

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Dectano	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	22
Program Memory Size	32KB (16K x 16)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 5x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18c252-i-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	Pi	n Numt	per	Din Duffe		
Pin Name	DIP	PLCC	TQFP	Pin Type	Buffer Type	Description
		1 200	14.1			PORTC is a bi-directional I/O port.
RC0/T1OSO/T1CKI	15	16	32			
RC0				I/O	ST	Digital I/O.
T1OSO				0	_	Timer1 oscillator output.
T1CKI				Ι	ST	Timer1/Timer3 external clock input.
RC1/T1OSI/CCP2	16	18	35			
RC1				I/O	ST	Digital I/O.
T1OSI					CMOS	Timer1 oscillator input.
CCP2	47	40		I/O	ST	Capture2 input, Compare2 output, PWM2 output.
RC2/CCP1 RC2	17	19	36	I/O	ST	Digital I/O
CCP1				1/O 1/O	ST	Digital I/O. Capture1 input/Compare1 output/PWM1 output.
RC3/SCK/SCL	18	20	37	"0	01	
RC3	10	20	57	I/O	ST	Digital I/O.
SCK				I/O	ST	Synchronous serial clock input/output for
						SPI mode.
SCL				I/O	ST	Synchronous serial clock input/output for
						I ² C mode.
RC4/SDI/SDA	23	25	42			
RC4				I/O	ST	Digital I/O.
SDI SDA				I I/O	ST ST	SPI Data In. I ² C Data I/O.
	24	20	43	1/0	31	T C Data 1/O.
RC5/SDO RC5	24	26	43	I/O	ST	Digital I/O.
SDO				0	_	SPI Data Out.
RC6/TX/CK	25	27	44	-		
RC6	20		••	I/O	ST	Digital I/O.
ТХ				0	_	USART Asynchronous Transmit.
СК				I/O	ST	USART Synchronous Clock (see related RX/DT).
RC7/RX/DT	26	29	1			
RC7				I/O	ST	Digital I/O.
RX					ST	USART Asynchronous Receive.
		41-1-1		I/O	ST	USART Synchronous Data (see related TX/CK).
Legend: TTL = TTL ST = Schn						OS = CMOS compatible input or output

PIC18C4X2 PINOUT I/O DESCRIPTIONS (CONTINUED) **TABLE 1-3:**

ST = Schmitt Trigger input with CMOS levels I = Input

O = Output

P = Power

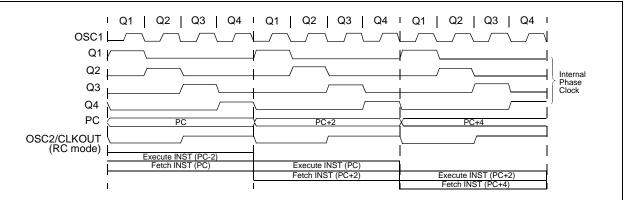
OD = Open Drain (no P diode to VDD)

4.3 Fast Register Stack

A "fast interrupt return" option is available for interrupts. A Fast Register Stack is provided for the STATUS, WREG and BSR registers and are only one in depth. The stack is not readable or writable and is loaded with the current value of the corresponding register when the processor vectors for an interrupt. The values in the registers are then loaded back into the working registers, if the FAST RETURN instruction is used to return from the interrupt.

A low or high priority interrupt source will push values into the stack registers. If both low and high priority interrupts are enabled, the stack registers cannot be used reliably for low priority interrupts. If a high priority interrupt occurs while servicing a low priority interrupt, the stack register values stored by the low priority interrupt will be overwritten.

If high priority interrupts are not disabled during low priority interrupts, users must save the key registers in software during a low priority interrupt.


If no interrupts are used, the fast register stack can be used to restore the STATUS, WREG and BSR registers at the end of a subroutine call. To use the fast register stack for a subroutine call, a FAST CALL instruction must be executed.

Example 4-1 shows a source code example that uses the fast register stack.

