



Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Obsolete                                                                  |
|----------------------------|---------------------------------------------------------------------------|
| Core Processor             | PIC                                                                       |
| Core Size                  | 8-Bit                                                                     |
| Speed                      | 40MHz                                                                     |
| Connectivity               | I <sup>2</sup> C, SPI, UART/USART                                         |
| Peripherals                | Brown-out Detect/Reset, LVD, POR, PWM, WDT                                |
| Number of I/O              | 22                                                                        |
| Program Memory Size        | 16KB (8K x 16)                                                            |
| Program Memory Type        | OTP                                                                       |
| EEPROM Size                | · ·                                                                       |
| RAM Size                   | 512 x 8                                                                   |
| Voltage - Supply (Vcc/Vdd) | 4.2V ~ 5.5V                                                               |
| Data Converters            | A/D 5x10b                                                                 |
| Oscillator Type            | External                                                                  |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                         |
| Mounting Type              | Surface Mount                                                             |
| Package / Case             | 28-SOIC (0.295", 7.50mm Width)                                            |
| Supplier Device Package    | 28-SOIC                                                                   |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic18c242t-i-so |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

If the main oscillator is configured for HS-PLL mode, an oscillator start-up time (Tost) plus an additional PLL time-out (TPLL) will occur. The PLL time-out is typically 2 ms and allows the PLL to lock to the main oscillator

frequency. A timing diagram, indicating the transition from the Timer1 oscillator to the main oscillator for HS-PLL mode, is shown in Figure 2-10.





If the main oscillator is configured in the RC, RCIO, EC or ECIO modes, there is no oscillator start-up time-out. Operation will resume after eight cycles of the main oscillator have been counted. A timing diagram, indicating the transition from the Timer1 oscillator to the main oscillator for RC, RCIO, EC and ECIO modes, is shown in Figure 2-11.



| Register | Ар  | olicabl | e Devi | ces | Power-on Reset,<br>Brown-out Reset | MCLR Resets<br>WDT Reset<br>RESET Instruction<br>Stack Resets | Wake-up via WDT<br>or Interrupt |
|----------|-----|---------|--------|-----|------------------------------------|---------------------------------------------------------------|---------------------------------|
| TOSU     | 242 | 442     | 252    | 452 | 0 0000                             | 0 0000                                                        | 0 uuuu <b>(3)</b>               |
| TOSH     | 242 | 442     | 252    | 452 | 0000 0000                          | 0000 0000                                                     | uuuu uuuu <b>(3)</b>            |
| TOSL     | 242 | 442     | 252    | 452 | 0000 0000                          | 0000 0000                                                     | uuuu uuuu <b>(3)</b>            |
| STKPTR   | 242 | 442     | 252    | 452 | 00-0 0000                          | 00-0 0000                                                     | uu-u uuuu <b>(3)</b>            |
| PCLATU   | 242 | 442     | 252    | 452 | 0 0000                             | 0 0000                                                        | u uuuu                          |
| PCLATH   | 242 | 442     | 252    | 452 | 0000 0000                          | 0000 0000                                                     | uuuu uuuu                       |
| PCL      | 242 | 442     | 252    | 452 | 0000 0000                          | 0000 0000                                                     | PC + 2 <sup>(2)</sup>           |
| TBLPTRU  | 242 | 442     | 252    | 452 | 00 0000                            | 00 0000                                                       | uu uuuu                         |
| TBLPTRH  | 242 | 442     | 252    | 452 | 0000 0000                          | 0000 0000                                                     | uuuu uuuu                       |
| TBLPTRL  | 242 | 442     | 252    | 452 | 0000 0000                          | 0000 0000                                                     | uuuu uuuu                       |
| TABLAT   | 242 | 442     | 252    | 452 | 0000 0000                          | 0000 0000                                                     | uuuu uuuu                       |
| PRODH    | 242 | 442     | 252    | 452 | xxxx xxxx                          | սսսս սսսս                                                     | սսսս սսսս                       |
| PRODL    | 242 | 442     | 252    | 452 | xxxx xxxx                          | սսսս սսսս                                                     | սսսս սսսս                       |
| INTCON   | 242 | 442     | 252    | 452 | 0000 000x                          | 0000 000u                                                     | uuuu uuuu <b>(1)</b>            |
| INTCON2  | 242 | 442     | 252    | 452 | 1111 -1-1                          | 1111 -1-1                                                     | uuuu -u-u <sup>(1)</sup>        |
| INTCON3  | 242 | 442     | 252    | 452 | 11-0 0-00                          | 11-0 0-00                                                     | uu-u u-uu <sup>(1)</sup>        |
| INDF0    | 242 | 442     | 252    | 452 | N/A                                | N/A                                                           | N/A                             |
| POSTINC0 | 242 | 442     | 252    | 452 | N/A                                | N/A                                                           | N/A                             |
| POSTDEC0 | 242 | 442     | 252    | 452 | N/A                                | N/A                                                           | N/A                             |
| PREINC0  | 242 | 442     | 252    | 452 | N/A                                | N/A                                                           | N/A                             |
| PLUSW0   | 242 | 442     | 252    | 452 | N/A                                | N/A                                                           | N/A                             |
| FSR0H    | 242 | 442     | 252    | 452 | 0000                               | 0000                                                          | uuuu                            |
| FSR0L    | 242 | 442     | 252    | 452 | xxxx xxxx                          | uuuu uuuu                                                     | uuuu uuuu                       |
| WREG     | 242 | 442     | 252    | 452 | xxxx xxxx                          | uuuu uuuu                                                     | uuuu uuuu                       |
| INDF1    | 242 | 442     | 252    | 452 | N/A                                | N/A                                                           | N/A                             |
| POSTINC1 | 242 | 442     | 252    | 452 | N/A                                | N/A                                                           | N/A                             |
| POSTDEC1 | 242 | 442     | 252    | 452 | N/A                                | N/A                                                           | N/A                             |
| PREINC1  | 242 | 442     | 252    | 452 | N/A                                | N/A                                                           | N/A                             |
| PLUSW1   | 242 | 442     | 252    | 452 | N/A                                | N/A                                                           | N/A                             |

#### TABLE 3-3: INITIALIZATION CONDITIONS FOR ALL REGISTERS

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition

Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).

**3:** When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.

4: See Table 3-2 for RESET value for specific condition.

- 5: Bit 6 of PORTA, LATA, and TRISA are enabled in ECIO and RCIO oscillator modes only. In all other oscillator modes, they are disabled and read '0'.
- 6: The long write enable is only reset on a POR or MCLR Reset.
- 7: Bit 6 of PORTA, LATA and TRISA are not available on all devices. When unimplemented, they are read as '0'.

#### 4.13 STATUS Register

The STATUS register, shown in Register 4-2, contains the arithmetic status of the ALU. The STATUS register can be the destination for any instruction, as with any other register. If the STATUS register is the destination for an instruction that affects the Z, DC, C, OV or N bits, then the write to these five bits is disabled. These bits are set or cleared according to the device logic. Therefore, the result of an instruction with the STATUS register as destination may be different than intended. For example, CLRF STATUS will clear the upper three bits and set the Z bit. This leaves the STATUS register as 000u uluu (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF, MOVFF and MOVWF instructions are used to alter the STATUS register, because these instructions do not affect the Z, C, DC, OV or N bits from the STATUS register. For other instructions not affecting any status bits, see Table 19-2.

| Note: | The C and DC bits operate as a borrow and      |
|-------|------------------------------------------------|
|       | digit borrow bit respectively, in subtraction. |

#### REGISTER 4-2: STATUS REGISTER

| U-0   | U-0 | U-0 | R/W-x | R/W-x | R/W-x | R/W-x | R/W-x |
|-------|-----|-----|-------|-------|-------|-------|-------|
| —     | —   | —   | N     | OV    | Z     | DC    | С     |
| bit 7 |     |     |       |       |       |       | bit 0 |

#### bit 7-5 Unimplemented: Read as '0'

bit 4 N: Negative bit

This bit is used for signed arithmetic (2's complement). It indicates whether the result was negative, (ALU MSB = 1).

