

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	22
Program Memory Size	32KB (16K x 16)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 5x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18c252-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Cont.'d)

FFFh	TOSU	FDFh	INDF2 ⁽³⁾	FBFh	CCPR1H	F9Fh	IPR1
FFEh	TOSH	FDEh	POSTINC2 ⁽³⁾	FBEh	CCPR1L	F9Eh	PIR1
FFDh	TOSL	FDDh	POSTDEC2 ⁽³⁾	FBDh	CCP1CON	F9Dh	PIE1
FFCh	STKPTR	FDCh	PREINC2 ⁽³⁾	FBCh	CCPR2H	F9Ch	—
FFBh	PCLATU	FDBh	PLUSW2 ⁽³⁾	FBBh	CCPR2L	F9Bh	—
FFAh	PCLATH	FDAh	FSR2H	FBAh	CCP2CON	F9Ah	—
FF9h	PCL	FD9h	FSR2L	FB9h		F99h	—
FF8h	TBLPTRU	FD8h	STATUS	FB8h		F98h	—
FF7h	TBLPTRH	FD7h	TMR0H	FB7h		F97h	—
FF6h	TBLPTRL	FD6h	TMR0L	FB6h		F96h	TRISE ⁽²⁾
FF5h	TABLAT	FD5h	TOCON	FB5h		F95h	TRISD ⁽²⁾
FF4h	PRODH	FD4h	_	FB4h		F94h	TRISC
FF3h	PRODL	FD3h	OSCCON	FB3h	TMR3H	F93h	TRISB
FF2h	INTCON	FD2h	LVDCON	FB2h	TMR3L	F92h	TRISA
FF1h	INTCON2	FD1h	WDTCON	FB1h	T3CON	F91h	
FF0h	INTCON3	FD0h	RCON	FB0h		F90h	—
FEFh	INDF0 ⁽³⁾	FCFh	TMR1H	FAFh	SPBRG	F8Fh	
FEEh	POSTINC0 ⁽³⁾	FCEh	TMR1L	FAEh	RCREG	F8Eh	—
FEDh	POSTDEC0 ⁽³⁾	FCDh	T1CON	FADh	TXREG	F8Dh	LATE ⁽²⁾
FECh	PREINC0 ⁽³⁾	FCCh	TMR2	FACh	TXSTA	F8Ch	LATD ⁽²⁾
FEBh	PLUSW0 ⁽³⁾	FCBh	PR2	FABh	RCSTA	F8Bh	LATC
FEAh	FSR0H	FCAh	T2CON	FAAh	_	F8Ah	LATB
FE9h	FSR0L	FC9h	SSPBUF	FA9h	_	F89h	LATA
FE8h	WREG	FC8h	SSPADD	FA8h	_	F88h	
FE7h	INDF1 ⁽³⁾	FC7h	SSPSTAT	FA7h	—	F87h	
FE6h	POSTINC1 ⁽³⁾	FC6h	SSPCON1	FA6h	_	F86h	—
FE5h	POSTDEC1 ⁽³⁾	FC5h	SSPCON2	FA5h	_	F85h	
FE4h	PREINC1 ⁽³⁾	FC4h	ADRESH	FA4h	_	F84h	PORTE ⁽²⁾
FE3h	PLUSW1 ⁽³⁾	FC3h	ADRESL	FA3h		F83h	PORTD ⁽²⁾
FE2h	FSR1H	FC2h	ADCON0	FA2h	IPR2	F82h	PORTC
FE1h	FSR1L	FC1h	ADCON1	FA1h	PIR2	F81h	PORTB
FE0h	BSR	FC0h	—	FA0h	PIE2	F80h	PORTA

SPECIAL FUNCTION REGISTER MAP **TABLE 4-1:**

Note 1: Unimplemented registers are read as '0'.2: This register is not available on PIC18C2X2 devices.

3: This is not a physical register.

5.1.2 TABLAT - TABLE LATCH REGISTER

The Table Latch (TABLAT) is an 8-bit register mapped into the SFR space. The Table Latch is used to hold 8-bit data during data transfers between program memory and data memory.

