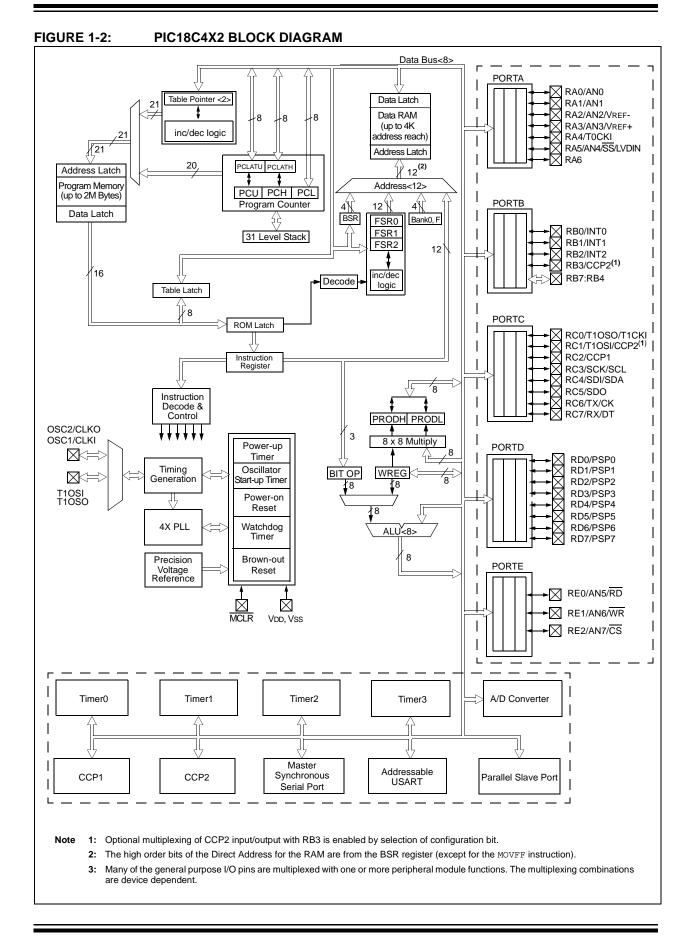


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Dectano	
Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I²C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	22
Program Memory Size	32KB (16K x 16)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 5x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18c252-e-sp

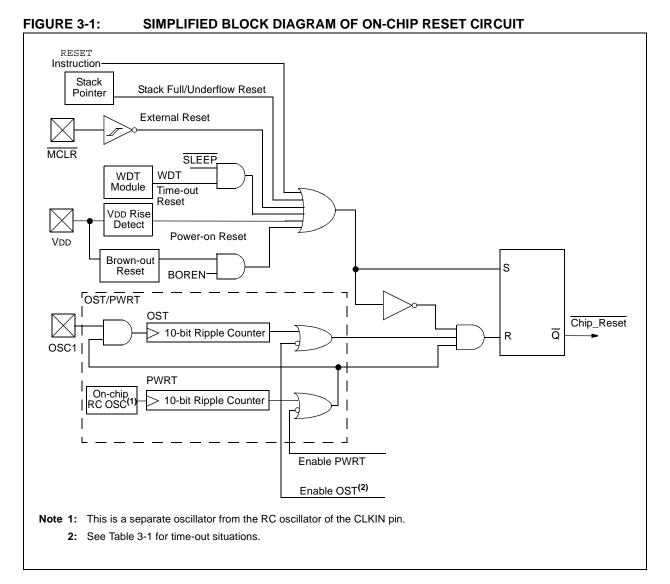
Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NOTES:

3.0 RESET

The PIC18CXX2 differentiates between various kinds of RESET:


- a) Power-on Reset (POR)
- b) MCLR Reset during normal operation
- c) MCLR Reset during SLEEP
- d) Watchdog Timer (WDT) Reset (during normal operation)
- e) Programmable Brown-out Reset (BOR)
- f) RESET Instruction
- g) Stack Full Reset
- h) Stack Underflow Reset

Most registers are unaffected by a RESET. Their status is unknown on POR and unchanged by all other RESETS. The other registers are forced to a "RESET state" on Power-on Reset, MCLR, WDT Reset, Brownout Reset, MCLR Reset during SLEEP, and by the RESET instruction. Most registers are not affected by a WDT wake-up, since this is viewed as the resumption of normal operation. Status bits from the RCON register, RI, TO, PD, POR and BOR, are set or cleared differently in different RESET situations, as indicated in Table 3-2. These bits are used in software to determine the nature of the RESET. See Table 3-3 for a full description of the RESET states of all registers.

A simplified block diagram of the On-Chip Reset Circuit is shown in Figure 3-1.

The Enhanced MCU devices have a $\overline{\text{MCLR}}$ noise filter in the $\overline{\text{MCLR}}$ Reset path. The filter will detect and ignore small pulses.

MCLR pin is not driven low by any internal RESETS, including WDT.

