Enable bit 1 = Enables the RB port change interrupt 0 =Disables the RB port change interrupt bit 2 TMR0IF: TMR0 Overflow Interrupt Flag bit 1 = TMR0 register has overflowed (must be cleared in software) 0 = TMR0 register did not overflow bit 1 INT0IF: INT0 External Interrupt Flag bit 1 = The INTO external interrupt occurred (must be cleared in software) 0 = The INT0 external interrupt did not occur bit 0 RBIF: RB Port Change Interrupt Flag bit 1 = At least one of the RB7:RB4 pins changed state (must be cleared in software) 0 = None of the RB7:RB4 pins have changed state Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset '1' = Bit is set '0' = Bit is cleared x = Bit is unknown **Note:** Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit, or the global enable bit. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt. This feature allows for software polling. ### 7.2 PIR Registers The PIR registers contain the individual flag bits for the peripheral interrupts. Due to the number of peripheral interrupt sources, there are two Peripheral Interrupt Flag Registers (PIR1, PIR2). - **Note 1:** Interrupt flag bits get set when an interrupt condition occurs, regardless of the state of its corresponding enable bit, or the global enable bit, GIE (INTCON<7>). - 2: User software should ensure the appropriate interrupt flag bits are cleared prior to enabling an interrupt, and after servicing that interrupt. #### REGISTER 7-4: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 1 (PIR1) | · · · - | | | | | | | | |---------|-------|------|------|-------|--------|--------|--------| | PSPIF | ADIF | RCIF | TXIF | SSPIF | CCP1IF | TMR2IF | TMR1IF | | R/W-0 | R/W-0 | R-0 | R-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | bit 7 bit 0 bit 7 PSPIF: Parallel Slave Port Read/Write Interrupt Flag bit 1 = A read or a write operation has taken place (must be cleared in software) 0 = No read or write has occurred bit 6 ADIF: A/D Converter Interrupt Flag bit 1 = An A/D conversion completed (must be cleared in software) 0 = The A/D conversion is not complete bit 5 RCIF: USART Receive Interrupt Flag bit 1 = The USART receive buffer, RCREG, is full (cleared when RCREG is read) 0 = The USART receive buffer is empty bit 4 TXIF: USART Transmit Interrupt Flag bit 1 = The USART transmit buffer, TXREG, is empty (cleared when TXREG is written) 0 = The USART transmit buffer is full bit 3 SSPIF: Master Synchronous Serial Port Interrupt Flag bit 1 = The transmission/reception is complete (must be cleared in software) 0 = Waiting to transmit/receive bit 2 CCP1IF: CCP1 Interrupt Flag bit Capture mode: 1 = A TMR1 register capture occurred (must be cleared in software) 0 = No TMR1 register capture occurred Compare mode: 1 = A TMR1 register compare match occurred (must be cleared in software) 0 = No TMR1 register compare match occurred PWM mode: Unused in this mode bit 1 TMR2IF: TMR2 to PR2 Match Interrupt Flag bit 1 = TMR2 to PR2 match occurred (must be cleared in software) 0 = No TMR2 to PR2 match occurred bit 0 TMR1IF: TMR1 Overflow Interrupt Flag bit 1 = TMR1 register overflowed (must be cleared in software) 0 = MR1 register did not overflow Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset '1' = Bit is set '0' = Bit is cleared x = Bit is unknown #### FIGURE 9-1: TIMERO BLOCK DIAGRAM IN 8-BIT MODE #### FIGURE 9-2: TIMERO BLOCK DIAGRAM IN 16-BIT MODE # 14.0 MASTER SYNCHRONOUS SERIAL PORT (MSSP) MODULE # 14.1 Master SSP (MSSP) Module Overview The Master Synchronous Serial Port (MSSP) module is a serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be Serial EEPROMs, shift registers, display drivers, A/D converters, etc. The MSSP module can operate in one of two modes: - Serial Peripheral Interface (SPI™) - Inter-Integrated Circuit (I²C[™]) - Full Master mode - Slave mode (with general address call) The I²C interface supports the following modes in hardware: - Master mode - Multi-Master mode - · Slave mode # PIC18CXX2 TABLE 16-3: SUMMARY OF A/D REGISTERS | Name | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | Value on POR, BOR | Value on all other RESETS | |--------|----------------------|---------------|--------------|------------|-------|-------------|---------------|--------|-------------------|---------------------------| | INTCON | GIE/