5.1.3 TBLPTR - TABLE POINTER REGISTER

The Table Pointer (TBLPTR) addresses a byte within the program memory. The TBLPTR is comprised of three SFR registers (Table Pointer Upper Byte, High Byte and Low Byte). These three registers (TBLPTRU:TBLPTRH:TBLPTRL) join to form a 22-bit wide pointer. The lower 21-bits allow the device to address up to 2 Mbytes of program memory space. The 22nd bit allows access to the Device ID, the User ID and the Configuration bits.

The Table Pointer, TBLPTR, is used by the TBLRD and TBLWT instructions. These instructions can update the TBLPTR in one of four ways, based on the table operation. These operations are shown in Table 5-1. These operations on the TBLPTR only affect the lower 21-bits.

TABLE 5-1: TABLE POINTER OPERATIONS WITH TBLRD AND TBLWT INSTRUCTIONS

Example	Operation on Table Pointer
TBLRD* TBLWT*	TBLPTR is not modified
TBLRD*+ TBLWT*+	TBLPTR is incremented after the read/write
TBLRD*- TBLWT*-	TBLPTR is decremented after the read/write
TBLRD+* TBLWT+*	TBLPTR is incremented before the read/write

5.2 Internal Program Memory Read/ Writes

5.2.1 TABLE READ OVERVIEW (TBLRD)

The TBLRD instructions are used to read data from program memory to data memory.

TBLPTR points to a byte address in program space. Executing TBLRD places the byte pointed to into TAB-LAT. In addition, TBLPTR can be modified automatically for the next Table Read operation.

Table Reads from program memory are performed one byte at a time. The instruction will load TABLAT with the one byte from program memory pointed to by TBLPTR.

5.2.2 INTERNAL PROGRAM MEMORY WRITE BLOCK SIZE

The internal program memory of PIC18CXXX devices is written in blocks. For PIC18CXX2 devices, the write block size is 2 bytes. Consequently, Table Write operations to internal program memory are performed in pairs, one byte at a time. When a Table Write occurs to an even program memory address (TBLPTR<0> = 0), the contents of TABLAT are transferred to an internal holding register. This is performed as a short write and the program memory block is not actually programmed at this time. The holding register is not accessible by the user.

When a Table Write occurs to an odd program memory address (TBLPTR<0>=1), a long write is started. During the long write, the contents of TABLAT are written to the high byte of the program memory block and the contents of the holding register are transferred to the low byte of the program memory block.

Figure 5-3 shows the holding register and the program memory write blocks.

If a single byte is to be programmed, the low (even) byte of the destination program word should be read using TBLRD*, modified or changed, if required, and written back to the same address using TBLWT*+. The high (odd) byte should be read using TBLRD*, modified or changed if required, and written back to the same address using TBLWT. A write to the odd address will cause a long write to begin. This process ensures that existing data in either byte will not be changed unless desired.

7.6 INT0 Interrupt

External interrupts on the RB0/INT0, RB1/INT1 and RB2/INT2 pins are edge triggered: either rising, if the corresponding INTEDGx bit is set in the INTCON2 register, or falling, if the INTEDGx bit is clear. When a valid edge appears on the RBx/INTx pin, the corresponding flag bit INTxF is set. This interrupt can be disabled by clearing the corresponding enable bit INTxE. Flag bit INTxF must be cleared in software in the Interrupt Service Routine before re-enabling the interrupt. All external interrupts (INT0, INT1 and INT2) can wake-up the processor from SLEEP, if bit INTxE was set prior to going into SLEEP. If the global interrupt enable bit GIE set, the processor will branch to the interrupt vector following wake-up.

Interrupt priority for INT1 and INT2 is determined by the value contained in the interrupt priority bits, INT1IP (INTCON3<6>) and INT2IP (INTCON3<7>). There is no priority bit associated with INT0. It is always a high priority interrupt source.

7.7 TMR0 Interrupt

In 8-bit mode (which is the default), an overflow (FFh \rightarrow 00h) in the TMR0 register will set flag bit TMR0IF. In 16-bit mode, an overflow (FFFFh \rightarrow 0000h) in the TMR0H:TMR0L registers will set flag bit TMR0IF. The interrupt can be enabled/disabled by setting/clearing enable bit TOIE (INTCON<5>). Interrupt priority for Timer0 is determined by the value contained in the interrupt priority bit TMR0IP (INTCON2<2>). See Section 8.0 for further details on the Timer0 module.