REGISTER FILE SUMMARY (CONTINUED) TABLE 4-2:

File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Details on page:
IPR2	_	_	_	—	BCLIP	LVDIP	TMR3IP	CCP2IP	1111	73
PIR2	—	—	_	—	BCLIF	LVDIF	TMR3IF	CCP2IF	0000	69
PIE2	_	_	_	_	BCLIE	LVDIE	TMR3IE	CCP2IE	0000	71
IPR1	PSPIP	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	1111 1111	72
PIR1	PSPIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	68
PIE1	PSPIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	70
TRISE	IBF	OBF	IBOV	PSPMODE	_	Data Direction	on bits for PO	RTE	0000 -111	88
TRISD	Data Directi	on Control Re	gister for POR	TD					1111 1111	85
TRISC	Data Directi	on Control Re	gister for POR	TC					1111 1111	83
TRISB	Data Directi	on Control Re	gister for POR		1111 1111	80				
TRISA	_	TRISA6 ⁽¹⁾	Data Directi	on Control Reg	ister for PORT	A			-111 1111	77
LATE	-	—	_	—	-		E Data Latch, E Data Latch		xxx	87
LATD	Read PORT	D Data Latch,	Write PORTE	Data Latch	•				xxxx xxxx	85
LATC	Read PORT	C Data Latch,	Write PORTO	C Data Latch					xxxx xxxx	83
LATB	Read PORT	B Data Latch,	Write PORTE	B Data Latch					xxxx xxxx	80
LATA	_	LATA6 ⁽¹⁾	Read PORT	A Data Latch, V	Write PORTA	Data Latch ⁽¹⁾			-xxx xxxx	77
PORTE	Read PORT	E pins, Write	PORTE Data	Latch					000	87
PORTD	Read PORT	D pins, Write	PORTD Data	Latch					xxxx xxxx	85
PORTC	Read PORT	C pins, Write	PORTC Data	Latch					xxxx xxxx	83
PORTB	Read PORT	B pins, Write	PORTB Data	Latch					xxxx xxxx	80
PORTA	—	RA6 ⁽¹⁾	Read PORT	A pins, Write P	ORTA Data La	atch ⁽¹⁾			-x0x 0000	77

Legend: x = unknown, u = unchanged, - = unimplemented, g = value depends on condition
Note 1: RA6 and associated bits are configured as port pins in RCIO and ECIO oscillator mode only, and read '0' in all other oscillator modes.
2: Bit 21 of the TBLPTRU allows access to the device configuration bits.

7.3 PIE Registers

The PIE registers contain the individual enable bits for the peripheral interrupts. Due to the number of peripheral interrupt sources, there are two Peripheral Interrupt Enable Registers (PIE1, PIE2). When IPEN = 0, the PEIE bit must be set to enable any of these peripheral interrupts.

REGISTER 7-6: PERIPHERAL INTERRUPT ENABLE REGISTER 1 (PIE1)

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	PSPIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE			
	bit 7							bit 0			
bit 7	PSPIE: Parallel Slave Port Read/Write Interrupt Enable bit										
	 Enables the PSP read/write interrupt Disables the PSP read/write interrupt 										
bit 6		Converter Ir									
		s the A/D in	•								
	0 = Disable	es the A/D ir	nterrupt								
bit 5	RCIE: USA	RT Receive	e Interrupt E	nable bit							
		s the USAR									
h:+ 4		es the USAF		•							
bit 4		RT Transmi s the USAR									
		s the USAR									
bit 3	SSPIE: Ma	ster Synchr	onous Seria	l Port Interr	upt Enable bit						
		s the MSSP									
		es the MSSF									
bit 2		CP1 Interru		it							
		s the CCP1 is the CCP1	-								
bit 1		MR2 to PR2	•	rrunt Enable	- hit						
bit i		s the TMR2		•							
		es the TMR2									
bit 0	TMR1IE: T	MR1 Overflo	ow Interrupt	Enable bit							
		s the TMR1									
	0 = Disable	es the TMR1	overflow in	iterrupt							
	Legend:]			
	R = Reada	hla hit	\\/ \\	/ritable bit	U = Unimple	omontad hi	it read as "	ר י			
	- n = Value			Bit is set	0 = 0 minipi		x = Bit is ur				
	- n = value	al FUR	I = D	IL IS SEL	U = DILISC	lealeu	x = Dit is uf	INTOWN			

8.5 PORTE, TRISE and LATE Registers

This section is only applicable to the PIC18C4X2 devices.

PORTE is a 3-bit wide, bi-directional port. The corresponding Data Direction register is TRISE. Setting a TRISE bit (= 1) will make the corresponding PORTE pin an input (i.e., put the corresponding output driver in a Hi-Impedance mode). Clearing a TRISE bit (= 0) will make the corresponding PORTE pin an output (i.e., put the contents of the output latch on the selected pin).

Note:	On a Power-on Reset, these pins are con-
	figured as digital inputs.

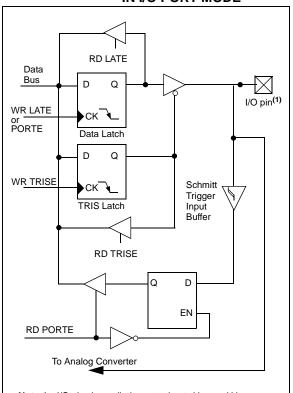
The Data Latch register (LATE) is also memory mapped. Read-modify-write operations on the LATE register reads and writes the latched output value for PORTE.

PORTE has three pins (RE0/RD/AN5, RE1/WR/AN6 and RE2/CS/AN7), which are individually configurable as inputs or outputs. These pins have Schmitt Trigger input buffers.

Register 8-1 shows the TRISE register, which also controls the parallel slave port operation.

PORTE pins are multiplexed with analog inputs. When selected as an analog input, these pins will read as '0's.

TRISE controls the direction of the RE pins, even when they are being used as analog inputs. The user must make sure to keep the pins configured as inputs when using them as analog inputs.


Note:	On a Power-on Reset, these pins are con-
	figured as analog inputs.