- 1 = Result was negative
- 0 = Result was positive

|--|

This bit is used for signed arithmetic (2's complement). It indicates an overflow of the 7-bit magnitude, which causes the sign bit (bit7) to change state.

- 1 = Overflow occurred for signed arithmetic (in this arithmetic operation)
- 0 = No overflow occurred

bit 2 Z: Zero bit

1 = The result of an arithmetic or logic operation is zero

0 = The result of an arithmetic or logic operation is not zero

#### bit 1 DC: Digit carry/borrow bit

For ADDWF, ADDLW, SUBLW, and SUBWF instructions

1 = A carry-out from the 4th low order bit of the result occurred

- 0 = No carry-out from the 4th low order bit of the result
- **Note:** For borrow, the polarity is reversed. A subtraction is executed by adding the two's complement of the second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the bit 4 or bit 3 of the source register.

#### bit 0 **C:** Carry/borrow bit

For ADDWF, ADDLW, SUBLW, and SUBWF instructions

- 1 = A carry-out from the Most Significant bit of the result occurred
- 0 = No carry-out from the Most Significant bit of the result occurred
- **Note:** For borrow, the polarity is reversed. A subtraction is executed by adding the two's complement of the second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high or low order bit of the source register.

| Legend:                  |                  |                      |                    |
|--------------------------|------------------|----------------------|--------------------|
| R = Readable bit         | W = Writable bit | U = Unimplemented    | bit, read as '0'   |
| - n = Value at POR reset | '1' = Bit is set | '0' = Bit is cleared | x = Bit is unknown |

## 6.0 8 X 8 HARDWARE MULTIPLIER

#### 6.1 Introduction

An 8 x 8 hardware multiplier is included in the ALU of the PIC18CXX2 devices. By making the multiply a hardware operation, it completes in a single instruction cycle. This is an unsigned multiply that gives a 16-bit result. The result is stored into the 16-bit product register pair (PRODH:PRODL). The multiplier does not affect any flags in the ALUSTA register. Making the 8 x 8 multiplier execute in a single cycle gives the following advantages:

- Higher computational throughput
- Reduces code size requirements for multiply algorithms

The performance increase allows the device to be used in applications previously reserved for Digital Signal Processors.

Table 6-1 shows a performance comparison between enhanced devices using the single cycle hardware multiply, and performing the same function without the hardware multiply.

|                  |                           | Program           | Cvcles | Time     |          |         |  |
|------------------|---------------------------|-------------------|--------|----------|----------|---------|--|
| Routine          | Multiply Method           | Memory<br>(Words) | (Max)  | @ 40 MHz | @ 10 MHz | @ 4 MHz |  |
| 0 x 0 uppigpod   | Without hardware multiply | 13                | 69     | 6.9 μs   | 27.6 μs  | 69 μs   |  |
| o x o unsigned   | Hardware multiply         | 1                 | 1      | 100 ns   | 400 ns   | 1 μs    |  |
| 0 v 0 signad     | Without hardware multiply | 33                | 91     | 9.1 μs   | 36.4 μs  | 91 μs   |  |
| o x o signed     | Hardware multiply         | 6                 | 6      | 600 ns   | 2.4 μs   | 6 μs    |  |
| 16 x 16 uppigpod | Without hardware multiply | 21                | 242    | 24.2 μs  | 96.8 μs  | 242 μs  |  |
| To x To unsigned | Hardware multiply         | 24                | 24     | 2.4 μs   | 9.6 μs   | 24 μs   |  |
| 16 x 16 signed   | Without hardware multiply | 52                | 254    | 25.4 μs  | 102.6 μs | 254 μs  |  |
| TO X TO Signed   | Hardware multiply         | 36                | 36     | 3.6 μs   | 14.4 μs  | 36 μs   |  |

### TABLE 6-1: PERFORMANCE COMPARISON

### 6.2 Operation

Example 6-1 shows the sequence to do an 8 x 8 unsigned multiply. Only one instruction is required when one argument of the multiply is already loaded in the WREG register.

Example 6-2 shows the sequence to do an 8 x 8 signed multiply. To account for the sign bits of the arguments, each argument's Most Significant bit (MSb) is tested and the appropriate subtractions are done.

#### EXAMPLE 6-1: 8 x 8 UNSIGNED MULTIPLY ROUTINE

| MOVF  | ARG1, W | ;                |
|-------|---------|------------------|
| MULWF | ARG2    | ; ARG1 * ARG2 -> |
|       |         | ; PRODH:PRODL    |

#### EXAMPLE 6-2: 8 x 8 SIGNED MULTIPLY ROUTINE

| MOVF  | ARG1,  | W  |                  |
|-------|--------|----|------------------|
| MULWF | ARG2   |    | ; ARG1 * ARG2 -> |
|       |        |    | ; PRODH:PRODL    |
| BTFSC | ARG2,  | SB | ; Test Sign Bit  |
| SUBWF | PRODH, | F  | ; PRODH = PRODH  |
|       |        |    | ; - ARG1         |
| MOVF  | ARG2,  | W  |                  |
| BTFSC | ARG1,  | SB | ; Test Sign Bit  |
| SUBWF | PRODH, | F  | ; PRODH = PRODH  |
|       |        |    | ; - ARG2         |
|       |        |    |                  |

Example 6-3 shows the sequence to do a 16 x 16 unsigned multiply. Equation 6-1 shows the algorithm that is used. The 32-bit result is stored in four registers, RES3:RES0.

#### EQUATION 6-1: 16 x 16 UNSIGNED MULTIPLICATION ALGORITHM

RES3:RES0 = ARG1H:ARG1L • ARG2H:ARG2L

- $(ARG1H \bullet ARG2H \bullet 2^{16}) +$  $(ARG1H \bullet ARG2L \bullet 2^{8}) +$  $(ARG1L \bullet ARG2H \bullet 2^{8}) +$ 
  - (ARG1L ARG2L)

### 7.2 PIR Registers

The PIR registers contain the individual flag bits for the peripheral interrupts. Due to the number of peripheral interrupt sources, there are two Peripheral Interrupt Flag Registers (PIR1, PIR2).

- **Note 1:** Interrupt flag bits get set when an interrupt condition occurs, regardless of the state of its corresponding enable bit, or the global enable bit, GIE (INTCON<7>).
  - 2: User software should ensure the appropriate interrupt flag bits are cleared prior to enabling an interrupt, and after servicing that interrupt.