7.8 PORTB Interrupt-on-Change

An input change on PORTB<7:4> sets flag bit RBIF (INTCON<0>). The interrupt can be enabled/disabled by setting/clearing enable bit, RBIE (INTCON<3>). Interrupt priority for PORTB Interrupt-on-change is determined by the value contained in the interrupt priority bit, RBIP (INTCON2<0>).

7.9 Context Saving During Interrupts

During an interrupt, the return PC value is saved on the stack. Additionally, the WREG, STATUS and BSR registers are saved on the fast return stack. If a fast return from interrupt is not used (see Section 4.3), the user may need to save the WREG, STATUS and BSR registers in software. Depending on the user's application, other registers may also need to be saved. Example 7-1 saves and restores the WREG, STATUS and BSR registers during an Interrupt Service Routine.

EXAMPLE 7-1:	SAVING STATUS, WREG AND BSR REGISTERS IN RAM
--------------	--

MOVWF	W_TEMP	; W_TEMP is in virtual bank
MOVFF	STATUS, STATUS_TEMP	; STATUS_TEMP located anywhere
MOVFF	BSR, BSR_TEMP	; BSR located anywhere
;		
; USER	ISR CODE	
;		
MOVFF	BSR_TEMP, BSR	; Restore BSR
MOVF	W_TEMP, W	; Restore WREG
MOVFF	STATUS_TEMP, STATUS	; Restore STATUS

REGISTER 8-1: TRISE REGISTER

- n = Value at POR

	R-0	R-0	R/W-0	R/W-0	U-0	R/W-1	R/W-1	R/W-1		
	IBF	OBF	IBOV	PSPMODE	_	TRISE2	TRISE1	TRISE0		
	bit 7							bit 0		
bit 7	IBF: Input	Buffer Full \$	Status bit							
	1 = A word 0 = No wo	d has been r rd has been	received an received	d waiting to be	read by th	e CPU				
bit 6	OBF: Outp	out Buffer Fu	ull Status bi	t						
	1 = The ou 0 = The ou	utput buffer : utput buffer	still holds a has been re	previously writ ad	ten word					
bit 5	IBOV : Inpu	ut Buffer Ov	erflow Dete	ct bit (in Micro	processor r	mode)				
	1 = A write (must 0 = No ove	e occurred w be cleared in erflow occur	/hen a prev n software) red	iously input wo	ord has not	been read				
bit 4	PSPMOD	E: Parallel S	lave Port N	lode Select bit						
	1 = Paralle 0 = Gener	el Slave Por al purpose l	t mode /O mode							
bit 3	Unimplem	nented: Rea	ad as '0'							
bit 2	TRISE2: R	E2 Directio	n Control b	it						
	1 = Input 0 = Output	t								
bit 1	TRISE1: R	TRISE1: RE1 Direction Control bit								
	1 = Input 0 = Output	t								
bit 0	TRISE0: R	E0 Directio	n Control b	it						
	1 = Input									
	0 = Output	t								
	Legend:									
	R = Reada	able bit	W = '	Writable bit	U = Unim	plemented l	bit, read as	'0'		

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

NOTES:

10.1 Timer1 Operation

Timer1 can operate in one of these modes:

- As a timer
- As a synchronous counter
- As an asynchronous counter

The operating mode is determined by the clock select bit, TMR1CS (T1CON<1>).

When TMR1CS = 0, Timer1 increments every instruction cycle. When TMR1CS = 1, Timer1 increments on every rising edge of the external clock input or the Timer1 oscillator, if enabled.

When the Timer1 oscillator is enabled (T1OSCEN is set), the RC1/T1OSI and RC0/T1OSO/T1CKI pins become inputs. That is, the TRISC<1:0> value is ignored.

Timer1 also has an internal "RESET input". This RESET can be generated by the CCP module (Section 13.0).