EXAMPLE 4-1: FAST REGISTER STACK CODE EXAMPLE

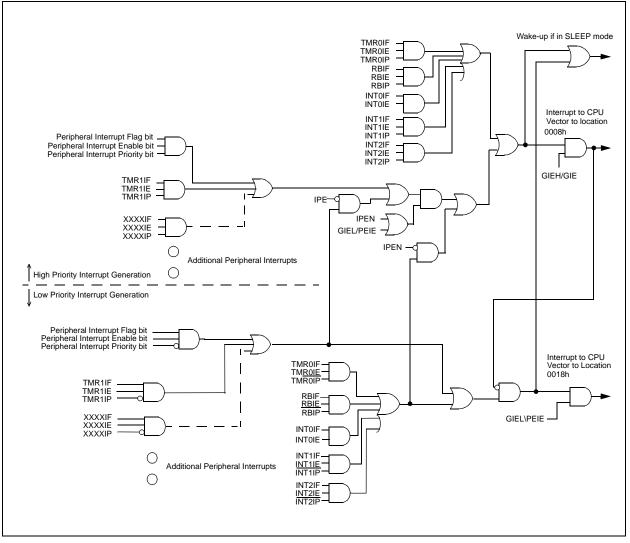
CALL SUB1, FAST	;STATUS, WREG, BSR ;SAVED IN FAST REGISTER ;STACK
SUB1	
RETURN FAST	;RESTORE VALUES SAVED ;IN FAST REGISTER STACK

FIGURE 4-4: CLOCK/INSTRUCTION CYCLE

4.4 PCL, PCLATH and PCLATU

The program counter (PC) specifies the address of the instruction to fetch for execution. The PC is 21-bits wide. The low byte is called the PCL register. This register is readable and writable. The high byte is called the PCH register. This register contains the PC<15:8> bits and is not directly readable or writable. Updates to the PCH register. The upper byte is called PCU. This register contains the PC<20:16> bits and is not directly readable or writable. Updates to the PCH register. The Upper byte is called PCU. This register contains the PC<20:16> bits and is not directly readable or writable. Updates to the PCU register may be performed through the PCLATU register.

The PC addresses bytes in the program memory. To prevent the PC from becoming misaligned with word instructions, the LSB of PCL is fixed to a value of '0'. The PC increments by 2 to address sequential instructions in the program memory.


The CALL, RCALL, GOTO and program branch instructions write to the program counter directly. For these instructions, the contents of PCLATH and PCLATU are not transferred to the program counter.

The contents of PCLATH and PCLATU will be transferred to the program counter by an operation that writes PCL. Similarly, the upper two bytes of the program counter will be transferred to PCLATH and PCLATU by an operation that reads PCL. This is useful for computed offsets to the PC (see Section 4.8.1).

4.5 Clocking Scheme/Instruction Cycle

The clock input (from OSC1) is internally divided by four to generate four non-overlapping quadrature clocks, namely Q1, Q2, Q3 and Q4. Internally, the program counter (PC) is incremented every Q1, the instruction is fetched from the program memory and latched into the instruction register in Q4. The instruction is decoded and executed during the following Q1 through Q4. The clocks and instruction execution flow is shown in Figure 4-4.

8.4 PORTD, TRISD and LATD Registers

This section is only applicable to the $\ensuremath{\text{PIC18C4X2}}$ devices.

PORTD is an 8-bit wide, bi-directional port. The corresponding Data Direction register is TRISD. Setting a TRISD bit (= 1) will make the corresponding PORTD pin an input (i.e., put the corresponding output driver in a Hi-Impedance mode). Clearing a TRISD bit (= 0) will make the corresponding PORTD pin an output (i.e., put the contents of the output latch on the selected pin).

Note:	On a Power-on Reset, these pins are con-
	figured as digital inputs.

The Data Latch register (LATD) is also memory mapped. Read-modify-write operations on the LATD register reads and writes the latched output value for PORTD.

PORTD is an 8-bit port with Schmitt Trigger input buffers. Each pin is individually configurable as an input or output.

PORTD can be configured as an 8-bit wide microprocessor port (parallel slave port) by setting control bit PSPMODE (TRISE<4>). In this mode, the input buffers are TTL. See Section 8.6 for additional information on the Parallel Slave Port (PSP).