# REGISTER 7-4: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 1 (PIR1)

| R/W-0                                                                             | R/W-0                                                                      | R-0                                          | R-0                                | R/W-0         | R/W-0         | R/W-0         | R/W-0   |
|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------|------------------------------------|---------------|---------------|---------------|---------|
| PSPIF                                                                             | ADIF                                                                       | RCIF                                         | TXIF                               | SSPIF         | CCP1IF        | TMR2IF        | TMR1IF  |
| bit 7                                                                             |                                                                            |                                              |                                    |               |               |               | bit 0   |
| PSPIF: Pa                                                                         | arallel Slave Po                                                           | rt Read/Wr                                   | ite Interrupt F                    | Flag bit      |               |               |         |
| 1 = A read<br>0 = No rea                                                          | d or a write oper<br>ad or write has                                       | ration has t<br>occurred                     | aken place (ı                      | must be cle   | ared in soft  | ware)         |         |
| <b>ADIF</b> : A/D<br>1 = An A/i<br>0 = The A                                      | ) Converter Inte<br>D conversion cc<br>/D conversion i:                    | rrupt Flag b<br>ompleted (r<br>s not comp    | oit<br>nust be clear<br>lete       | ed in softwa  | are)          |               |         |
| <b>RCIF</b> : US/<br>1 = The U<br>0 = The L                                       | ART Receive In<br>ISART receive t<br>JSART receive t                       | iterrupt Flag<br>ouffer, RCR<br>buffer is en | g bit<br>tEG, is full (cl<br>npty  | eared wher    | ו RCREG is    | s read)       |         |
| <b>TXIF</b> : USA<br>1 = The U<br>0 = The U                                       | ART Transmit In<br>ISART transmit<br>ISART transmit                        | nterrupt Fla<br>buffer, TXF<br>buffer is fu  | g bit<br>₹EG, is empty<br>II       | y (cleared w  | /hen TXRE     | G is written) | 1       |
| SSPIF: M                                                                          | aster Synchron                                                             | ous Serial I                                 | Port Interrupt                     | Flag bit      |               |               |         |
| 1 = The tra<br>0 = Waitir                                                         | ansmission/receng to transmit/re                                           | eption is co<br>ceive                        | mplete (mus                        | t be cleared  | d in software | e)            |         |
| <b>CCP1IF</b> : 0<br><u>Capture m</u><br>1 = A TMI<br>0 = No TM<br><u>Compare</u> | CCP1 Interrupt I<br>node:<br>R1 register capt<br>MR1 register caj<br>mode: | Flag bit<br>ture occurre<br>pture occur      | ed (must be c<br>rred              | cleared in so | oftware)      |               |         |
| 1 = A TMF<br>0 = No TM<br><u>PWM mor</u><br>Unused ir                             | R1 register com<br>/IR1 register cor<br><u>de:</u><br>n this mode          | pare match                                   | ו occurred (m<br>ch occurred       | າust be clea  | red in softw  | vare)         |         |
| <b>TMR2IF:</b><br>1 = TMR2<br>0 = No TM                                           | TMR2 to PR2 M<br>2 to PR2 match<br>/IR2 to PR2 mat                         | latch Interr<br>occurred (r<br>tch occurre   | upt Flag bit<br>nust be clear<br>d | ed in softwa  | are)          |               |         |
| <b>TMR1IF:</b><br>1 = TMR1<br>0 = MR1                                             | TMR1 Overflow<br>register overflo<br>register did not                      | Interrupt F<br>wed (must<br>overflow         | ilag bit<br>be cleared in          | n software)   |               |               |         |
| Legend:                                                                           |                                                                            |                                              |                                    |               |               |               |         |
| R = Read                                                                          | able bit                                                                   | W = Writ                                     | able bit                           | U = Unim      | plemented     | bit, read as  | ʻ0'     |
| - n = Valu                                                                        | e at POR reset                                                             | '1' = Bit i                                  | is set                             | '0' = Bit is  | s cleared     | x = Bit is    | unknown |

| Name       | Bit# | Buffer Type           | Function                                                                                                                                                                                          |
|------------|------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RE0/RD/AN5 | bit0 | ST/TTL <sup>(1)</sup> | Input/output port pin or read control input in Parallel Slave Port mode<br>or analog input:<br>RD                                                                                                 |
|            |      |                       | <ul><li>1 = Not a read operation</li><li>0 = Read operation. Reads PORTD register (if chip selected).</li></ul>                                                                                   |
| RE1/WR/AN6 | bit1 | ST/TTL <sup>(1)</sup> | Input/output port pin or write control input in Parallel Slave Port mode<br>or analog input:<br>WR<br>1 = Not a write operation<br>0 = Write operation. Writes PORTD register (if chip selected). |
| RE2/CS/AN7 | bit2 | ST/TTL <sup>(1)</sup> | Input/output port pin or chip select control input in Parallel Slave Port<br>mode or analog input:<br>$\overline{CS}$<br>1 = Device is not selected<br>0 = Device is selected                     |

| TABLE 8-9: PORTEFUNCTION |
|--------------------------|
|--------------------------|

Legend: ST = Schmitt Trigger input, TTL = TTL input

Note 1: Input buffers are Schmitt Triggers when in I/O mode and TTL buffers when in Parallel Slave Port mode.

| TABLE 0-10. SUMINIART OF REGISTERS ASSOCIATED WITH FORTE | TABLE 8-10: | SUMMARY OF REGISTERS ASSOCIATED WITH PORTE |
|----------------------------------------------------------|-------------|--------------------------------------------|
|----------------------------------------------------------|-------------|--------------------------------------------|

| Name   | Bit 7 | Bit 6 | Bit 5 | Bit 4   | Bit 3 | Bit 2                     | Bit 1      | Bit 0  | Value on<br>POR,<br>BOR | Value on all<br>other<br>RESETS |
|--------|-------|-------|-------|---------|-------|---------------------------|------------|--------|-------------------------|---------------------------------|
| PORTE  | _     | _     |       | —       | _     | RE2                       | RE1        | RE0    | 000                     | 000                             |
| LATE   | —     | —     | _     | —       | —     | LATE Data                 | Output Reg | jister | xxx                     | uuu                             |
| TRISE  | IBF   | OBF   | IBOV  | PSPMODE | —     | PORTE Data Direction bits |            |        | 0000 -111               | 0000 -111                       |
| ADCON1 | ADFM  | ADCS2 |       | —       | PCFG3 | PCFG2                     | PCFG1      | PCFG0  | 0000                    | 0000                            |

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by PORTE.



TABLE 8-11: REGISTERS ASSOCIATED WITH PARALLEL SLAVE PORT

| Name   | Bit 7        | Bit 6         | Bit 5         | Bit 4          | Bit 3 | Bit 2     | Bit 1         | Bit 0  | Value on<br>POR, BOR | Value on all<br>other<br>RESETS |
|--------|--------------|---------------|---------------|----------------|-------|-----------|---------------|--------|----------------------|---------------------------------|
| PORTD  | Port Data    | Latch whe     | en written; F | Port pins when | read  |           |               |        | xxxx xxxx            | uuuu uuuu                       |
| LATD   | LATD Dat     | a Output b    | its           |                |       |           |               |        | xxxx xxxx            | uuuu uuuu                       |
| TRISD  | PORTD D      | ata Directi   | on bits       |                |       |           |               |        | 1111 1111            | 1111 1111                       |
| PORTE  | —            | —             | _             | —              | —     | RE2       | RE1           | RE0    | 000                  | 000                             |
| LATE   | —            | _             | _             | —              | _     | LATE Data | a Output bits | 6      | xxx                  | uuu                             |
| TRISE  | IBF          | OBF           | IBOV          | PSPMODE        | _     | PORTE D   | ata Directio  | n bits | 0000 -111            | 0000 -111                       |
| INTCON | GIE/<br>GIEH | PEIE/<br>GIEL | TMR0IF        | INTOIE         | RBIE  | TMR0IF    | INT0IF        | RBIF   | 0000 000x            | 0000 000u                       |
| PIR1   | PSPIF        | ADIF          | RCIF          | TXIF           | SSPIF | CCP1IF    | TMR2IF        | TMR1IF | 0000 0000            | 0000 0000                       |
| PIE1   | PSPIE        | ADIE          | RCIE          | TXIE           | SSPIE | CCP1IE    | TMR2IE        | TMR1IE | 0000 0000            | 0000 0000                       |
| IPR1   | PSPIP        | ADIP          | RCIP          | TXIP           | SSPIP | CCP1IP    | TMR2IP        | TMR1IP | 0000 0000            | 0000 0000                       |
| ADCON1 | ADFM         | ADCS2         | _             | —              | PCFG3 | PCFG2     | PCFG1         | PCFG0  | 0000                 | 0000                            |

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the Parallel Slave Port.

### 12.2 Timer1 Oscillator

The Timer1 oscillator may be used as the clock source for Timer3. The Timer1 oscillator is enabled by setting the T1OSCEN (T1CON<3>) bit. The oscillator is a low power oscillator rated up to 200 KHz. See Section 10.0 for further details.

#### 12.3 Timer3 Interrupt

The TMR3 Register pair (TMR3H:TMR3L) increments from 0000h to FFFFh and rolls over to 0000h. The TMR3 interrupt, if enabled, is generated on overflow which is latched in interrupt flag bit TMR3IF (PIR2<1>). This interrupt can be enabled/disabled by setting/clearing TMR3 interrupt enable bit, TMR3IE (PIE2<1>).