FIGURE 10-2: TIMER1 BLOCK DIAGRAM: 16-BIT READ/WRITE MODE

FIGURE 10-1: TIMER1 BLOCK DIAGRAM

14.4.4.1 I²C Master Mode Operation

The master device generates all of the serial clock pulses and the START and STOP conditions. A transfer is ended with a STOP condition or with a Repeated START condition. Since the Repeated START condition is also the beginning of the next serial transfer, the l^2C bus will not be released.

In Master Transmitter mode, serial data is output through SDA, while SCL outputs the serial clock. The first byte transmitted contains the slave address of the receiving device (7 bits) and the Read/Write (R/W) bit. In this case, the R/W bit will be logic '0'. Serial data is transmitted 8 bits at a time. After each byte is transmitted, an Acknowledge bit is received. START and STOP conditions are output to indicate the beginning and the end of a serial transfer.

In Master Receive mode, the first byte transmitted contains the slave address of the transmitting device (7 bits) and the R/\overline{W} bit. In this case, the R/\overline{W} bit will be logic '1'. Thus, the first byte transmitted is a 7-bit slave address followed by a '1' to indicate receive bit. Serial data is received via SDA, while SCL outputs the serial clock. Serial data is received 8 bits at a time. After each byte is received, an Acknowledge bit is transmitted. START and STOP conditions indicate the beginning and end of transmission.

The baud rate generator used for the SPI mode operation is now used to set the SCL clock frequency for either 100 kHz, 400 kHz, or 1 MHz I²C operation. The baud rate generator reload value is contained in the lower 7 bits of the SSPADD register. The baud rate generator will automatically begin counting on a write to the SSPBUF. Once the given operation is complete, (i.e., transmission of the last data bit is followed by ACK), the internal clock will automatically stop counting and the SCL pin will remain in its last state. A typical transmit sequence would go as follows:

- a) The user generates a START condition by setting the START enable bit, SEN (SSPCON2<0>).
- b) SSPIF is set. The MSSP module will wait the required start time before any other operation takes place.
- c) The user loads the SSPBUF with the address to transmit.
- d) Address is shifted out the SDA pin until all 8 bits are transmitted.
- e) The MSSP module shifts in the ACK bit from the slave device and writes its value into the SSPCON2 register (SSPCON2<6>).
- f) The MSSP module generates an interrupt at the end of the ninth clock cycle by setting the SSPIF bit.
- g) The user loads the SSPBUF with eight bits of data.
- h) Data is shifted out the SDA pin until all 8 bits are transmitted.
- i) The MSSP module shifts in the ACK bit from the slave device and writes its value into the SSPCON2 register (SSPCON2<6>).
- j) The MSSP module generates an interrupt at the end of the ninth clock cycle by setting the SSPIF bit.
- k) The user generates a STOP condition by setting the STOP enable bit, PEN (SSPCON2<2>).
- Interrupt is generated once the STOP condition is complete.

14.4.5 BAUD RATE GENERATOR

In I²C Master mode, the reload value for the BRG is located in the lower 7 bits of the SSPADD register (Figure 14-14). When the BRG is loaded with this value, the BRG counts down to 0 and stops until another reload has taken place. The BRG count is dec-

remented twice per instruction cycle (Tcr) on the Q2 and Q4 clocks. In I^2C Master mode, the BRG is reloaded automatically. If Clock Arbitration is taking place, for instance, the BRG will be reloaded when the SCL pin is sampled high (Figure 14-15).

15.1 USART Baud Rate Generator (BRG)

The BRG supports both the Asynchronous and Synchronous modes of the USART. It is a dedicated 8-bit baud rate generator. The SPBRG register controls the period of a free running 8-bit timer. In Asynchronous mode, bit BRGH (TXSTA<2>) also controls the baud rate. In Synchronous mode, bit BRGH is ignored. Table 15-1 shows the formula for computation of the baud rate for different USART modes, which only apply in Master mode (internal clock).

Given the desired baud rate and FOSC, the nearest integer value for the SPBRG register can be calculated using the formula in Table 15-1. From this, the error in baud rate can be determined. Example 15-1 shows the calculation of the baud rate error for the following conditions:

- Fosc = 16 MHz
- Desired Baud Rate = 9600
- BRGH = 0
- SYNC = 0

It may be advantageous to use the high baud rate (BRGH = 1), even for slower baud clocks. This is because the FOSC/(16(X + 1)) equation can reduce the baud rate error in some cases.