EXAMPLE 8-5: INITIALIZING PORTE

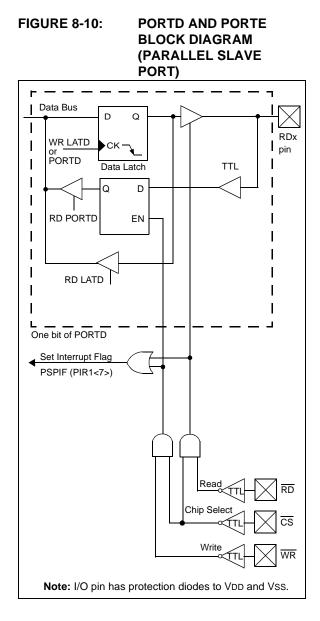
CLRF	PORTE	; Initialize PORTE by
		; clearing output
		; data latches
CLRF	LATE	; Alternate method
		; to clear output
		; data latches
MOVLW	0x07	; Configure A/D
MOVWF	ADCON1	; for digital inputs
MOVLW	0x03	; Value used to
		; initialize data
		; direction
MOVWF	TRISC	; Set RE<0> as inputs
		; RE<1> as outputs
		; RE<2> as inputs

FIGURE 8-9:

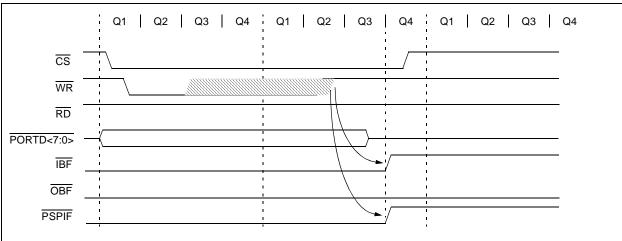
PORTE BLOCK DIAGRAM IN I/O PORT MODE

Note 1: I/O pins have diode protection to VDD and Vss.

8.6 Parallel Slave Port


The Parallel Slave Port is implemented on the 40-pin devices only (PIC18C4X2).

PORTD operates as an 8-bit wide, parallel slave port, or microprocessor port, when control bit PSPMODE (TRISE<4>) is set. It is asynchronously readable and writable by the external world through RD control input pin RE0/RD and WR control input pin RE1/WR.


It can directly interface to an 8-bit microprocessor data bus. The external microprocessor can read or write the PORTD latch as an 8-bit latch. Setting bit PSPMODE enables port pin RE0/RD to be the RD input, <u>RE1/WR</u> to be the WR input and RE2/CS to be the CS (chip select) input. For this functionality, the corresponding data direction bits of the TRISE register (TRISE<2:0>) must be configured as inputs (set). The A/D port configuration bits PCFG2:PCFG0 (ADCON1<2:0>) must be set, which will configure pins RE2:RE0 as digital I/O.

A write to the PSP occurs when both the $\overline{\text{CS}}$ and $\overline{\text{WR}}$ lines are first detected low. A read from the PSP occurs when both the $\overline{\text{CS}}$ and $\overline{\text{RD}}$ lines are first detected low.

The PORTE I/O pins become control inputs for the microprocessor port when bit PSPMODE (TRISE<4>) is set. In this mode, the user must make sure that the TRISE<2:0> bits are set (pins are configured as digital inputs), and the ADCON1 is configured for digital I/O. In this mode, the input buffers are TTL.

FIGURE 8-11: PARALLEL SLAVE PORT WRITE WAVEFORMS

12.0 TIMER3 MODULE

The Timer3 module timer/counter has the following features:

- 16-bit timer/counter (two 8-bit registers: TMR3H and TMR3L)
- Readable and writable (both registers)
- Internal or external clock select
- Interrupt-on-overflow from FFFFh to 0000h
- Reset from CCP module trigger

Figure 12-1 is a simplified block diagram of the Timer3 module.

Register 12-1 shows the Timer3 control register. This register controls the operating mode of the Timer3 module and sets the CCP clock source.

Register 10-1 shows the Timer1 control register. This register controls the operating mode of the Timer1 module, as well as contains the Timer1 oscillator enable bit (T1OSCEN), which can be a clock source for Timer3.

REGISTER 12-1: T3CON: TIMER3 CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
RD16	T3CCP2	T3CKPS1	T3CKPS0	T3CCP1	T3SYNC	TMR3CS	TMR3ON
bit 7							bit 0

bit 7	RD16: 16-bit Read/Write M 1 = Enables register Read/		e 16-bit operation	
	0 = Enables register Read/	Write of Timer3 in two	8-bit operations	
bit 6-3	T3CCP2:T3CCP1: Timer3	and Timer1 to CCPx B	Enable bits	
	1x = Timer3 is the clock so 01 = Timer3 is the clock so Timer1 is the clock so 00 = Timer1 is the clock so	urce for compare/cap ource for compare/cap	ture of CCP2, ture of CCP1	
bit 5-4	T3CKPS1:T3CKPS0: Time	r3 Input Clock Presca	le Select bits	
	11 = 1:8 Prescale value 10 = 1:4 Prescale value 01 = 1:2 Prescale value 00 = 1:1 Prescale value			
bit 2	T3SYNC: Timer3 External ((Not usable if the system clWhen TMR3CS = 1:1 = Do not synchronize external cl0 = Synchronize external cl	ock comes from Time ernal clock input		
	When TMR3CS = 0:			
	This bit is ignored. Timer3 u	uses the internal clock	when TMR3CS = 0.	
bit 1	TMR3CS: Timer3 Clock So	urce Select bit		
	 1 = External clock input from (on the rising edge after 0 = Internal clock (Fosc/4) 			
bit 0	TMR3ON: Timer3 On bit			
	1 = Enables Timer3 0 = Stops Timer3			
	Legend:			
	R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
	- n = Value at POR reset	'1' = Bit is set	'0' = Bit is cleared x = Bit is unkr	nown