EXAMPLE 8-4:	INITIALIZING PORTD

CLRF	PORTD	; Initialize PORTD by ; clearing output
CLRF	LATD	; data latches ; Alternate method ; to clear output ; data latches
MOVLW (DxCF	; Value used to ; initialize data : direction
MOVWF 1	TRISD	; Set RD<3:0> as inputs ; RD<5:4> as outputs ; RD<7:6> as inputs

FIGURE 8-8:

PORTD BLOCK DIAGRAM IN I/O PORT MODE

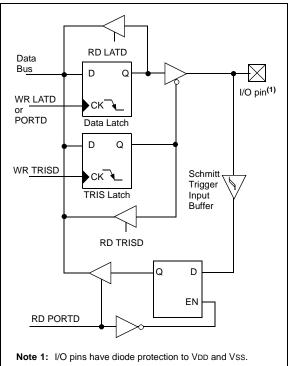


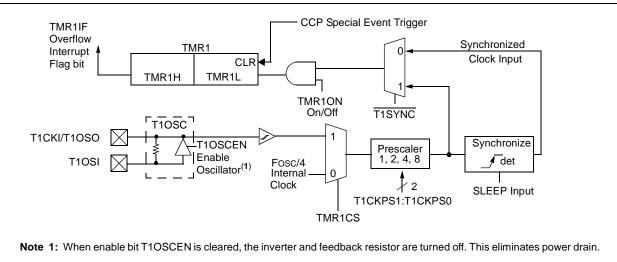
TABLE 8-11: REGISTERS ASSOCIATED WITH PARALLEL SLAVE PORT

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other RESETS
PORTD	Port Data	Latch whe	n written; F	Port pins when read					xxxx xxxx	uuuu uuuu
LATD	LATD Data Output bits							xxxx xxxx	uuuu uuuu	
TRISD	PORTD Data Direction bits							1111 1111	1111 1111	
PORTE	—	—	—	—	—	RE2	RE2 RE1 RE0		000	000
LATE	—	—	—	_	LATE Data Output bits				xxx	uuu
TRISE	IBF	OBF	IBOV	PSPMODE	—	PORTE Da	ata Directio	n bits	0000 -111	0000 -111
INTCON	GIE/ GIEH	PEIE/ GIEL	TMR0IF	INTOIE	RBIE	TMR0IF	INTOIF	RBIF	0000 000x	0000 000u
PIR1	PSPIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
PIE1	PSPIE	ADIE	RCIE	TXIE	SSPIE	SSPIE CCP1IE		TMR1IE	0000 0000	0000 0000
IPR1	PSPIP	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	0000 0000	0000 0000
ADCON1	ADFM	ADCS2	—	—	PCFG3	PCFG2	PCFG1	PCFG0	0000	0000

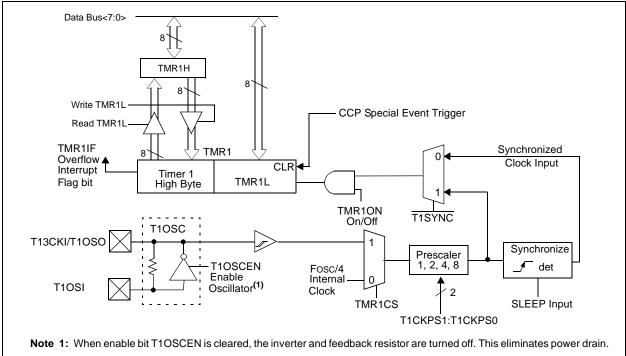
Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the Parallel Slave Port.

10.1 Timer1 Operation

Timer1 can operate in one of these modes:


- As a timer
- As a synchronous counter
- As an asynchronous counter

The operating mode is determined by the clock select bit, TMR1CS (T1CON<1>).


When TMR1CS = 0, Timer1 increments every instruction cycle. When TMR1CS = 1, Timer1 increments on every rising edge of the external clock input or the Timer1 oscillator, if enabled.

When the Timer1 oscillator is enabled (T1OSCEN is set), the RC1/T1OSI and RC0/T1OSO/T1CKI pins become inputs. That is, the TRISC<1:0> value is ignored.

Timer1 also has an internal "RESET input". This RESET can be generated by the CCP module (Section 13.0).

FIGURE 10-2: TIMER1 BLOCK DIAGRAM: 16-BIT READ/WRITE MODE

FIGURE 10-1: TIMER1 BLOCK DIAGRAM

13.1 CCP1 Module

Capture/Compare/PWM Register 1 (CCPR1) is comprised of two 8-bit registers: CCPR1L (low byte) and CCPR1H (high byte). The CCP1CON register controls the operation of CCP1. All are readable and writable.