Writing a new value to the SPBRG register causes the BRG timer to be reset (or cleared). This ensures the BRG does not wait for a timer overflow before outputting the new baud rate.

15.1.1 SAMPLING

The data on the RC7/RX/DT pin is sampled three times by a majority detect circuit to determine if a high or a low level is present at the RX pin.

EXAMPLE 15-1: CALCULATING BAUD RATE ERROR

Desired Baud Rate	= Fosc / $(64 (X + 1))$	
Solving for X:		
X X X	= ((Fosc / Desired Baud rate) / 64) - 1 = ((16000000 / 9600) / 64) - 1 = [25.042] = 25	
Calculated Baud Rate	= 16000000 / (64 (25 + 1)) = 9615	
Error	 <u>(Calculated Baud Rate - Desired Baud Rate)</u> Desired Baud Rate (9615 - 9600) / 9600 0.16% 	

TABLE 15-1: BAUD RATE FORMULA

SYNC	BRGH = 0 (Low Speed)	BRGH = 1 (High Speed)
0	(Asynchronous) Baud Rate = Fosc/(64(X+1))	Baud Rate = Fosc/(16(X+1))
1	(Synchronous) Baud Rate = Fosc/(4(X+1))	NA

Legend: X = value in SPBRG (0 to 255)

TABLE 15-2: REGISTERS ASSOCIATED WITH BAUD RATE GENERATOR

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other RESETS
TXSTA	CSRC	TX9	TXEN	SYNC	—	BRGH	TRMT	TX9D	0000 -010	0000 -010
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 -00x	0000 -00x
SPBRG	Baud Ra	te Gener	ator Regi	ster					0000 0000	0000 0000

Legend: x = unknown, - = unimplemented, read as '0'. Shaded cells are not used by the BRG.

BNC	;	Branch if	Branch if Not Carry		BNN	I	Branch if	Not Negati	ve	
Synt	ax:	[label] B	NC n		Synt	ax:	[<i>label</i>] B	[<i>label</i>] BNN n		
Ope	rands:	-128 ≤ n ≤	127		Ope	rands:	-128 ≤ n ≤	-128 ≤ n ≤ 127		
Operation: if carry bit is (PC) + 2 + 2		bit is '0' $2 + 2n \rightarrow PC$			ration:	if negative (PC) + 2 +	if negative bit is '0' (PC) + 2 + 2n \rightarrow PC			
Status Affected:		None			Statu	Status Affected: None				
Encoding:		1110	0011 nn	nn nnnn	Enco	oding:	1110	0111 nn	nn nnnn	
Description: If t gra Th ad ha ins P(If the Carr gram will b The 2's co added to th have incre instruction PC+2+2n. a two-cycl	If the Carry bit is '0', then the pro- gram will branch. The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC+2+2n. This instruction is then a two-cycle instruction.			cription:	If the Neg program v The 2's cc added to t have incre- instruction PC+2+2n a two-cycl	ative bit is 'C vill branch. omplement n he PC. Since emented to f n, the new ac This instru le instructior	i', then the umber '2n' is the PC will etch the next ddress will be ction is then	
Wor	ds:	1			Wor	ds:	1			
Cycl	es:	1(2)			Cycl	es:	1(2)			
Q C If Ju	cycle Activity:				Q C If Ju	cycle Activity	:			
	Q1	Q2	Q3	Q4		Q1	Q2	Q3	Q4	
	Decode	Read literal 'n'	Process Data	Write to PC		Decode	Read literal 'n'	Process Data	Write to PC	
	No	No	No	No		No	No	No	No	
	operation	operation	operation	operation]	operation	operation	operation	operation	
If N	o Jump:				If N	o Jump:				
	Q1	Q2	Q3	Q4	1	Q1	Q2	Q3	Q4	
	Decode	Read literal 'n'	Process Data	No operation		Decode	Read literal 'n'	Process Data	No operation	
<u>Exar</u>	<u>nple</u> :	HERE	BNC Jump		<u>Exar</u>	<u>nple</u> :	HERE	BNN Jum <u>r</u>)	
	Before Instru	uction				Before Instru	uction			
	PC	= ad	dress (HER	Е)		PC	= ac	ldress (HER	E)	
	After Instruct	tion				After Instruc	tion			
If Carry PC If Carry PC		cy = 0; = ad cy = 1; = ad	dress (Jumj dress (HER	p) E+2)		If Nega PC If Nega PC	ative= 0; = ac ative= 1; = ac	ldress (Jum ldress (HEF	np) 2E+2)	