GIEH | PEIE/
GIEL | TMR0IE | INT0IE | RBIE | TMR0IF | INT0IF | RBIF | 0000 000x | 0000 000u | | PIR1 | PSPIF ⁽¹⁾ | ADIF | RCIF | TXIF | SSPIF | CCP1IF | TMR2IF | TMR1IF | 0000 0000 | 0000 0000 | | PIE1 | PSPIE ⁽¹⁾ | ADIE | RCIE | TXIE | SSPIE | CCP1IE | TMR2IE | TMR1IE | 0000 0000 | 0000 0000 | | IPR1 | PSPIP ⁽¹⁾ | ADIP | RCIP | TXIP | SSPIP | CCP1IP | TMR2IP | TMR1IP | 0000 0000 | 0000 0000 | | PIR2 | _ | _ | _ | _ | BCLIF | LVDIF | TMR3IF | CCP2IF | 0000 | 0000 | | PIE2 | _ | _ | _ | _ | BCLIE | LVDIE | TMR3IE | CCP2IE | 0000 | 0000 | | IPR2 | _ | _ | _ | _ | BCLIP | LVDIP | TMR3IP | CCP2IP | 0000 | 0000 | | ADRESH | A/D Result | t Register | | | | | | | xxxx xxxx | uuuu uuuu | | ADRESL | A/D Result | t Register | | | | | | | xxxx xxxx | uuuu uuuu | | ADCON0 | ADCS1 | ADCS0 | CHS2 | CHS1 | CHS0 | GO/
DONE | _ | ADON | 0000 00-0 | 0000 00-0 | | ADCON1 | ADFM | ADCS2 | _ | _ | PCFG3 | PCFG2 | PCFG1 | PCFG0 | 000 | 000 | | PORTA | _ | RA6 | RA5 | RA4 | RA3 | RA2 | RA1 | RA0 | 0x 0000 | 0u 0000 | | TRISA | _ | PORTA D | ata Directio | n Register | | | | | 11 1111 | 11 1111 | | PORTE | _ | _ | _ | _ | _ | RE2 | RE1 | RE0 | 000 | 000 | | LATE | _ | _ | _ | _ | _ | LATE2 | LATE1 | LATE0 | xxx | uuu | | TRISE | IBF | OBF | IBOV | PSPMODE | _ | PORTE Da | ata Direction | n bits | 0000 -111 | 0000 -111 | Legend: x = unknown, u = unchanged, — = unimplemented, read as '0'. Shaded cells are not used for A/D conversion. Note 1: The PSPIF, PSPIE and PSPIP bits are reserved on the PIC18C2X2 devices. Always maintain these bits clear. ## 18.2 Watchdog Timer (WDT) The Watchdog Timer is a free running, on-chip RC oscillator, which does not require any external components. This RC oscillator is separate from the RC oscillator of the OSC1/CLKI pin. That means that the WDT will run, even if the clock on the OSC1/CLKI and OSC2/CLKO/RA6 pins of the device has been stopped, for example, by execution of a SLEEP instruction. During normal operation, a WDT time-out generates a device RESET (Watchdog Timer Reset). If the device is in SLEEP mode, a WDT time-out causes the device to wake-up and continue with normal operation (Watchdog Timer Wake-up). The TO bit in the RCON register will be cleared upon a WDT time-out. The Watchdog Timer is enabled/disabled by a device configuration bit. If the WDT is enabled, software execution may not disable this function. When the WDTEN configuration bit is cleared, the SWDTEN bit enables/ disables the operation of the WDT. The WDT time-out period values may be found in the Electrical Specifications section under parameter #31. Values for the WDT postscaler may be assigned using the configuration bits. Note: The CLRWDT and SLEEP instructions clear the WDT and the postscaler, if assigned to the WDT, and prevent it from timing out and generating a device RESET condition. **Note:** When a CLRWDT instruction is executed and the postscaler is assigned to the WDT, the postscaler count will be cleared, but the postscaler assignment is not changed. #### 18.2.1 CONTROL REGISTER Register 18-7 shows the WDTCON register. This is a readable and writable register, which contains a control bit that allows software to override the WDT enable configuration bit, only when the configuration bit has disabled the WDT. #### **REGISTER 18-7: WDTCON REGISTER** | U-0 R/W-0 | |-------|-----|-----|-----|-----|-----|-----|--------| | _ | _ | _ | _ | _ | _ | _ | SWDTEN | | bit 7 | | | | | | | bit 0 | #### bit 7-1 Unimplemented: Read as '0' bit 0 **SWDTEN:** Software Controlled Watchdog Timer Enable bit - 1 = Watchdog Timer is on - 0 = Watchdog