#### 12.4 Resetting Timer3 Using a CCP Trigger Output

If the CCP module is configured in Compare mode to generate a "special event trigger" (CCP1M3:CCP1M0 = 1011), this signal will reset Timer3.

| Note: | The special event triggers from the CC | Ρ   |
|-------|----------------------------------------|-----|
|       | module will not set interrupt flag b   | oit |
|       | TMR3IF (PIR1<0>).                      |     |

Timer3 must be configured for either Timer or Synchronized Counter mode to take advantage of this feature. If Timer3 is running in Asynchronous Counter mode, this RESET operation may not work. In the event that a write to Timer3 coincides with a special event trigger from CCP1, the write will take precedence. In this mode of operation, the CCPR1H:CCPR1L registers pair effectively becomes the period register for Timer3.

| Name   | Bit 7        | Bit 6          | Bit 5        | Bit 4         | Bit 3          | Bit 2       | Bit 1  | Bit 0  | Value on<br>POR,<br>BOR | Value on<br>all other<br>RESETS |
|--------|--------------|----------------|--------------|---------------|----------------|-------------|--------|--------|-------------------------|---------------------------------|
| INTCON | GIE/<br>GIEH | PEIE/<br>GIEL  | TMR0IE       | INTOIE        | RBIE           | TMR0IF      | INTOIF | RBIF   | 0000 000x               | 0000 000u                       |
| PIR2   | —            | —              | —            | —             | BCLIF          | LVDIF       | TMR3IF | CCP2IF | 0000 0000               | 0000 0000                       |
| PIE2   | —            | —              | —            | —             | BCLIE          | LVDIE       | TMR3IE | CCP2IE | 0000 0000               | 0000 0000                       |
| IPR2   | —            | —              | —            | —             | BCLIP          | LVDIP       | TMR3IP | CCP2IP | 0000 0000               | 0000 0000                       |
| TMR3L  | Holding F    | Register for t | he Least Sig | gnificant Byt | e of the 16-b  | oit TMR3 Re | gister |        | xxxx xxxx               | uuuu uuuu                       |
| TMR3H  | Holding F    | Register for t | he Most Sig  | nificant Byte | e of the 16-bi | it TMR3 Reg | gister |        | xxxx xxxx               | uuuu uuuu                       |
| T1CON  | RD16         | —              | T1CKPS1      | T1CKPS0       | T1OSCEN        | T1SYNC      | TMR1CS | TMR10N | 00 0000                 | uu uuuu                         |
| T3CON  | RD16         | T3CCP2         | T3CKPS1      | T3CKPS0       | T3CCP1         | T3SYNC      | TMR3CS | TMR3ON | -000 0000               | -uuu uuuu                       |

#### TABLE 12-1: REGISTERS ASSOCIATED WITH TIMER3 AS A TIMER/COUNTER

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the Timer1 module.

#### 14.4.10 ACKNOWLEDGE SEQUENCE TIMING

An Acknowledge sequence is enabled by setting the Acknowledge sequence enable bit, ACKEN (SSPCON2<4>). When this bit is set, the SCL pin is pulled low and the contents of the Acknowledge data bit is presented on the SDA pin. If the user wishes to generate an Acknowledge, then the ACKDT bit should be cleared. If not, the user should set the ACKDT bit before starting an Acknowledge sequence. The baud rate generator then counts for one rollover period (TBRG) and the SCL pin is de-asserted (pulled high). When the SCL pin is sampled high (clock arbitration), the baud rate generator counts for TBRG. The SCL pin is then pulled low. Following this, the ACKEN bit is automatically cleared, the baud rate generator is turned off and the MSSP module then goes into IDLE mode (Figure 14-20).

#### 14.4.10.1 WCOL Status Flag

If the user writes the SSPBUF when an Acknowledge sequence is in progress, then WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).

#### 14.4.11 STOP CONDITION TIMING

A STOP bit is asserted on the SDA pin at the end of a receive/transmit by setting the STOP sequence enable bit, PEN (SSPCON2<2>). At the end of a receive/transmit, the SCL line is held low after the falling edge of the ninth clock. When the PEN bit is set, the master will assert the SDA line low. When the SDA line is sampled low, the baud rate generator is reloaded and counts down to 0. When the baud rate generator times out, the SCL pin will be brought high, and one TBRG (baud rate generator rollover count) later, the SDA pin will be de-asserted. When the SDA pin is sampled high while SCL is high, the P bit (SSPSTAT<4>) is set. A TBRG later, the PEN bit is cleared and the SSPIF bit is set (Figure 14-21).

#### 14.4.11.1 WCOL Status Flag

If the user writes the SSPBUF when a STOP sequence is in progress, then the WCOL bit is set and the contents of the buffer are unchanged (the write doesn't occur).

#### FIGURE 14-20: ACKNOWLEDGE SEQUENCE WAVEFORM



| -           |                    |            |                             |                        |            |                             | -                     |            |                             |                       |            |                             |
|-------------|--------------------|------------|-----------------------------|------------------------|------------|-----------------------------|-----------------------|------------|-----------------------------|-----------------------|------------|-----------------------------|
| BAUD        | Fo                 | sc = 40 I  | MHz                         | Fosc = 20 MHz          |            |                             | F                     | osc = 16   | MHz                         | Fosc = 10 MHz         |            |                             |
| RATE<br>(K) | Actual<br>Rate (K) | %<br>Error | SPBRG<br>value<br>(decimal) | Actua<br>I Rate<br>(K) | %<br>Error | SPBRG<br>value<br>(decimal) | Actual<br>Rate<br>(K) | %<br>Error | SPBRG<br>value<br>(decimal) | Actual<br>Rate<br>(K) | %<br>Error | SPBRG<br>value<br>(decimal) |
| 0.3         | NA                 | _          | _                           | NA                     | _          | _                           | NA                    | _          | _                           | NA                    | _          |                             |
| 1.2         | NA                 | _          | _                           | NA                     | _          | _                           | NA                    | _          | _                           | NA                    | _          | _                           |
| 2.4         | NA                 | —          | —                           | NA                     | —          | —                           | NA                    | —          |                             | NA                    | —          | —                           |
| 9.6         | NA                 | —          | —                           | NA                     | —          | —                           | NA                    | —          |                             | 9.766                 | +1.73      | 255                         |
| 19.2        | NA                 | —          | —                           | 19.53                  | +1.73      | 255                         | 19.23                 | +0.16      | 207                         | 19.23                 | +0.16      | 129                         |
| 76.8        | 76.92              | 0          | 129                         | 76.92                  | +0.16      | 64                          | 76.92                 | +0.16      | 51                          | 75.76                 | -1.36      | 32                          |
| 96          | 96.15              | 0          | 103                         | 96.15                  | +0.16      | 51                          | 95.24                 | -0.79      | 41                          | 96.15                 | +0.16      | 25                          |
| 300         | 303.03             | -0.01      | 32                          | 294.1                  | -1.96      | 16                          | 307.69                | +2.56      | 12                          | 312.5                 | +4.17      | 7                           |
| 500         | 500.00             | 0          | 19                          | 500                    | 0          | 9                           | 500                   | 0          | 7                           | 500                   | 0          | 4                           |
| HIGH        | 39.06              | —          | 255                         | 5000                   | —          | 0                           | 4000                  | —          | 0                           | 2500                  | —          | 0                           |
| LOW         | 10000.00           | _          | 0                           | 19.53                  | _          | 255                         | 15.625                | _          | 255                         | 9.766                 | _          | 255                         |