13.5.3 SETUP FOR PWM OPERATION

The following steps should be taken when configuring the CCP module for PWM operation:

- 1. Set the PWM period by writing to the PR2 register.
- 2. Set the PWM duty cycle by writing to the CCPR1L register and CCP1CON<5:4> bits.
- Make the CCP1 pin an output by clearing the TRISC<2> bit.
- 4. Set the TMR2 prescale value and enable Timer2 by writing to T2CON.
- 5. Configure the CCP1 module for PWM operation.

TABLE 13-4: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 40 MHz

PWM Frequency	2.44 kHz	9.77 kHz	39.06 kHz	156.25 kHz	312.50 kHz	416.67 kHz
Timer Prescaler (1, 4, 16)	16	4	1	1	1	1
PR2 Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Maximum Resolution (bits)	14	12	10	8	7	6.58

TABLE 13-5: REGISTERS ASSOCIATED WITH PWM AND TIMER2

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3 Bit 2 Bit 1 Bit 0				PC	ie on)R,)R	Value on all other RESETS	
INTCON	GIE/ GIEH	PEIE/ GIEL	TMR0IE	INTOIE	RBIE	TMR0IF	INTOIF	RBIF	0000	000x	0000	000u
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000	0000	0000	0000
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000	0000	0000	0000
IPR1	PSPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	0000	0000	0000	0000
TRISC	PORTC Da	ata Direction	Register						1111	1111	1111	1111
TMR2	Timer2 Mo	dule Registe	er						0000	0000	0000	0000
PR2	Timer2 Mo	dule Period	Register						1111	1111	1111	1111
T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000	0000	-000	0000
CCPR1L	Capture/Co	ompare/PWI	M Register1	(LSB)					xxxx	xxxx	uuuu	uuuu
CCPR1H	Capture/Co	ompare/PWI	M Register1	(MSB)					xxxx	xxxx	uuuu	uuuu
CCP1CON	_	_	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00	0000	00	0000
CCPR2L	Capture/Co	Capture/Compare/PWM Register2 (LSB)								xxxx	uuuu	uuuu
CCPR2H	Capture/Co	ompare/PWI	M Register2	(MSB)					xxxx	xxxx	uuuu	uuuu
CCP2CON			DC2B1	DC2B0	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00	0000	00	0000

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by PWM and Timer2.

Note 1: The PSPIF, PSPIE and PSPIP bits are reserved on the PIC18C2X2 devices. Always maintain these bits clear.

14.4.8 I²C MASTER MODE TRANSMISSION

Transmission of a data byte, a 7-bit address, or the other half of a 10-bit address, is accomplished by simply writing a value to the SSPBUF register. This action will set the buffer full flag bit, BF, and allow the baud rate generator to begin counting and start the next transmission. Each bit of address/data will be shifted out onto the SDA pin after the falling edge of SCL is asserted (see data hold time specification parameter 106). SCL is held low for one baud rate generator rollover count (TBRG). Data should be valid before SCL is released high (see Data setup time specification parameter 107). When the SCL pin is released high, it is held that way for TBRG. The data on the SDA pin must remain stable for that duration and some hold time after the next falling edge of SCL. After the eighth bit is shifted out (the falling edge of the eighth clock), the BF flag is cleared and the master releases SDA. allowing the slave device being addressed to respond with an ACK bit during the ninth bit time, if an address match occurs, or if data was received properly. The status of ACK is written into the ACKDT bit on the falling edge of the ninth clock. If the master receives an Acknowledge, the Acknowledge status bit, ACKSTAT, is cleared. If not, the bit is set. After the ninth clock, the SSPIF bit is set and the master clock (baud rate generator) is suspended until the next data byte is loaded into the SSPBUF, leaving SCL low and SDA unchanged (Figure 14-18).

After the write to the SSPBUF, each bit of address will be shifted out on the falling edge of SCL until all seven address bits and the R/W bit are completed. On the falling edge of the eighth clock, the master will de-assert the SDA pin, allowing the slave to respond with an Acknowledge. On the falling edge of the ninth clock, the master will sample the SDA pin to see if the address was recognized by a slave. The status of the ACK bit is loaded into the ACKSTAT status bit (SSPCON2<6>). Following the falling edge of the ninth clock transmission of the address, the SSPIF is set, the BF flag is cleared and the baud rate generator is turned off until another write to the SSPBUF takes place, holding SCL low and allowing SDA to float.

14.4.8.1 BF Status Flag

In Transmit mode, the BF bit (SSPSTAT<0>) is set when the CPU writes to SSPBUF and is cleared, when all 8 bits are shifted out.

14.4.8.2 WCOL Status Flag

If the user writes the SSPBUF when a transmit is already in progress, (i.e., SSPSR is still shifting out a data byte), the WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).

WCOL must be cleared in software.

14.4.8.3 ACKSTAT Status Flag

In Transmit mode, the ACKSTAT bit (SSPCON2<6>) is cleared when the slave has sent an Acknowledge $(\overline{ACK} = 0)$, and is set when the slave does not Acknowledge $(\overline{ACK} = 1)$. A slave sends an Acknowledge when it has recognized its address (including a general call), or when the slave has properly received its data.