Timer is turned off if the WDTEN configuration bit in the configuration register = '0' Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR Reset BNC Branch if Not Carry Syntax: [label] BNC n Operands: $-128 \le n \le 127$ Operation: if carry bit is '0' $(PC) + 2 + 2n \rightarrow PC$ Status Affected: None Encoding: 1110 0011 nnnn nnnn Description: If the Carry bit is '0', then the pro- gram will branch. The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC+2+2n. This instruction is then a two-cycle instruction. Words: 1 Cycles: 1(2) Q Cycle Activity: If Jump: | Q1 | Q2 | Q3 | Q4 | |-----------|--------------|-----------------|-------------| | Decode | Read literal | Process
Data | Write to PC | | No | No | No | No | | operation | operation | operation | operation | If No Jump: | Q1 | Q2 | Q3 | Q4 | |--------|--------------|---------|-----------| | Decode | Read literal | Process | No | | | 'n' | Data | operation | Example: HERE BNC Jump Before Instruction PC = address (HERE) After Instruction If Carry = 0; PC = address (Jump) If Carry = 1; PC = address (HERE+2) BNN Branch if Not Negative Syntax: [label] BNN n Operands: $-128 \le n \le 127$ Operation: if negative bit is '0' Status Affected: None Encoding: 1110 0111 nnnn nnnn $(PC) + 2 + 2n \rightarrow PC$ Description: If the Negative bit is '0', then the program will branch. The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC+2+2n. This instruction is then a two-cycle instruction. Words: 1 Cycles: 1(2) Q Cycle Activity: If Jump: | Q1 | Q2 | Q3 | Q4 | |-----------|--------------|-----------|-------------| | Decode | Read literal | Process | Write to PC | | | 'n' | Data | | | No | No | No | No | | operation | operation | operation | operation | If No Jump: | Q1 | Q2 | Q3 | Q4 | |--------|--------------|---------|-----------| | Decode | Read literal | Process | No | | | 'n' | Data | operation | Example: HERE BNN Jump Before Instruction PC = address (HERE) After Instruction If Negative= 0; PC = address (Jump) If Negative = 1; PC = address (HERE+2) # 20.4 MPLINK Object Linker/ MPLIB Object Librarian The MPLINK object linker combines relocatable objects created by the MPASM assembler and the MPLAB C17 and MPLAB C18 C compilers. It can also link relocatable objects from pre-compiled libraries, using directives from a linker script. The MPLIB object librarian is a librarian for precompiled code to be used with the MPLINK object linker. When a routine from a library is called from another source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications. The MPLIB object librarian manages the creation and modification of library files. The MPLINK object linker features include: - Integration with MPASM assembler and MPLAB C17 and MPLAB C18 C compilers. - Allows all memory areas to be defined as sections to provide link-time flexibility. The MPLIB object librarian features include: - Easier linking because single libraries can be included instead of many smaller files. - Helps keep code maintainable by grouping related modules together. - Allows libraries to be created and modules to be added, listed, replaced, deleted or extracted. #### 20.5 MPLAB SIM Software Simulator The MPLAB SIM software simulator allows code development in a PC-hosted environment by simulating the PIC series microcontrollers on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a file, or user-defined key press, to any of the pins. The execution can be performed in single step, execute until break, or trace mode. The MPLAB SIM simulator fully supports symbolic debugging using the MPLAB C17 and the MPLAB C18 C compilers and the MPASM assembler. The software simulator offers the flexibility to develop and debug code outside of the laboratory environment, making it an excellent multiproject software development tool. # 20.6 MPLAB ICE High Performance Universal In-Circuit Emulator with MPLAB IDE The MPLAB ICE universal in-circuit emulator is intended to