#### TABLE 15-3: BAUD RATES FOR SYNCHRONOUS MODE

| BAUD        | Fos                   | c = 7.159  | 09 MHz                      | Fosc = 5.0688 MHz     |            |                             | F                     | osc = 4    | MHz                         | Fosc = 3.579545 MHz   |            |                             |
|-------------|-----------------------|------------|-----------------------------|-----------------------|------------|-----------------------------|-----------------------|------------|-----------------------------|-----------------------|------------|-----------------------------|
| RATE<br>(K) | Actual<br>Rate<br>(K) | %<br>Error | SPBRG<br>value<br>(decimal) |
| 0.3         | NA                    | _          | _                           | NA                    | _          | _                           | NA                    | _          |                             | NA                    |            |                             |
| 1.2         | NA                    | _          | —                           | NA                    | —          | _                           | NA                    | _          | —                           | NA                    | _          |                             |
| 2.4         | NA                    | —          | —                           |
| 9.6         | 9.622                 | +0.23      | 185                         | 9.6                   | 0          | 131                         | 9.615                 | +0.16      | 103                         | 9.622                 | +0.23      | 92                          |
| 19.2        | 19.24                 | +0.23      | 92                          | 19.2                  | 0          | 65                          | 19.231                | +0.16      | 51                          | 19.04                 | -0.83      | 46                          |
| 76.8        | 77.82                 | +1.32      | 22                          | 79.2                  | +3.13      | 15                          | 76.923                | +0.16      | 12                          | 74.57                 | -2.90      | 11                          |
| 96          | 94.20                 | -1.88      | 18                          | 97.48                 | +1.54      | 12                          | 1000                  | +4.17      | 9                           | 99.43                 | +3.57      | 8                           |
| 300         | 298.3                 | -0.57      | 5                           | 316.8                 | +5.60      | 3                           | NA                    | —          | —                           | 298.3                 | -0.57      | 2                           |
| 500         | NA                    | —          | —                           |
| HIGH        | 1789.8                | —          | 0                           | 1267                  | —          | 0                           | 100                   | —          | 0                           | 894.9                 | —          | 0                           |
| LOW         | 6.991                 | _          | 255                         | 4.950                 | _          | 255                         | 3.906                 | _          | 255                         | 3.496                 | _          | 255                         |

| DAUD        | F                     | osc = 1    | MHz                         | Fos                   | SC = 32.70 | 68 kHz                      |
|-------------|-----------------------|------------|-----------------------------|-----------------------|------------|-----------------------------|
| RATE<br>(K) | Actual<br>Rate<br>(K) | %<br>Error | SPBRG<br>value<br>(decimal) | Actual<br>Rate<br>(K) | %<br>Error | SPBRG<br>value<br>(decimal) |
| 0.3         | NA                    |            |                             | 0.303                 | +1.14      | 26                          |
| 1.2         | 1.202                 | +0.16      | 207                         | 1.170                 | -2.48      | 6                           |
| 2.4         | 2.404                 | +0.16      | 103                         | NA                    | _          | —                           |
| 9.6         | 9.615                 | +0.16      | 25                          | NA                    | _          | —                           |
| 19.2        | 19.24                 | +0.16      | 12                          | NA                    | _          | —                           |
| 76.8        | 83.34                 | +8.51      | 2                           | NA                    | _          | —                           |
| 96          | NA                    |            | —                           | NA                    | _          | —                           |
| 300         | NA                    |            | —                           | NA                    | _          | —                           |
| 500         | NA                    |            | —                           | NA                    | _          | —                           |
| HIGH        | 250                   |            | 0                           | 8.192                 | _          | 0                           |
| LOW         | 0.9766                | _          | 255                         | 0.032                 | _          | 255                         |

#### 15.3.2 USART SYNCHRONOUS MASTER RECEPTION

Once Synchronous mode is selected, reception is enabled by setting either enable bit SREN (RCSTA<5>), or enable bit CREN (RCSTA<4>). Data is sampled on the RC7/RX/DT pin on the falling edge of the clock. If enable bit SREN is set, only a single word is received. If enable bit CREN is set, the reception is continuous until CREN is cleared. If both bits are set, then CREN takes precedence.

To set up a Synchronous Master Reception:

- 1. Initialize the SPBRG register for the appropriate baud rate (Section 15.1).
- 2. Enable the synchronous master serial port by setting bits SYNC, SPEN and CSRC.

- 3. Ensure bits CREN and SREN are clear.
- 4. If interrupts are desired, set enable bit RCIE.
- 5. If 9-bit reception is desired, set bit RX9.
- 6. If a single reception is required, set bit SREN. For continuous reception, set bit CREN.
- Interrupt flag bit RCIF will be set when reception is complete and an interrupt will be generated if the enable bit RCIE was set.
- 8. Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 9. Read the 8-bit received data by reading the RCREG register.
- 10. If any error occurred, clear the error by clearing bit CREN.

| Name   | Bit 7                | Bit 6         | Bit 5   | Bit 4     | Bit 3     | Bit 2  | Bit 1  | Bit 0  | Value on     Value on       Bit 0     POR,       BOR |           |
|--------|----------------------|---------------|---------|-----------|-----------|--------|--------|--------|------------------------------------------------------|-----------|
| INTCON | GIE/<br>GIEH         | PEIE/<br>GIEL | TMR0IE  | INTOIE    | RBIE      | TMR0IF | INTOIF | RBIF   | 0000 000x                                            | 0000 000u |
| PIR1   | PSPIF <sup>(1)</sup> | ADIF          | RCIF    | TXIF      | SSPIF     | CCP1IF | TMR2IF | TMR1IF | 0000 0000                                            | 0000 0000 |
| PIE1   | PSPIE <sup>(1)</sup> | ADIE          | RCIE    | TXIE      | SSPIE     | CCP1IE | TMR2IE | TMR1IE | 0000 0000                                            | 0000 0000 |
| IPR1   | PSPIP <sup>(1)</sup> | ADIP          | RCIP    | TXIP      | SSPIP     | CCP1IP | TMR2IP | TMR1IP | 0000 0000                                            | 0000 0000 |
| RCSTA  | SPEN                 | RX9           | SREN    | CREN      | ADDEN     | FERR   | OERR   | RX9D   | 0000 -00x                                            | 0000 -00x |
| RCREG  | USART R              | eceive R      | egister |           |           |        |        |        | 0000 0000                                            | 0000 0000 |
| TXSTA  | CSRC                 | TX9           | TXEN    | SYNC      |           | BRGH   | TRMT   | TX9D   | 0000 -010                                            | 0000 -010 |
| SPBRG  | Baud Rate            | e Genera      |         | 0000 0000 | 0000 0000 |        |        |        |                                                      |           |

#### TABLE 15-9: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION

Legend: x = unknown, - = unimplemented, read as '0'.

Shaded cells are not used for Synchronous Master Reception.

#### FIGURE 15-8: SYNCHRONOUS RECEPTION (MASTER MODE, SREN)



© 1999-2013 Microchip Technology Inc.

**Note 1:** The PSPIF, PSPIE and PSPIP bits are reserved on the PIC18C2X2 devices. Always maintain these bits clear.

NOTES:

| TABLE 19-2: | PIC18CXXX INSTRUCTION SET | (CONTINUED) |
|-------------|---------------------------|-------------|
|-------------|---------------------------|-------------|