14.4.9 I²C MASTER MODE RECEPTION

Master mode reception is enabled by programming the receive enable bit, RCEN (SSPCON2<3>).

Note: The MSSP module must be in an IDLE state before the RCEN bit is set, or the RCEN bit will be disregarded.

The baud rate generator begins counting, and on each rollover, the state of the SCL pin changes (high to low/ low to high) and data is shifted into the SSPSR. After the falling edge of the eighth clock, the receive enable flag is automatically cleared, the contents of the SSPSR are loaded into the SSPBUF, the BF flag bit is set, the SSPIF flag bit is set and the baud rate generator is suspended from counting, holding SCL low. The MSSP is now in IDLE state, awaiting the next command. When the buffer is read by the CPU, the BF flag bit is automatically cleared. The user can then send an Acknowledge bit at the end of reception, by setting the Acknowledge sequence enable bit. ACKEN (SSPCON2<4>).

14.4.9.1 BF Status Flag

In receive operation, the BF bit is set when an address or data byte is loaded into SSPBUF from SSPSR. It is cleared when the SSPBUF register is read.

14.4.9.2 SSPOV Status Flag

In receive operation, the SSPOV bit is set when 8 bits are received into the SSPSR and the BF flag bit is already set from a previous reception.

14.4.9.3 WCOL Status Flag

If the user writes the SSPBUF when a receive is already in progress (i.e., SSPSR is still shifting in a data byte), the WCOL bit is set and the contents of the buffer are unchanged (the write doesn't occur).

TABLE 15-5:	BAUD RATES FOR ASYNCHRONOUS MODE (B	3RGH = 1)
-------------	-------------------------------------	-----------

BAUD	Fosc = 40 MHz			Fosc = 20 MHz			Fosc = 16 MHz			Fosc = 10 MHz		
RATE (K)	Actual Rate (K)	% Error	SPBRG value (decimal)									
9.6	9.77	-1.70	255	9.615	+0.16	129	9.615	+0.16	103	9.615	+0.16	64
19.2	19.23	-0.16	129	19.230	+0.16	64	19.230	+0.16	51	18.939	-1.36	32
38.4	38.46	-0.16	64	37.878	-1.36	32	38.461	+0.16	25	39.062	+1.7	15
57.6	58.14	-0.93	42	56.818	-1.36	21	58.823	+2.12	16	56.818	-1.36	10
115.2	113.64	+1.38	21	113.63	-1.36	10	111.11	-3.55	8	125	+8.51	4
250	250.00	0	9	250	0	4	250	0	3	NA	_	_
625	625.00	0	3	625	0	1	NA	_	_	625	0	0
1250	1250.00	0	1	1250	0	0	NA	_	_	NA	_	_

BAUD	Fo	SC = 7.16	6MHz	Fos	SC = 5.06	8 MHz	F	osc = 4 I	MHz	Fosc	= 3.5795	645 MHz
RATE (K)	Actual Rate (K)	% Error	SPBRG value (decimal)									
9.6	9.520	-0.83	46	9.6	0	32	NA	_	_	9.727	+1.32	22
19.2	19.454	+1.32	22	18.645	-2.94	16	1.202	+0.17	207	18.643	-2.90	11
38.4	37.286	-2.90	11	39.6	+3.12	7	2.403	+0.13	103	37.286	-2.90	5
57.6	55.930	-2.90	7	52.8	-8.33	5	9.615	+0.16	25	55.930	-2.90	3
115.2	111.860	-2.90	3	105.6	-8.33	2	19.231	+0.16	12	111.86	-2.90	1
250	NA	_	_	NA	_	_	NA	_	_	223.72	-10.51	0
625	NA	_	_									
1250	NA	—	—									

BAUD	F	osc = 1	MHz	Fos	c = 32.70	68 kHz
RATE (K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)
9.6	8.928	-6.99	6	NA	_	_
19.2	20.833	+8.51	2	NA	—	—
38.4	31.25	-18.61	1	NA	—	—
57.6	62.5	+8.51	0	NA	—	_
115.2	NA	—	_	NA	—	_
250	NA	—	_	NA	—	_
625	NA	—	—	NA	—	—
1250	NA	—		NA	—	—

15.3 USART Synchronous Master Mode

In Synchronous Master mode, the data is transmitted in a half-duplex manner, (i.e., transmission and reception do not occur at the same time). When transmitting data, the reception is inhibited and vice versa. Synchronous mode is entered by setting bit SYNC (TXSTA<4>). In addition, enable bit SPEN (RCSTA<7>) is set in order to configure the RC6/TX/CK and RC7/RX/DT I/O pins to CK (clock) and DT (data) lines, respectively. The Master mode indicates that the processor transmits the master clock on the CK line. The Master mode is entered by setting bit CSRC (TXSTA<7>).