provide the product development engineer with a complete microcontroller design tool set for PIC microcontrollers (MCUs). Software control of the MPLAB ICE in-circuit emulator is provided by the MPLAB Integrated Development Environment (IDE), which allows editing, building, downloading and source debugging from a single environment. The MPLAB ICE 2000 is a full-featured emulator system with enhanced trace, trigger and data monitoring features. Interchangeable processor modules allow the system to be easily reconfigured for emulation of different processors. The universal architecture of the MPLAB ICE in-circuit emulator allows expansion to support new PIC microcontrollers. The MPLAB ICE in-circuit emulator system has been designed as a real-time emulation system, with advanced features that are generally found on more expensive development tools. The PC platform and Microsoft® Windows environment were chosen to best make these features available to you, the end user. #### 20.7 ICEPIC In-Circuit Emulator The ICEPIC low cost, in-circuit emulator is a solution for the Microchip Technology PIC16C5X, PIC16C6X, PIC16C7X and PIC16CXXX families of 8-bit One-Time-Programmable (OTP) microcontrollers. The modular system can support different subsets of PIC16C5X or PIC16CXXX products through the use of interchangeable personality modules, or daughter boards. The emulator is capable of emulating without target application circuitry being present. # 20.8 MPLAB ICD In-Circuit Debugger Microchip's In-Circuit Debugger, MPLAB ICD, is a powerful, low cost, run-time development tool. This tool is based on the FLASH PIC16F87X and can be used to develop for this and other PIC microcontrollers from the PIC16CXXX family. The MPLAB ICD utilizes the in-circuit debugging capability built into the PIC16F87X. This feature, along with Microchip's In-Circuit Serial Programming™ protocol, offers cost-effective in-circuit FLASH debugging from the graphical user interface of the MPLAB Integrated Development Environment. This enables a designer to develop and debug source code by watching variables, single-stepping and setting break points. Running at full speed enables testing hardware in real-time. # 20.9 PRO MATE II Universal Device Programmer The PRO MATE II universal device programmer is a full-featured programmer, capable of operating in stand-alone mode, as well as PC-hosted mode. The PRO MATE II device programmer is CE compliant. The PRO MATE II device programmer has programmable VDD and VPP supplies, which allow it to verify programmed memory at VDD min and VDD max for maximum reliability. It has an LCD display for instructions and error messages, keys to enter commands and a modular detachable socket assembly to support various package types. In stand-alone mode, the PRO MATE II device programmer can read, verify, or program PIC devices. It can also set code protection in this mode. # 20.10 PICSTART Plus Entry Level Development Programmer The PICSTART Plus development programmer is an easy-to-use, low cost, prototype programmer. It connects to the PC via a COM (RS-232) port. MPLAB Integrated Development Environment software makes using the programmer simple and efficient. The PICSTART Plus development programmer supports all PIC devices with up to 40 pins. Larger pin count devices, such as the PIC16C92X and PIC17C76X, may be supported with an adapter socket. The PICSTART Plus development programmer is CE compliant. # 20.11 PICDEM 1 Low Cost PIC MCU Demonstration Board The PICDEM 1 demonstration board is a simple board which demonstrates the capabilities of several of Microchip's microcontrollers. The microcontrollers supported are: PIC16C5X (PIC16C54 to PIC16C58A). PIC16C61, PIC16C62X, PIC16C71, PIC16C8X, PIC17C42, PIC17C43 and PIC17C44. All necessary hardware and software is included to run basic demo programs. The user can program the sample microcontrollers provided with the PICDEM 1 demonstration