MUL	LW	Multiply	Multiply Literal with WREG					
Synt	ax:	[label]	MULLW	k				
Ope	rands:	$0 \le k \le 25$	55					
Ope	ration:	(WREG)	$x k \to PF$	RODH:PI	RODL			
Statu	us Affected:	None						
Enco	oding:	0000	1101	kkkk	kkkk			
Des	cription:	An unsign ried out b WREG au The 16-bi PRODH:I PRODH of WREG is None of t affected. Note that carry is p tion. A ze not detec	An unsigned multiplication is car- ried out between the contents of WREG and the 8-bit literal 'k'. The 16-bit result is placed in PRODH:PRODL register pair. PRODH contains the high byte. WREG is unchanged. None of the status flags are affected. Note that neither overflow, nor carry is possible in this opera- tion. A zero result is possible but					
Wor	ds:	1						
Cvcl	es:	1						
QC	vcle Activity:							
	Q1	Q2	Q3		Q4			
	Decode	Read literal 'k'	Proce Data	ss a re Pl P	Write gisters RODH: RODL			
<u>Exar</u>	<u>mple</u> :	MULLW	0xC4					
	Before Instru	iction						
	WREG PRODH PRODL	= 03 = ? = ?	ĸE2					
	After Instruct	ion						
	WREG PRODH PRODL	= 03 = 03 = 03	xE2 xAD x08					

MULWF Multiply WREG with f						
Syntax:	[label]	MULWF f	[,a]			
$\begin{array}{llllllllllllllllllllllllllllllllllll$						
Operation:	(WREG) >	$x(f) \rightarrow PROE$	DH:PRODL			
Status Affected:	None					
Encoding:	0000	001a ffi	f ffff			
Description:	An unsign ried out be WREG an tion 'f'. The in the PRO pair. PRO byte. Both WRE unchange None of th affected. Note that carry is po tion. A zen not detect Access Ba overriding 1, then the as per the	An unsigned multiplication is car- ried out between the contents of WREG and the register file loca- tion 'f'. The 16-bit result is stored in the PRODH:PRODL register pair. PRODH contains the high byte. Both WREG and 'f' are unchanged. None of the status flags are affected. Note that neither overflow, nor carry is possible in this opera- tion. A zero result is possible but not detected. If 'a' is 0, the Access Bank will be selected, overriding the BSR value. If 'a'= 1, then the bank will be selected				
Words:	1					
Cycles:	1					
Q Cycle Activity:	-	-				
Q1	Q2	Q3	Q4			
Decode	Read register 'f'	Process Data	Write registers PRODH: PRODL			
Example:	MULWF	REG, 1				
Before Instru	iction					
WREG REG PRODH PRODL	= 0x = 0x = ? = ?	:C4 :B5				
After Instruct	ion					
WREG	= 0 x	:C4				

ner instruction		
WREG	=	0xC4
REG	=	0xB5
PRODH	=	0x8A
PRODL	=	0x94

RRNCF	Rotate Ri	ght f (no ca	rry)	SETF
Syntax:	[label]	RRNCF f	[,d [,a]	Syntax:
Operands:	0 ≤ f ≤ 255 d ∈ [0,1] a ∈ [0,1]	5		Operands:
Operation:	$(f < n >) \rightarrow (f < 0) $	dest <n-1>, dest<7></n-1>		Operation: Status Affected
Status Affected:	N,Z			Encoding:
Encoding:	0100	00da ff	ff ffff	Description.
Description:	The conterrotated or the result is 1, the register 'f'	ents of regist the bit to the r is placed in esult is place (default). If	er 'f' are ight. If 'd' is 0, WREG. If 'd' ed back in 'a' is 0, the	Words:
	Access B	ank will be s	elected, over-	Cycles:
	riding the the bank v	BSR value. I will be select	f 'a' is 1, then ed as per the	Q Cycles.
	BSR valu	e (default).		Q1
	Ľ	 register 	er f	Decode
Words:	1			
Cycles:	1			Example:
Q Cycle Activity:				Before Ins
Q1	Q2	Q3	Q4	REG Δfter Instr
Decode	Read register 'f'	Process Data	Write to destination	REG
Example 1:	RRNCF	REG, 1, 0		
Before Instru	iction			
REG	= 1101 (0111		
After Instruct	= 1110 :	1011		
Example 2:	RRNCF	REG, 0, 0		
Before Instru	iction			
WREG REG	= ? = 1101 (0111		
After Instruct	tion			
WREG REG	= 1110 : = 1101 (1011 0111		