TABLE 13-1: CCP MODE - TIMER RESOURCE

CCP Mode	Timer Resource				
Capture	Timer1 or Timer3				
Compare	Timer1 or Timer3				
PWM	Timer2				

13.2 CCP2 Module

Capture/Compare/PWM Register2 (CCPR2) is comprised of two 8-bit registers: CCPR2L (low byte) and CCPR2H (high byte). The CCP2CON register controls the operation of CCP2. All are readable and writable.

TABLE 13-2: INTERACTION OF TWO CCP MODULES

CCPx Mode	CCPy Mode	Interaction
Capture	Capture	TMR1 or TMR3 time-base. Time-base can be different for each CCP.
Capture	Compare	The compare could be configured for the special event trigger, which clears either TMR1, or TMR3, depending upon which time-base is used.
Compare	Compare	The compare(s) could be configured for the special event trigger, which clears TMR1, or TMR3, depending upon which time-base is used.
PWM	PWM	The PWMs will have the same frequency and update rate (TMR2 interrupt).
PWM	Capture	None.
PWM	Compare	None.

14.0 MASTER SYNCHRONOUS SERIAL PORT (MSSP) MODULE

14.1 Master SSP (MSSP) Module Overview

The Master Synchronous Serial Port (MSSP) module is a serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be Serial EEPROMs, shift registers, display drivers, A/D converters, etc. The MSSP module can operate in one of two modes:

- Serial Peripheral Interface (SPI™)
- Inter-Integrated Circuit (I²C[™])
 - Full Master mode
 - Slave mode (with general address call)

The I^2C interface supports the following modes in hardware:

- Master mode
- Multi-Master mode
- · Slave mode

TABLE 15-4:	BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 0)
-------------	---

BAUD	Fosc = 40 MHz			Fosc = 20 MHz			F	osc = 16	MHz	Fosc = 10 MHz		
RATE (K)	Actual Rate (K)	% Error	SPBRG value (decimal)									
0.3	NA		_	NA	_	_	NA	_	_	NA	_	_
1.2	NA	—	—	1.221	+1.73	255	1.202	+0.16	207	1.202	+0.16	129
2.4	2.44	-1.70	255	2.404	+0.16	129	2.404	+0.16	103	2.404	+0.16	64
9.6	9.62	-0.16	64	9.469	-1.36	32	9.615	+0.16	25	9.766	+1.73	15
19.2	18.94	+1.38	32	19.53	+1.73	15	19.23	+0.16	12	19.53	+1.73	7
76.8	78.13	-1.70	7	78.13	+1.73	3	83.33	+8.51	2	78.13	+1.73	1
96	89.29	+7.52	6	104.2	+8.51	2	NA	—	—	NA	—	—
300	312.50	-4.00	1	312.5	+4.17	0	NA	—	—	NA	—	—
500	625.00	-20.00	0	NA	—		NA		—	NA	—	—
HIGH	2.44	—	255	312.5	_	0	250	—	0	156.3	—	0
LOW	625.00	—	0	1.221	—	255	0.977	—	255	0.6104	—	255

BAUD RATE (K)	Fosc = 7.15909 MHz			Fosc = 5.0688 MHz			F	osc = 4	MHz	Fosc = 3.579545 MHz		
	Actual Rate (K)	% Error	SPBRG value (decimal)									
0.3	NA		_	0.31	+3.13	255	0.3005	-0.17	207	0.301	+0.23	185
1.2	1.203	+0.23	92	1.2	0	65	1.202	+1.67	51	1.190	-0.83	46
2.4	2.380	-0.83	46	2.4	0	32	2.404	+1.67	25	2.432	+1.32	22
9.6	9.322	-2.90	11	9.9	+3.13	7	NA		—	9.322	-2.90	5
19.2	18.64	-2.90	5	19.8	+3.13	3	NA	_	_	18.64	-2.90	2
76.8	NA	_	_	79.2	+3.13	0	NA	_	_	NA	_	_
96	NA	—	—	NA	_	—	NA	_	_	NA	_	_
300	NA	_	_									
500	NA	—	—	NA	_	—	NA	_	—	NA	_	_
HIGH	111.9	—	0	79.2	_	0	62.500	_	0	55.93	_	0
LOW	0.437	—	255	0.3094	_	255	3.906		255	0.2185		255