board on a PRO MATE II device programmer, or a PICSTART Plus development programmer, and easily test firmware. The user can also connect the PICDEM 1 demonstration board to the MPLAB ICE incircuit emulator and download the firmware to the emulator for testing. A prototype area is available for the user to build some additional hardware and connect it to the microcontroller socket(s). Some of the features include an RS-232 interface, a potentiometer for simulated analog input, push button switches and eight LEDs connected to PORTB. # 20.12 PICDEM 2 Low Cost PIC16CXX Demonstration Board The PICDEM 2 demonstration board is a simple demonstration board that supports the PIC16C62, PIC16C64, PIC16C65, PIC16C73 and PIC16C74 microcontrollers. All the necessary hardware and software is included to run the basic demonstration programs. The user can program the sample microcontrollers provided with the PICDEM 2 demonstration board on a PRO MATE II device programmer, or a PICSTART Plus development programmer, and easily test firmware. The MPLAB ICE in-circuit emulator may also be used with the PICDEM 2 demonstration board to test firmware. A prototype area has been provided to the user for adding additional hardware and connecting it to the microcontroller socket(s). Some of the features include a RS-232 interface, push button switches, a potentiometer for simulated analog input, a serial EEPROM to demonstrate usage of the I²C[™] bus and separate headers for connection to an LCD module and a keypad. #### 21.0 ELECTRICAL CHARACTERISTICS ### **Absolute Maximum Ratings** (†) | Ambient temperature under bias | 55°C to +125°C | |--|------------------------| | Storage temperature | 65°C to +150°C | | Voltage on any pin with respect to Vss (except VDD, MCLR, and RA4) | 0.3 V to (VDD + 0.3 V) | | Voltage on VDD with respect to Vss | 0.3 V to +7.5 V | | Voltage on MCLR with respect to Vss (Note 2) | 0 V to +13.25 V | | Voltage on RA4 with respect to Vss | 0 V to +8.5 V | | Total power dissipation (Note 1) | 1.0 W | | Maximum current out of Vss pin | 300 mA | | Maximum current into VDD pin | 250 mA | | Input clamp current, lik (VI < 0 or VI > VDD) | ±20 mA | | Output clamp current, lok (Vo < 0 or Vo > VDD) | ±20 mA | | Maximum output current sunk by any I/O pin | 25 mA | | Maximum output current sourced by any I/O pin | 25 mA | | Maximum current sunk by PORTA, PORTB, and PORTE (Note 3) (combined) | 200 mA | | Maximum current sourced by PORTA, PORTB, and PORTE (Note 3) (combined) | 200 mA | | Maximum current sunk by PORTC and PORTD (Note 3) (combined) | 200 mA | | Maximum current sourced by PORTC and PORTD (Note 3) (combined) | 200 mA | | Note 1: Power dissipation is calculated as follows: | | - Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD \sum IOH} + \sum {(VDD-VOH) x IOH} + \sum (Vol x IOL) - 2: Voltage spikes below Vss at the \overline{MCLR}/VPP pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50-100 Ω should be used when applying a "low" level to the \overline{MCLR}/VPP pin, rather than pulling this pin directly to Vss. - 3: PORTD and PORTE not available on the PIC18C2X2 devices. † NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. #### 21.3.2 TIMING CONDITIONS The temperature and voltages specified in Table 21-3 apply to all timing specifications unless otherwise noted. Figure 21-4 specifies the load conditions for the timing specifications. TABLE 21-3: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC | | Standard Operating Conditions (unless otherwise stated) | | | | | |--------------------|--|--|--|--|--| | | Operating temperature -40°C ≤ TA ≤ +85°C for industrial | | | | | | AC CHARACTERISTICS | -40°C ≤ TA ≤ +125°C for extended | | | | | | | Operating voltage VDD range as described in DC spec Section 21.1. LC parts operate for industrial temperatures only. | | | | | ## FIGURE 21-4: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS FIGURE 21-22: A/D CONVERSION TIMING **TABLE 21-22: A/D CONVERSION REQUIREMENTS** | Param