ynt	ax:	[<i>label</i>] SE	TF f[,	a]	
pei	rands:	0 ≤ f ≤ 255 a ∈ [0,1]	5		
реі	ration:	$FFh\tof$			
tatu	is Affected:	None			
ncc	oding:	0110	100a	ffff	ffff
eso	cription:	The conte ter are se Access Ba riding the the bank v BSR value	ents of th t to FFh ank will BSR val will be se e (defau	ne spec . If 'a' is be sele lue. If 'a elected It).	ified regis- s 0, the cted, over- a' is 1, then as per the
/ord	ds:	1			
ycl	es:	1			
2 C	ycle Activity:				
	Q1	Q2	Q3	3	Q4
	Decode	Read register 'f'	Proce Data	ess a	Write register 'f'
xar	nple:	SETF	RE	G,1	
	Before Instru REG	rction = 02	s5A		
	After Instruct	tion			

0xFF

=

Set f

 $\ensuremath{\textcircled{}^{\odot}}$ 1999-2013 Microchip Technology Inc.

FIGURE 21-9: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS

TABLE 21-8:	TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS
-------------	---

Param No.	Symbol		Characteris	Min	Max	Units	Conditions	
40	Tt0H	T0CKI H	ligh Pulse Width	No Prescaler	0.5TCY + 20	_	ns	
				With Prescaler	10	_	ns	
41	Tt0L	T0CKI L	ow Pulse Width	No Prescaler	0.5Tcy + 20	_	ns	
				With Prescaler	10	_	ns	
42	Tt0P	T0CKI F	Period	No Prescaler	Tcy + 10	_	ns	
				With Prescaler	Greater of: 20 ns or <u>Tcʏ + 40</u> N		ns	N = prescale value (1, 2, 4,, 256)
45	Tt1H	T1CKI	Synchronous, no	prescaler	0.5Tcy + 20	_	ns	
		High	Synchronous,	PIC18CXXX	10		ns	
	Time with prescaler	with prescaler	PIC18LCXXX	25		ns		
			Asynchronous	PIC18CXXX	30	_	ns	
				PIC18LCXXX	40	_	ns	
46	Tt1L	T1CKI	Synchronous, no prescaler		0.5Tcy + 20		ns	
		Low	Synchronous,	PIC18CXXX	15		ns	
		Time	with prescaler	PIC18LCXXX	30		ns	
			Asynchronous	PIC18CXXX	30		ns	
				PIC18LCXXX	40	_	ns	
47	Tt1P	T1CKI input period	Synchronous		Greater of: 20 ns or <u>Tcʏ + 40</u> N		ns	N = prescale value (1, 2, 4, 8)
					60	—	ns	
	Ft1	T1CKI o	T1CKI oscillator input frequency range		DC	50	kHz	
48	Tcke2tmrl	Delay from external T1CKI clock edge to timer increment		2Tosc	7Tosc			