| Mnen    | nonic,                                 | Description                     | Cycles       | 16-  | bit Inst | ruction | Word | Status          | Nataa |
|---------|----------------------------------------|---------------------------------|--------------|------|----------|---------|------|-----------------|-------|
| Oper    | ands                                   | Description                     | Cycles       | MSb  |          |         | LSb  | Affected        | Notes |
| LITERAL | OPERAT                                 | IONS                            |              |      |          |         |      |                 |       |
| ADDLW   | k                                      | Add literal and WREG            | 1            | 0000 | 1111     | kkkk    | kkkk | C, DC, Z, OV, N |       |
| ANDLW   | k                                      | AND literal with WREG           | 1            | 0000 | 1011     | kkkk    | kkkk | Z, N            |       |
| IORLW   | k                                      | Inclusive OR literal with WREG  | 1            | 0000 | 1001     | kkkk    | kkkk | Z, N            |       |
| LFSR    | f, k                                   | Move literal (12-bit) 2nd word  | 2            | 1110 | 1110     | 00ff    | kkkk | None            |       |
|         |                                        | to FSRx 1st word                |              | 1111 | 0000     | kkkk    | kkkk |                 |       |
| MOVLB   | k                                      | Move literal to BSR<3:0>        | 1            | 0000 | 0001     | 0000    | kkkk | None            |       |
| MOVLW   | k                                      | Move literal to WREG            | 1            | 0000 | 1110     | kkkk    | kkkk | None            |       |
| MULLW   | k                                      | Multiply literal with WREG      | 1            | 0000 | 1101     | kkkk    | kkkk | None            |       |
| RETLW   | k                                      | Return with literal in WREG     | 2            | 0000 | 1100     | kkkk    | kkkk | None            |       |
| SUBLW   | k                                      | Subtract WREG from literal      | 1            | 0000 | 1000     | kkkk    | kkkk | C, DC, Z, OV, N |       |
| XORLW   | k                                      | Exclusive OR literal with WREG  | 1            | 0000 | 1010     | kkkk    | kkkk | Z, N            |       |
| DATA ME |                                        | PROGRAM MEMORY OPERATI          | ONS          |      |          |         |      |                 |       |
| TBLRD*  |                                        | Table Read                      | 2            | 0000 | 0000     | 0000    | 1000 | None            |       |
| TBLRD*+ |                                        | Table Read with post-increment  |              | 0000 | 0000     | 0000    | 1001 | None            |       |
| TBLRD*- |                                        | Table Read with post-decrement  |              | 0000 | 0000     | 0000    | 1010 | None            |       |
| TBLRD+* |                                        | Table Read with pre-increment   |              | 0000 | 0000     | 0000    | 1011 | None            |       |
| TBLWT*  |                                        | Table Write                     | 2 <b>(5)</b> | 0000 | 0000     | 0000    | 1100 | None            |       |
| TBLWT*+ | SLWT*+ Table Write with post-increment |                                 |              | 0000 | 0000     | 0000    | 1101 | None            |       |
| TBLWT*- |                                        | Table Write with post-decrement |              | 0000 | 0000     | 0000    | 1110 | None            |       |
| TBLWT+* | r                                      | Table Write with pre-increment  |              | 0000 | 0000     | 0000    | 1111 | None            |       |

**Note 1:** When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned.

**3:** If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

4: Some instructions are 2 word instructions. The second word of these instructions will be executed as a NOP, unless the first word of the instruction retrieves the information embedded in these 16-bits. This ensures that all program memory locations have a valid instruction.

5: If the table write starts the write cycle to internal memory, the write will continue until terminated.

| AND        | OWF            | AND WRI                                                                                                                                                                                                                                                                                           | EG with f                |                      | В        | с                              | Branch if                                                                                      | Carry                                                                                                                                                                                                                  |             |  |  |
|------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------------|----------|--------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|--|
| Syn        | tax:           | [label] A                                                                                                                                                                                                                                                                                         | NDWF f[                  | ,d [,a]              | S        | yntax:                         | [ <i>label</i> ] B                                                                             | C n                                                                                                                                                                                                                    |             |  |  |
| Ope        | rands:         | $0 \le f \le 25$                                                                                                                                                                                                                                                                                  | 5                        |                      | 0        | perands:                       | -128 ≤ n ≤                                                                                     | 127                                                                                                                                                                                                                    |             |  |  |
|            |                | $\begin{array}{l} d \in [0,1] \\ a \in [0,1] \end{array}$                                                                                                                                                                                                                                         |                          |                      | 0        | peration:                      | if carry bit<br>(PC) + 2                                                                       | is '1'<br>2 + 2n $\rightarrow$ PC                                                                                                                                                                                      |             |  |  |
| Ope        | ration:        | (WREG) .                                                                                                                                                                                                                                                                                          | AND. (f) $\rightarrow$ d | lest                 | S        | atus Affected:                 | None                                                                                           | None                                                                                                                                                                                                                   |             |  |  |
| Stat       | us Affected:   | N,Z                                                                                                                                                                                                                                                                                               |                          |                      | E        | ncoding:                       | 1110                                                                                           | 0010 nn                                                                                                                                                                                                                | nn nnnn     |  |  |
| Enc        | oding:         | 0001                                                                                                                                                                                                                                                                                              | 01da ff:                 | ff ffff              | D        | escription:                    | If the Carr                                                                                    | v bit is '1'. th                                                                                                                                                                                                       | en the pro- |  |  |
| Des        | cription:      | otion: The contents of WREG are AND'ed<br>with register 'f'. If 'd' is 0, the result<br>is stored in WREG. If 'd' is 1, the<br>result is stored back in register 'f'<br>(default). If 'a' is 0, the Access<br>Bank will be selected. If 'a' is 1, the<br>BSR will not be overridden<br>(default). |                          |                      |          | /ords:                         | gram will I<br>The 2's cc<br>added to t<br>have incre<br>instruction<br>PC+2+2n.<br>a two-cycl | The 2's complement number '2n' is<br>added to the PC. Since the PC will<br>have incremented to fetch the next<br>instruction, the new address will be<br>PC+2+2n. This instruction is then<br>a two-cycle instruction. |             |  |  |
| Wor        | ds:            | 1                                                                                                                                                                                                                                                                                                 |                          |                      | С        | vcles:                         | 1(2)                                                                                           |                                                                                                                                                                                                                        |             |  |  |
| Сус        | les:           | 1                                                                                                                                                                                                                                                                                                 |                          |                      | Ċ        | Cvcle Activit                  | v:                                                                                             |                                                                                                                                                                                                                        |             |  |  |
| QC         | Cycle Activity | :                                                                                                                                                                                                                                                                                                 |                          |                      | I        | Jump:                          | ,                                                                                              |                                                                                                                                                                                                                        |             |  |  |
|            | Q1             | Q2                                                                                                                                                                                                                                                                                                | Q3                       | Q4                   | -        | Q1                             | Q2                                                                                             | Q3                                                                                                                                                                                                                     | Q4          |  |  |
|            | Decode         | Read<br>register 'f'                                                                                                                                                                                                                                                                              | Process<br>Data          | Write to destination |          | Decode                         | Read literal<br>'n'                                                                            | Process<br>Data                                                                                                                                                                                                        | Write to PC |  |  |
|            |                |                                                                                                                                                                                                                                                                                                   |                          |                      |          | No                             | No                                                                                             | No                                                                                                                                                                                                                     | No          |  |  |
| <u>Exa</u> | <u>mple</u> :  | ANDWF                                                                                                                                                                                                                                                                                             | REG, 0, 0                |                      | H        |                                | operation                                                                                      | operation                                                                                                                                                                                                              | operation   |  |  |
|            | Before Instru  | uction                                                                                                                                                                                                                                                                                            |                          |                      | •        | Q1                             | 02                                                                                             | Q3                                                                                                                                                                                                                     | Q4          |  |  |
|            | WREG<br>REG    | = 0x17<br>= 0xC2                                                                                                                                                                                                                                                                                  |                          |                      |          | Decode                         | Read literal                                                                                   | Process                                                                                                                                                                                                                | No          |  |  |
|            | After Instruc  | tion                                                                                                                                                                                                                                                                                              |                          |                      |          |                                | 'n'                                                                                            | Data                                                                                                                                                                                                                   | operation   |  |  |
|            | WREG<br>REG    | = 0x02 $= 0xC2$                                                                                                                                                                                                                                                                                   |                          |                      | <u>E</u> | <u>xample</u> :<br>Before Inst | HERE                                                                                           | BC 5                                                                                                                                                                                                                   |             |  |  |
|            |                |                                                                                                                                                                                                                                                                                                   |                          |                      |          | PC = address (HERE)            |                                                                                                |                                                                                                                                                                                                                        |             |  |  |
|            |                |                                                                                                                                                                                                                                                                                                   |                          |                      |          | After Instru                   | ction                                                                                          |                                                                                                                                                                                                                        |             |  |  |