No. | Symbol | Characte | Min | Max | Units | Conditions | | |--------------|--------|--|---------------------|----------|-------------------|------------|---| | 130 | TAD | A/D clock period PIC18 C XXX | | 1.6 | 20 ⁽⁵⁾ | μS | Tosc based, VREF ≥ 3.0V | | | | | PIC18 LC XXX | 3.0 | 20 ⁽⁵⁾ | μS | Tosc based, VREF full range | | | | | PIC18CXXX | 2.0 | 6.0 | μS | A/D RC mode | | | | | PIC18LCXXX | 3.0 | 9.0 | μS | A/D RC mode | | 131 | TCNV | Conversion time (not including acquisiti | 11 | 12 | TAD | | | | 132 | TACQ | Acquisition time (Note 3) | | 15
10 | _ | μS
μS | -40°C ≤ Temp ≤ 125°C
0°C ≤ Temp ≤ 125°C | | 135 | Tswc | Switching Time from c | _ | (Note 4) | | | | | 136 | Тамр | Amplifier settling time (Note 2) | | 1 | _ | μ\$ | This may be used if the "new" input voltage has not changed by more than 1 LSb (i.e., 5 mV @ 5.12V) from the last sampled voltage (as stated on CHOLD). | Note 1: ADRES register may be read on the following TcY cycle. - 2: See Section 16.0 for minimum conditions, when input voltage has changed more than 1 LSb. - **3:** The time for the holding capacitor to acquire the "New" input voltage, when the voltage changes full scale after the conversion (AVDD to AVss, or AVss to AVDD). The source impedance (*Rs*) on the input channels is 50 Ω. - 4: On the next Q4 cycle of the device clock. - **5:** The time of the A/D clock period is dependent on the device frequency and the TAD clock divider. ## 44-Lead Plastic Thin Quad Flatpack (PT) 10x10x1 mm Body, 1.0/0.10 mm Lead Form (TQFP) **Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging | | Units | | | INCHES | | | MILLIMETERS* | | | |--------------------------|-----------|------|------|--------|-------|-------|--------------|--|--| | Dimensio | on Limits | MIN | NOM | MAX | MIN | NOM | MAX | | | | Number of Pins | n | | 44 | | | 44 | | | | | Pitch | р | | .031 | | | 0.80 | | | | | Pins per Side | n1 | | 11 | | | 11 | | | | | Overall Height | Α | .039 | .043 | .047 | 1.00 | 1.10 | 1.20 | | | | Molded Package Thickness | A2 | .037 | .039 | .041 | 0.95 | 1.00 | 1.05 | | | | Standoff § | A1 | .002 | .004 | .006 | 0.05 | 0.10 | 0.15 | | | | Foot Length | L | .018 | .024 | .030 | 0.45 | 0.60 | 0.75 | | | | Footprint (Reference) | (F) | | .039 | | 1.00 | | | | | | Foot Angle | ф | 0 | 3.5 | 7 | 0 | 3.5 | 7 | | | | Overall Width | Е | .463 | .472 | .482 | 11.75 | 12.00 | 12.25 | | | | Overall Length | D | .463 | .472 | .482 | 11.75 | 12.00 | 12.25 | | | | Molded Package Width | E1 | .390 | .394 | .398 | 9.90 | 10.00 | 10.10 | | | | Molded Package Length | D1 | .390 | .394 | .398 | 9.90 | 10.00 | 10.10 | | | | Lead Thickness | С | .004 | .006 | .008 | 0.09 | 0.15 | 0.20 | | | | Lead Width | В | .012 | .015 | .017 | 0.30 | 0.38 | 0.44 | | | | Pin 1 Corner Chamfer | CH | .025 | .035 | .045 | 0.64 | 0.89 | 1.14 | | | | Mold Draft Angle Top | α | 5 | 10 | 15 | 5 | 10 | 15 | | | | Mold Draft Angle Bottom | β | 5 | 10 | 15 | 5 | 10 | 15 | | | ^{*} Controlling Parameter #### Notes: Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MS-026 Drawing No. C04-076 [§] Significant Characteristic # APPENDIX E: MIGRATION FROM MID-RANGE TO ENHANCED DEVICES A detailed discussion of the differences between the mid-range MCU devices (i.e., PIC16CXXX) and the enhanced devices (i.e., PIC18CXXX) is provided in AN716, "Migrating Designs from PIC16C74A/74B to PIC18C442." The changes discussed, while device specific, are generally applicable to all mid-range to enhanced device migrations. This Application Note is available as Literature Number DS00716. # APPENDIX F: MIGRATION FROM HIGH-END TO ENHANCED DEVICES A detailed discussion of the migration pathway and differences between the high-end MCU devices (i.e., PIC17CXXX) and the enhanced devices (i.e., PIC18CXXX) is provided in AN726, "PIC17CXXX to PIC18CXXX Migration." This Application Note is available as Literature Number DS00726.