40-Lead Ceramic Dual In-line with Window (JW) - 600 mil (CERDIP)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	INCHES*			MILLIMETERS		
Dimension	Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		40			40	
Pitch	р		.100			2.54	
Top to Seating Plane	А	.185	.205	.225	4.70	5.21	5.72
Ceramic Package Height	A2	.155	.160	.165	3.94	4.06	4.19
Standoff	A1	.030	.045	.060	0.76	1.14	1.52
Shoulder to Shoulder Width	E	.595	.600	.625	15.11	15.24	15.88
Ceramic Pkg. Width	E1	.514	.520	.526	13.06	13.21	13.36
Overall Length	D	2.040	2.050	2.060	51.82	52.07	52.32
Tip to Seating Plane	L	.135	.140	.145	3.43	3.56	3.68
Lead Thickness	С	.008	.011	.014	0.20	0.28	0.36
Upper Lead Width	B1	.050	.053	.055	1.27	1.33	1.40
Lower Lead Width	В	.016	.020	.023	0.41	0.51	0.58
Overall Row Spacing §	eB	.610	.660	.710	15.49	16.76	18.03
Window Diameter	W	.340	.350	.360	8.64	8.89	9.14

Significant Characteristic JEDEC Equivalent: MO-103 Drawing No. C04-014

Code Examples	
16 x 16 Signed Multiply Routine	62
16 x 16 Unsigned Multiply Routine	62
8 x 8 Signed Multiply Routine	61
8 x 8 Unsigned Multiply Routine	61
Changing Between Capture Prescalers	109
Fast Register Stack	
Initializing PORTA	77
Initializing PORTB	
Initializing PORTC	
Initializing PORTD	
Initializing PORTE	
Loading the SSPBUF Register	122
Saving STATUS, WREG and BSR Registers	
in RAM	75
Code Protection	179, 186
COMF	204
Compare (CCP Module)	110
Associated Registers	111
Block Diagram	110
CCP Pin Configuration	110
CCPR1H:CCPR1L Registers	110
Software Interrupt	110
Special Event Trigger	110, 171
Timer1 Mode Selection	110
Configuration Bits	179
Context Saving During Interrupts	75
Example Code	75
Conversion Considerations	
CPFSEQ	204
CPFSGT	205
CPFSLT	205

D

Data Memory	
General Purpose Registers	
Special Function Registers	
DAW	
DC Characteristics	237, 240
DECF	
DECFSNZ	207
DECFSZ	
Device Differences	
Direct Addressing	51

Е

Electrical Characteristics	235
Errata	5
F	
Firmware Instructions	187

G

General Call Address Sequence	
General Call Address Support	
GOTO	

T

I/O Ports
I ² C (SSP Module) 128
ACK Pulse 128, 129
Addressing 129
Block Diagram 128
Read/Write Bit Information (R/W Bit)129
Reception129
Serial Clock (RC3/SCK/SCL) 129
Slave Mode 128
Timing Diagram, Data 257
Timing Diagram, START/STOP Bits
Transmission129
I ² C Master Mode Reception139
I ² C Master Mode Repeated START Condition
I ² C Module
Acknowledge Sequence Timing142
Baud Rate Generator
Block Diagram
Baud Rate Generator 136
BRG Reset Due to SDA Collision 146
BRG Timing 136
Bus Collision
Acknowledge144
Repeated START Condition 147
Repeated START Condition Timing
(Case 1) 147
Repeated START Condition Timing
(Case 2) 147
START Condition145
START Condition Timing 145, 146
STOP Condition
STOP Condition Timing (Case 1) 148
STOP Condition Timing (Case 2) 148
Transmit Timing144
Bus Collision Timing
Clock Arbitration
Clock Arbitration Timing (Master Transmit)
General Call Address Support
Master Mode 7-bit Reception Timing 141
Master Mode Operation
Master Mode START Condition
Master Mode Transmission139
Master Mode Transmit Sequence 135
Multi-Master Mode 144
Repeat START Condition Timing 138
STOP Condition Receive or Transmit Timing
STOP Condition Timing 142
Waveforms for 7-bit Reception
Waveforms for 7-bit Transmission
ICEPIC In-Circuit Emulator
ID Locations 179, 186
INCF
INCFSZ
In-Circuit Serial Programming (ICSP) 179, 186
Indirect Addressing
FSR Register
INFSNZ
Instruction Cycle
Instruction Flow/Pipelining
Instruction Format
100

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 Australia - Sydney

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755 China - Beijing

Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hangzhou Tel: 86-571-2819-3187 Fax: 86-571-2819-3189

China - Hong Kong SAR Tel: 852-2943-5100 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460

Fax: 86-25-8473-2470 China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7828 Fax: 886-7-330-9305

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828

Fax: 45-4485-2829 France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820