DAUD	F	osc = 1	MHz	Fosc = 32.768 kHz			
BAUD RATE (K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	
0.3	0.300	+0.16	51	0.256	-14.67	1	
1.2	1.202	+0.16	12	NA	_	_	
2.4	2.232	-6.99	6	NA	—	—	
9.6	NA	—	—	NA	—	—	
19.2	NA	_	_	NA	_	—	
76.8	NA	_	—	NA	_	_	
96	NA	_	—	NA	_	_	
300	NA	_	—	NA	_	_	
500	NA	_	_	NA	—	—	
HIGH	15.63	_	0	0.512	—	0	
LOW	0.0610	—	255	0.0020	—	255	

15.3.2 USART SYNCHRONOUS MASTER RECEPTION

Once Synchronous mode is selected, reception is enabled by setting either enable bit SREN (RCSTA<5>), or enable bit CREN (RCSTA<4>). Data is sampled on the RC7/RX/DT pin on the falling edge of the clock. If enable bit SREN is set, only a single word is received. If enable bit CREN is set, the reception is continuous until CREN is cleared. If both bits are set, then CREN takes precedence.

To set up a Synchronous Master Reception:

- 1. Initialize the SPBRG register for the appropriate baud rate (Section 15.1).
- 2. Enable the synchronous master serial port by setting bits SYNC, SPEN and CSRC.

- 3. Ensure bits CREN and SREN are clear.
- 4. If interrupts are desired, set enable bit RCIE.
- 5. If 9-bit reception is desired, set bit RX9.
- 6. If a single reception is required, set bit SREN. For continuous reception, set bit CREN.
- Interrupt flag bit RCIF will be set when reception is complete and an interrupt will be generated if the enable bit RCIE was set.
- 8. Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 9. Read the 8-bit received data by reading the RCREG register.
- 10. If any error occurred, clear the error by clearing bit CREN.

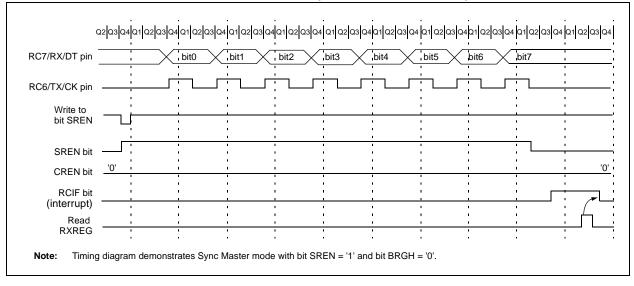

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other RESETS
INTCON	GIE/ GIEH	PEIE/ GIEL	TMR0IE	INTOIE	RBIE	TMR0IF	INTOIF	RBIF	0000 000x	0000 000u
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
IPR1	PSPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	0000 0000	0000 0000
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 -00x	0000 -00x
RCREG	USART Receive Register						0000 0000	0000 0000		
TXSTA	CSRC	TX9	TXEN	SYNC		BRGH	TRMT	TX9D	0000 -010	0000 -010
SPBRG	Baud Rate Generator Register						0000 0000	0000 0000		

TABLE 15-9: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION

Legend: x = unknown, - = unimplemented, read as '0'.

Shaded cells are not used for Synchronous Master Reception.

FIGURE 15-8: SYNCHRONOUS RECEPTION (MASTER MODE, SREN)

© 1999-2013 Microchip Technology Inc.

Note 1: The PSPIF, PSPIE and PSPIP bits are reserved on the PIC18C2X2 devices. Always maintain these bits clear.