15.3.1 USART SYNCHRONOUS MASTER TRANSMISSION

The USART transmitter block diagram is shown in Figure 15-1. The heart of the transmitter is the transmit (serial) shift register (TSR). The shift register obtains its data from the read/write transmit buffer register TXREG. The TXREG register is loaded with data in software. The TSR register is not loaded until the last bit has been transmitted from the previous load. As soon as the last bit is transmitted, the TSR is loaded with new data from the TXREG (if available). Once the TXREG register transfers the data to the TSR register (occurs in one TCYCLE), the TXREG is empty and inter-

rupt bit TXIF (PIR1<4>) is set. The interrupt can be enabled/disabled by setting/clearing enable bit TXIE (PIE1<4>). Flag bit TXIF will be set, regardless of the state of enable bit TXIE, and cannot be cleared in software. It will reset only when new data is loaded into the TXREG register. While flag bit TXIF indicates the status of the TXREG register, another bit TRMT (TXSTA<1>) shows the status of the TSR register. TRMT is a read only bit, which is set when the TSR is empty. No interrupt logic is tied to this bit, so the user has to poll this bit in order to determine if the TSR register is empty. The TSR is not mapped in data memory, so it is not available to the user.

To set up a Synchronous Master Transmission:

- 1. Initialize the SPBRG register for the appropriate baud rate (Section 15.1).
- 2. Enable the synchronous master serial port by setting bits SYNC, SPEN, and CSRC.
- 3. If interrupts are desired, set enable bit TXIE.
- 4. If 9-bit transmission is desired, set bit TX9.
- 5. Enable the transmission by setting bit TXEN.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit TX9D.
- 7. Start transmission by loading data to the TXREG register.

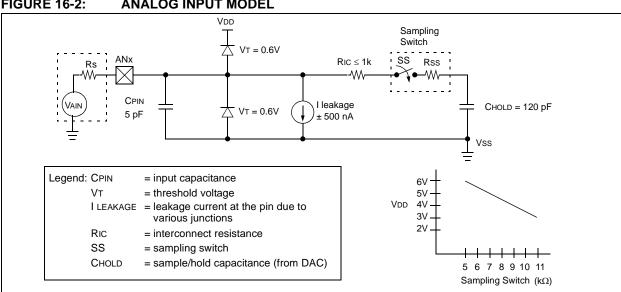
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other RESETS
INTCON	GIE/ GIEH	PEIE/ GIEL	TMR0IE	INTOIE	RBIE	TMR0IF	INTOIF	RBIF	0000 000x	0000 000u
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
IPR1	PSPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	0000 0000	0000 0000
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 -00x	0000 -00x
TXREG	USART T	ransmit F	Register						0000 0000	0000 0000
TXSTA	CSRC	TX9	TXEN	SYNC		BRGH	TRMT	TX9D	0000 -010	0000 -010
SPBRG	Baud Rate	e Genera	ator Regist	er					0000 0000	0000 0000

TABLE 15-8: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER TRANSMISSION

Legend: x = unknown, - = unimplemented, read as '0'.

Shaded cells are not used for Synchronous Master Transmission.

Note 1: The PSPIF, PSPIE and PSPIP bits are reserved on the PIC18C2X2 devices. Always maintain these bits clear.


The value that is in the ADRESH/ADRESL registers is not modified for a Power-on Reset. The ADRESH/ ADRESL registers will contain unknown data after a Power-on Reset.

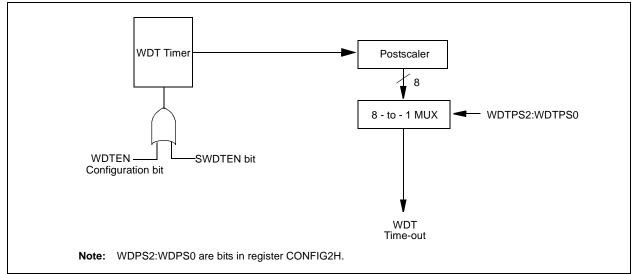
After the A/D module has been configured as desired, the selected channel must be acquired before the conversion is started. The analog input channels must have their corresponding TRIS bits selected as an input. To determine acquisition time, see Section 16.1. After this acquisition time has elapsed, the A/D conversion can be started. The following steps should be followed for doing an A/D conversion:

- 1. Configure the A/D module:
 - · Configure analog pins, voltage reference and digital I/O (ADCON1)
 - Select A/D input channel (ADCON0)
 - Select A/D conversion clock (ADCON0)
 - Turn on A/D module (ADCON0)
- 2. Configure A/D interrupt (if desired):
 - · Clear ADIF bit
 - Set ADIE bit
 - · Set GIE bit
- 3. Wait the required acquisition time.
- 4. Start conversion:
 - Set GO/DONE bit (ADCON0)
- 5. Wait for A/D conversion to complete, by either:
 - Polling for the GO/DONE bit to be cleared

OR

- Waiting for the A/D interrupt
- 6. Read A/D Result registers (ADRESH/ADRESL); clear bit ADIF if required.
- 7. For next conversion, go to step 1 or step 2, as required. The A/D conversion time per bit is defined as TAD. A minimum wait of 2TAD is required before next acquisition starts.

FIGURE 16-2: ANALOG INPUT MODEL


16.1 A/D Acquisition Requirements

For the A/D converter to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The analog input model is shown in Figure 16-2. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD). The source impedance affects the offset voltage at the analog input (due to pin leakage current). The maximum recommended impedance for analog sources is 2.5 k Ω . After the analog input channel is selected (changed), this acquisition must be done before the conversion can be started.

When the conversion is started, the hold-Note: ing capacitor is disconnected from the input pin.

18.2.2 WDT POSTSCALER

The WDT has a postscaler that can extend the WDT Reset period. The postscaler is selected at the time of device programming, by the value written to the CONFIG2H configuration register.