If Carry PC If Carry PC

= = = l; address (HERE+12) 0; address (HERE+2)

### 20.13 PICDEM 3 Low Cost PIC16CXXX Demonstration Board

The PICDEM 3 demonstration board is a simple demonstration board that supports the PIC16C923 and PIC16C924 in the PLCC package. It will also support future 44-pin PLCC microcontrollers with an LCD Module. All the necessary hardware and software is included to run the basic demonstration programs. The user can program the sample microcontrollers provided with the PICDEM 3 demonstration board on a PRO MATE II device programmer, or a PICSTART Plus development programmer with an adapter socket, and easily test firmware. The MPLAB ICE in-circuit emulator may also be used with the PICDEM 3 demonstration board to test firmware. A prototype area has been provided to the user for adding hardware and connecting it to the microcontroller socket(s). Some of the features include a RS-232 interface, push button switches, a potentiometer for simulated analog input, a thermistor and separate headers for connection to an external LCD module and a keypad. Also provided on the PICDEM 3 demonstration board is a LCD panel, with 4 commons and 12 segments, that is capable of displaying time, temperature and day of the week. The PICDEM 3 demonstration board provides an additional RS-232 interface and Windows software for showing the demultiplexed LCD signals on a PC. A simple serial interface allows the user to construct a hardware demultiplexer for the LCD signals.

#### 20.14 PICDEM 17 Demonstration Board

The PICDEM 17 demonstration board is an evaluation board that demonstrates the capabilities of several Microchip microcontrollers, including PIC17C752, PIC17C756A, PIC17C762 and PIC17C766. All necessary hardware is included to run basic demo programs, which are supplied on a 3.5-inch disk. A programmed sample is included and the user may erase it and program it with the other sample programs using the PRO MATE II device programmer, or the PICSTART Plus development programmer, and easily debug and test the sample code. In addition, the PICDEM 17 demonstration board supports downloading of programs to and executing out of external FLASH memory on board. The PICDEM 17 demonstration board is also usable with the MPLAB ICE in-circuit emulator, or the PICMASTER emulator and all of the sample programs can be run and modified using either emulator. Additionally, a generous prototype area is available for user hardware.

#### 20.15 KEELOQ Evaluation and Programming Tools

KEELOQ evaluation and programming tools support Microchip's HCS Secure Data Products. The HCS evaluation kit includes a LCD display to show changing codes, a decoder to decode transmissions and a programming interface to program test transmitters.

### 21.1 DC Characteristics (Continued)

| PIC18LCXX2<br>(Industrial)          |               |                                   | Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \leq TA \leq +85^{\circ}C$ for industrial |                                                      |            |          |                                                                                                              |
|-------------------------------------|---------------|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------|----------|--------------------------------------------------------------------------------------------------------------|
| PIC18CXX2<br>(Industrial, Extended) |               |                                   | <b>Stand</b><br>Opera                                                                                                                | $\begin{array}{llllllllllllllllllllllllllllllllllll$ |            |          |                                                                                                              |
| Param<br>No.                        | Symbol        | Characteristic                    | Min                                                                                                                                  | Min Typ Max Units Conditions                         |            |          | Conditions                                                                                                   |
|                                     | IPD           | Power-down Current <sup>(3)</sup> |                                                                                                                                      |                                                      |            |          |                                                                                                              |
| D020                                |               | PIC18LCXX2                        | _                                                                                                                                    | <.5<br>—                                             | 2<br>4     | μΑ<br>μΑ | VDD = 2.5V, -40°C to +85°C<br>VDD = 5.5V, -40°C to +85°C                                                     |
| D020                                |               | PIC18CXX2                         | _                                                                                                                                    | <1                                                   | 3<br>4     | μA       | $VDD = 4.2V, -40^{\circ}C$ to $+85^{\circ}C$<br>$VDD = 5.5V, -40^{\circ}C$ to $+85^{\circ}C$                 |
| D021B                               |               |                                   | _                                                                                                                                    | _                                                    | 15<br>20   | μΑ<br>μΑ | $VDD = 4.2V, -40^{\circ}C \text{ to } +125^{\circ}C$<br>$VDD = 5.5V, -40^{\circ}C \text{ to } +125^{\circ}C$ |
|                                     |               | Module Differential Cur           | rent                                                                                                                                 |                                                      |            | μ        |                                                                                                              |
| D022                                | ∆Iwdt         | Watchdog Timer<br>PIC18LCXX2      | _                                                                                                                                    |                                                      | 1<br>15    | μΑ<br>μΑ | VDD = 2.5V<br>VDD = 5.5V                                                                                     |
| D022                                |               | Watchdog Timer<br>PIC18CXX2       | _                                                                                                                                    |                                                      | 15<br>20   | μΑ<br>μΑ | VDD = 5.5V, -40°C to +85°C<br>VDD = 5.5V, -40°C to +125°C                                                    |
| D022A                               | $\Delta$ IBOR | Brown-out Reset<br>PIC18LCXX2     | —                                                                                                                                    |                                                      | 45         | μA       | VDD = 2.5V                                                                                                   |
| D022A                               |               | Brown-out Reset<br>PIC18CXX2      | _                                                                                                                                    | _                                                    | 50<br>50   | μΑ<br>μΑ | VDD = 5.5V, -40°C to +85°C<br>VDD = 5.5V, -40°C to +125°                                                     |
| D022B                               | ΔILVD         | Low Voltage Detect<br>PIC18LCXX2  | _                                                                                                                                    | _                                                    | 45         | μΑ       | VDD = 2.5V                                                                                                   |
| D022B                               |               | Low Voltage Detect<br>PIC18CXX2   | _                                                                                                                                    |                                                      | 50<br>50   | μΑ<br>μΑ | VDD = 4.2V, -40°C to +85°C<br>VDD = 4.2V, -40°C to +125°C                                                    |
| D025                                | ΔIOSCB        | Timer1 Oscillator<br>PIC18LCXX2   | _                                                                                                                                    | —                                                    | 15         | μA       | VDD = 2.5V                                                                                                   |
| D025                                |               | Timer1 Oscillator<br>PIC18CXX2    | _                                                                                                                                    | —                                                    | 100<br>120 | μΑ<br>μΑ | VDD = 4.2V, -40°C to +85°C<br>VDD = 4.2V, -40°C to +125°C                                                    |

Legend: Shading of rows is to assist in readability of the table.

Note 1: This is the limit to which VDD can be lowered in SLEEP mode, or during a device RESET, without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

- OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD
- MCLR = VDD; WDT enabled/disabled as specified.
- 3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or Vss, and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR,...).
- 4: For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kOhm.





| TABLE 21-10: | PARALLEL | SLAVE PORT | <b>FREQUIREMENT</b> | S (PIC18C4X2) |
|--------------|----------|------------|---------------------|---------------|
|--------------|----------|------------|---------------------|---------------|

| Param.<br>No. | Symbol   | Characteristic                                                                                    |            |    | Max  | Units | Conditions           |
|---------------|----------|---------------------------------------------------------------------------------------------------|------------|----|------|-------|----------------------|
| 62            | TdtV2wrH | Data in valid before $\overline{WR}\uparrow$ or $\overline{CS}$                                   | <u>}</u> ↑ | 20 | —    | ns    |                      |
|               |          | (setup time)                                                                                      |            | 25 | —    | ns    | Extended Temp. Range |
| 63            | TwrH2dtl | $\overline{WR}$ or $\overline{CS}$ to data–in invalid                                             | PIC18CXXX  | 20 | —    | ns    |                      |
|               |          | (hold time)                                                                                       | PIC18LCXXX | 35 | _    | ns    |                      |
| 64            | TrdL2dtV | $\overline{RD}\downarrow$ and $\overline{CS}\downarrow$ to data–out valid                         |            | _  | 80   | ns    |                      |
|               |          |                                                                                                   |            | —  | 90   | ns    | Extended Temp. Range |
| 65            | TrdH2dtl | RD↑ or CS↑ to data–out invalid                                                                    |            | 10 | 30   | ns    |                      |
| 66            | TibfINH  | Inhibit of the IBF flag bit being cleared from $\overline{WR}\uparrow$ or $\overline{CS}\uparrow$ |            | —  | 3Tcy |       |                      |