TABLE 18-2: SUMMARY OF WATCHDOG TIMER REGISTERS

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CONFIG2H	—	—	_	_	WDTPS2	WDTPS2	WDTPS0	WDTEN
RCON	IPEN	LWRT	—	RI	TO	PD	POR	BOR
WDTCON	—	_					_	SWDTEN

Legend: Shaded cells are not used by the Watchdog Timer.

RETFIE	Return fr	om Inte	rrupt	
Syntax:	[label]	RETFIE	[s]	
Operands:	$s \in [0,1]$			
Operation:	$(TOS) \rightarrow$ $1 \rightarrow GIE/$ if $s = 1$ $(WS) \rightarrow V$ (STATUS) (BSRS) - PCLATU,	GIEH or WREG, S) → ST → BSR,	ATUS,	·
Status Affected:	GIE/GIEF	H,PEIE/G	IEL.	
Encoding:	0000	0000	0001	000s
Description:	Return fro popped a loaded in enabled b or low pri enable bi the shado STATUSS into their WREG, S 's' = 0, no occurs (d	nd Top-o to the PC by setting ority glob t. If 's' = bw regist S and BS correspo STATUS a b update	of-Stack (C. Interru g either th bal interru 1, the co ers WS, GRS are I onding re and BSR	TOS) is pts are he high upt ntents of oaded gisters, . If
Words:	1			
Cycles:	2			
Q Cycle Activity:				
Q1	Q2	Q3	}	Q4

RET	LW	Return Li	iteral to	WREG	3			
Synt	ax:	[label]	RETLW	k				
Ope	rands:	$0 \le k \le 25$	5					
Ope	ration:	$(TOS) \rightarrow$	$k \rightarrow WREG$, (TOS) \rightarrow PC, PCLATU, PCLATH are unchanged					
Statu	us Affected:	None						
Enco	oding:	0000	1100	kkkk	kkkk			
Desi	Description: WREG is loaded with the eight-bit literal 'k'. The program counter is loaded from the top of the stack (the return address). The high address latch (PCLATH) remains unchanged.							
Wor	ds:	1						
Cycl	es:	2						
QC	ycle Activity:							
	Q1	Q2	Q3	3	Q4			
	Decode	Read literal 'k'	Proce Data	a s	op PC from stack, Write to WREG			
	No operation	No operation	No operat	ion	No operation			

Example:

CALL I	ABLE	; ; ;	WREG contains table offset value WREG now has table value
:			
TABLE			
ADDWF	PCL	;	WREG = offset
RETLW	k0	;	Begin table
RETLW	k1	;	
:			
:			
RETLW	kn	;	End of table

Before Instruction

WREG = UXU/	WREG	=	0x07	
-------------	------	---	------	--

After Instruction

WREG = value of kn

Q1	Q2	Q3	Q4
Decode	No	No	pop PC from stack
	operation	operation	stack
			Set GIEH or
			GIEL
No	No	No	No
operation	operation	operation	operation

Example: RETFIE 1

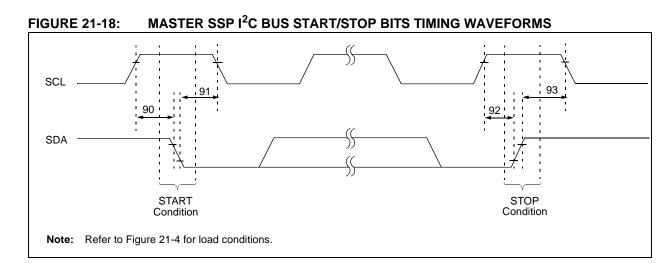
After Interrupt

PC	=	TOS
W	=	WS
BSR	=	BSRS
STATUS	=	STATUSS
GIE/GIEH,	PEIE/GIEL=	1

RLNCF	Rotate Lo	eft f (no carı	ry)
Syntax:	[label]	RLNCF f	[,d [,a]
Operands:	$0 \le f \le 25$ $d \in [0,1]$ $a \in [0,1]$	5	
Operation:	$(f) \rightarrow$ $(f<7>) \rightarrow$	dest <n+1>, dest<0></n+1>	
Status Affected:	N,Z		
Encoding:	0100	01da ff	ff ffff
Description:	rotated or the result is 1, the r ister 'f' (de Access B riding the the bank	is placed in esult is store efault). If 'a' i ank will be s BSR value.	eft. If 'd' is 0, WREG. If 'd' d back in reg- s 0, the elected, over- If 'a' is 1, then red as per the
Words:	1		
Cycles:	1		
•	1		
Q Cycle Activity: Q1	Q2	Q3	Q4
Decode	Read register 'f'	Process Data	Write to destination
Example:	RLNCF	REG, 1,	0
Before Instruct REG After Instructi	= 1010 1	011	
REG	= 0101 0	111	

RRCF	Rotate Ri	ght f th	rough C	arry
Syntax:	[label]	RRCF	f [,d [,a]	
Operands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$	5		
Operation:	$(f < n >) \rightarrow (f < 0 >) \rightarrow (f < 0 >) \rightarrow (C) \rightarrow des$	C,	1>,	
Status Affected:	C,N,Z			
Encoding:	0011	00da	ffff	ffff
	The conterrotated on the Carry is placed in result is p (default). Bank will the BSR v bank will the BSR value	e bit to Flag. If in WRE laced ba lf 'a' is 0 be selec value. If be selec e (defau	the right 'd' is 0, th G. If 'd' is ack in reg the Acc ted, over 'a' is 1, th ted as pe	through ne resu s 1, the gister 'f' cess rriding hen the
Words:	1			
Cycles:	1			
Q Cycle Activity	/:			
Q1	Q2	Q	3	Q4
Decode	Read register 'f'	Proce Data		Vrite to stinatior
Example:	RRCF	REG,	0, 0	
Before Instr	ruction = 1110 (110		

After Instruction


REG = 1110 0110 WREG = 0111 0011 C = 0

DC CHARACTERISTICS			Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \leq TA \leq +40^{\circ}C$						
Param. No.	Sym	Characteristic	Min	Max	Units	Conditions			
		Internal Program Memory Programming Specs (Note 1)							
D110	Vpp	Voltage on MCLR/VPP pin	12.75	13.25	V	(Note 2)			
D111	Vddp	Supply voltage during programming	4.75	5.25	V				
D112	IPP	Current into MCLR/VPP pin	—	50	mA				
D113	IDDP	Supply current during programming	—	30	mA				
D114	TPROG	Programming pulse width	50	1000	μS	Terminated via internal/external interrupt or a RESET			
D115	TERASE	EPROM erase time							
		Device operation $\leq 3V$	60	—	min.				
		Device operation $\ge 3V$	30	—	min.				

TABLE 21-2: EPROM PROGRAMMING REQUIREMENTS

Note 1: These specifications are for the programming of the on-chip program memory EPROM through the use of the table write instructions. The complete programming specifications can be found in the PIC18CXXX Programming Specifications (Literature Number DS39028).

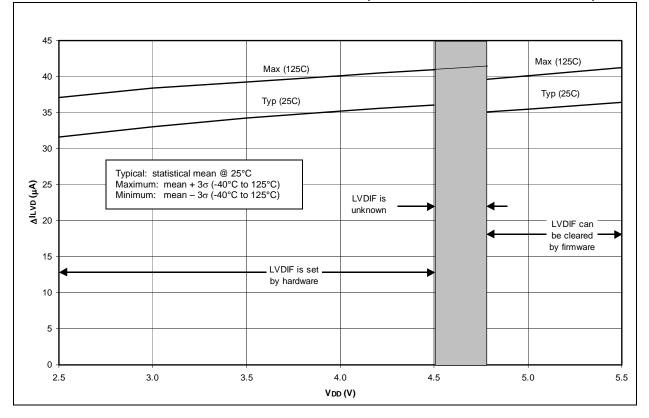
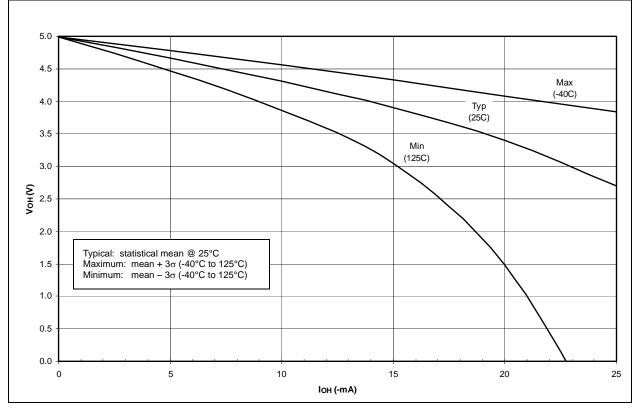

2: The MCLR/VPP pin may be kept in this range at times other than programming, but is not recommended.

TABLE 21-17:	MASTER SSP I ² C E	BUS START/STOP	BITS REQUIREMENTS
--------------	-------------------------------	-----------------------	-------------------


Param. No.	Symbol	Characteristic		Min	Max	Units	Conditions
90	TSU:STA	START condition	100 kHz mode	2(Tosc)(BRG + 1)	_	ns	Only relevant for
		Setup time	400 kHz mode	2(Tosc)(BRG + 1)	_		Repeated START condition
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_		Condition
91	THD:STA	START condition	100 kHz mode	2(Tosc)(BRG + 1)	_		After this period the first clock pulse is generated
		Hold time	400 kHz mode	2(Tosc)(BRG + 1)	_		
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_		
92		STOP condition	100 kHz mode	2(Tosc)(BRG + 1)	_	ns	
		Setup time	400 kHz mode	2(Tosc)(BRG + 1)	_		
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_		
93	THD:STO	STOP condition	100 kHz mode	2(Tosc)(BRG + 1)	_	ns	
		Hold time	400 kHz mode	2(Tosc)(BRG + 1)	_		
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_		

Note 1: Maximum pin capacitance = 10 pF for all I^2C pins.

FIGURE 22-19: △ILVD vs. VDD OVER TEMPERATURE (LVD ENABLED, VLVD = 4.5V - 4.78V)

APPENDIX E: MIGRATION FROM MID-RANGE TO ENHANCED DEVICES

A detailed discussion of the differences between the mid-range MCU devices (i.e., PIC16CXXX) and the enhanced devices (i.e., PIC18CXXX) is provided in AN716, "*Migrating Designs from PIC16C74A/74B to PIC18C442.*" The changes discussed, while device specific, are generally applicable to all mid-range to enhanced device migrations.

This Application Note is available as Literature Number DS00716.

APPENDIX F: MIGRATION FROM HIGH-END TO ENHANCED DEVICES

A detailed discussion of the migration pathway and differences between the high-end MCU devices (i.e., PIC17CXXX) and the enhanced devices (i.e., PIC18CXXX) is provided in AN726, "*PIC17CXXX to PIC18CXXX Migration*." This Application Note is available as Literature Number DS00726.