## 23.0 PACKAGING INFORMATION

## 23.1 Package Marking Information

#### 28-Lead PDIP (Skinny DIP)



| Example |                |
|---------|----------------|
|         | PIC18C242-I/SP |

**1**0117017

| 28- | Lead | SOIC |  |
|-----|------|------|--|
|     |      |      |  |



| Example |
|---------|
|---------|



| Legend | : XXX<br>Y<br>YY<br>WW<br>NNN<br>@3<br>* | Customer-specific information<br>Year code (last digit of calendar year)<br>Year code (last 2 digits of calendar year)<br>Week code (week of January 1 is week '01')<br>Alphanumeric traceability code<br>Pb-free JEDEC designator for Matte Tin (Sn)<br>This package is Pb-free. The Pb-free JEDEC designator (e3)<br>can be found on the outer packaging for this package. |
|--------|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Note:  | In the even<br>be carried<br>characters  | nt the full Microchip part number cannot be marked on one line, it will<br>d over to the next line, thus limiting the number of available<br>for customer-specific information.                                                                                                                                                                                              |

#### 28-Lead Ceramic Dual In-line with Window (JW) - 600 mil (CERDIP)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



| Units                      |        | INCHES* |       |       | MILLIMETERS |       |       |
|----------------------------|--------|---------|-------|-------|-------------|-------|-------|
| Dimension                  | Limits | MIN     | NOM   | MAX   | MIN         | NOM   | MAX   |
| Number of Pins             | n      |         | 28    |       |             | 28    |       |
| Pitch                      | р      |         | .100  |       |             | 2.54  |       |
| Top to Seating Plane       | А      | .195    | .210  | .225  | 4.95        | 5.33  | 5.72  |
| Ceramic Package Height     | A2     | .155    | .160  | .165  | 3.94        | 4.06  | 4.19  |
| Standoff                   | A1     | .015    | .038  | .060  | 0.38        | 0.95  | 1.52  |
| Shoulder to Shoulder Width | Е      | .595    | .600  | .625  | 15.11       | 15.24 | 15.88 |
| Ceramic Pkg. Width         | E1     | .514    | .520  | .526  | 13.06       | 13.21 | 13.36 |
| Overall Length             | D      | 1.430   | 1.460 | 1.490 | 36.32       | 37.08 | 37.85 |
| Tip to Seating Plane       | L      | .125    | .138  | .150  | 3.18        | 3.49  | 3.81  |
| Lead Thickness             | С      | .008    | .010  | .012  | 0.20        | 0.25  | 0.30  |
| Upper Lead Width           | B1     | .050    | .058  | .065  | 1.27        | 1.46  | 1.65  |
| Lower Lead Width           | В      | .016    | .020  | .023  | 0.41        | 0.51  | 0.58  |
| Overall Row Spacing §      | eB     | .610    | .660  | .710  | 15.49       | 16.76 | 18.03 |
| Window Diameter            | W      | .270    | .280  | .290  | 6.86        | 7.11  | 7.37  |

Kontrolling Parameter
 Significant Characteristic
 JEDEC Equivalent: MO-103
 Drawing No. C04-013

| Code Examples                         |          |
|---------------------------------------|----------|
| 16 x 16 Signed Multiply Routine       | 62       |
| 16 x 16 Unsigned Multiply Routine     | 62       |
| 8 x 8 Signed Multiply Routine         | 61       |
| 8 x 8 Unsigned Multiply Routine       | 61       |
| Changing Between Capture Prescalers   | 109      |
| Fast Register Stack                   |          |
| Initializing PORTA                    | 77       |
| Initializing PORTB                    |          |
| Initializing PORTC                    |          |
| Initializing PORTD                    |          |
| Initializing PORTE                    |          |
| Loading the SSPBUF Register           | 122      |
| Saving STATUS, WREG and BSR Registers |          |
| in RAM                                | 75       |
| Code Protection                       | 179, 186 |
| COMF                                  | 204      |
| Compare (CCP Module)                  | 110      |
| Associated Registers                  | 111      |
| Block Diagram                         | 110      |
| CCP Pin Configuration                 | 110      |
| CCPR1H:CCPR1L Registers               | 110      |
| Software Interrupt                    | 110      |
| Special Event Trigger                 | 110, 171 |
| Timer1 Mode Selection                 | 110      |
| Configuration Bits                    | 179      |
| Context Saving During Interrupts      | 75       |
| Example Code                          | 75       |
| Conversion Considerations             | 288      |
| CPFSEQ                                | 204      |
| CPFSGT                                | 205      |
| CPFSLT                                | 205      |

## D

| Data Memory                |          |
|----------------------------|----------|
| General Purpose Registers  |          |
| Special Function Registers |          |
| DAW                        |          |
| DC Characteristics         | 237, 240 |
| DECF                       |          |
| DECFSNZ                    | 207      |
| DECFSZ                     |          |
| Device Differences         |          |
| Direct Addressing          | 51       |

## Е

| Electrical Characteristics | 235 |
|----------------------------|-----|
| Errata                     | 5   |
|                            |     |
| F                          |     |
| Firmware Instructions      | 187 |

## G

| General Call Address Sequence |  |
|-------------------------------|--|
| General Call Address Support  |  |
| GOTO                          |  |

#### L

| I/O Ports                                             |
|-------------------------------------------------------|
| I <sup>2</sup> C (SSP Module) 128                     |
| ACK Pulse 128, 129                                    |
| Addressing 129                                        |
| Block Diagram 128                                     |
| Read/Write Bit Information (R/W Bit)129               |
| Reception129                                          |
| Serial Clock (RC3/SCK/SCL) 129                        |
| Slave Mode 128                                        |
| Timing Diagram, Data 257                              |
| Timing Diagram, START/STOP Bits                       |
| Transmission 129                                      |
| I <sup>2</sup> C Master Mode Reception139             |
| I <sup>2</sup> C Master Mode Repeated START Condition |
| I <sup>2</sup> C Module                               |
| Acknowledge Sequence Timing142                        |
| Baud Rate Generator                                   |
| Block Diagram                                         |
| Baud Rate Generator 136                               |
| BRG Reset Due to SDA Collision 146                    |
| BRG Timing 136                                        |
| Bus Collision                                         |
| Acknowledge144                                        |
| Repeated START Condition 147                          |
| Repeated START Condition Timing                       |
| (Case 1) 147                                          |
| Repeated START Condition Timing                       |
| (Case 2) 147                                          |
| START Condition145                                    |
| START Condition Timing 145, 146                       |
| STOP Condition                                        |
| STOP Condition Timing (Case 1) 148                    |
| STOP Condition Timing (Case 2) 148                    |
| Transmit Timing144                                    |
| Bus Collision Timing                                  |
| Clock Arbitration                                     |
| Clock Arbitration Timing (Master Transmit)            |
| General Call Address Support                          |
| Master Mode 7-bit Reception Timing 141                |
| Master Mode Operation                                 |
| Master Mode START Condition                           |
| Master Mode Transmission139                           |
| Master Mode Transmit Sequence 135                     |
| Multi-Master Mode 144                                 |
| Repeat START Condition Timing 138                     |
| STOP Condition Receive or Transmit Timing             |
| STOP Condition Timing 142                             |
| Waveforms for 7-bit Reception                         |
| Waveforms for 7-bit Transmission                      |
| ICEPIC In-Circuit Emulator                            |
| ID Locations 179, 186                                 |
| INCF                                                  |
| INCFSZ                                                |
| In-Circuit Serial Programming (ICSP) 179, 186         |
| Indirect Addressing                                   |
| FSR Register                                          |
| INFSNZ                                                |
| Instruction Cycle                                     |
| Instruction Flow/Pipelining                           |
| Instruction Format                                    |
| 100                                                   |