COMF	Complement f	CPFSEQ	Compare skip if f =	f with WRE WREG	З,
Syntax:	[<i>label</i>] COMF f[,d[,a]	Syntax:	[label] C	PFSEQ f	,a]
Operands:	$0 \le f \le 255$	Operands:	$0 \le f \le 255$	5	
	d ∈ [0,1] a ∈ [0,1]		a ∈ [0,1]		
Operation:	$(\overline{f}) \rightarrow dest$	Operation:	(f) – (WRE skip if (f) = (unsigned		
Status Affected:	N,Z	Status Affected:	None	companson	
Encoding:	0001 11da ffff ffff			001a ff	
Description:	The contents of register 'f' are com- plemented. If 'd' is 0, the result is stored in WREG. If 'd' is 1, the result is stored back in register 'f' (default). If 'a' is 0, the Access Bank will be selected, overriding the BSR value. If 'a' = 1, then the bank will be selected as per the BCR value (default)	Encoding: Description:	memory lo of WREG unsigned s If 'f' = WRI instruction is execute	001a fff the contents ocation 'f' to the by performin subtraction. EG, then the is discarded d instead, m	s of data he contents g an fetched l and a NOP aking this a
	BSR value (default).			instruction. If	lected, over-
Words:	1				a' = 1, then
Cycles:	1			ill be selecte	ed as per the
Q Cycle Activity:	00 00 01		BSR value	e (default).	
Q1 Decode	Q2 Q3 Q4 Read Process Write to	Words:	1		
Decode	register 'f' Data destination	Cycles:	1(2)	voloo if okin i	and followed
Example:	COMF REG, 0, 0			a 2-word inst	
Before Instru	ction	Q Cycle Activity:	-		
REG	= 0x13	Q1	Q2	Q3	Q4
After Instruct	ION = 0x13	Decode	Read	Process	No
WREG	= 0xEC	If alvin:	register 'f'	Data	operation
		If skip: Q1	Q2	Q3	Q4
		No	No	No	No
		operation	operation	operation	operation
		If skip and follow	ed by 2-wore	d instruction:	
		Q1	Q2	Q3	Q4
		No operation	No operation	No operation	No operation
		No	No	No	No
		operation	operation	operation	operation
		<u>Example</u> :	HERE NEQUAL EQUAL	CPFSEQ REG :	;, O
		Before Instru PC Addr WREG REG After Instruct If REG PC If REG	ress = HE = ? = ? tion = WR = Ad	RE EG; dress (EQU/ EG;	AL)
		PC	= Ad	dress (NEQU	JAL)

MUL	_LW	Multiply I	Multiply Literal with WREG					
Synt	ax:	[label]	MULLW	k				
Ope	rands:	$0 \le k \le 25$	5					
Ope	ration:	(WREG) >	$k \to PR$	ODH:PF	RODL			
Statu	us Affected:	None						
Enco	oding:	0000	1101	kkkk	kkkk			
Des	cription:	An unsigned multiplication is car- ried out between the contents of WREG and the 8-bit literal 'k'. The 16-bit result is placed in PRODH:PRODL register pair. PRODH contains the high byte. WREG is unchanged. None of the status flags are affected. Note that neither overflow, nor carry is possible in this opera- tion. A zero result is possible but not detected.						
Wor	ds:	1						
Cycl		1						
•	cycle Activity:							
	Q1	Q2	Q3		Q4			
	Decode	Read literal 'k'	Proces Data	re PF	Write gisters RODH: RODL			
Exar	mple:	MULLW	0xC4					
	Before Instru	iction						
	WREG	= 0x	E2					
	PRODH PRODL	= ? = ?						
	After Instruct	ion						
	WREG PRODH PRODL	= 0x	E2 AD 08					

MULWF	Multiply	WREG with	f	
Syntax:	[label]	MULWF	f [,a]	
Operands:	0 ≤ f ≤ 25 a ∈ [0,1]	5		
Operation:	(WREG) >	$k(f) \rightarrow PRO$	DH:PRODL	
Status Affected:	None			
Encoding:	0000	001a ff	ff ffff	
Description:	An unsigned multiplication is car- ried out between the contents of WREG and the register file loca- tion 'f'. The 16-bit result is stored in the PRODH:PRODL register pair. PRODH contains the high byte. Both WREG and 'f' are unchanged. None of the status flags are affected. Note that neither overflow, nor carry is possible in this opera- tion. A zero result is possible but not detected. If 'a' is 0, the Access Bank will be selected, overriding the BSR value. If 'a'= 1, then the bank will be selected as per the BSR value (default).			
Words:	1			
Cycles:	1			
Q Cycle Activity:				
Q1	Q2	Q3	Q4	
Decode	Read register 'f'	Process Data	Write registers PRODH: PRODL	
Example:	MULWF	REG, 1		
Before Instru	ction			
WREG REG PRODH PRODL		xC4 xB5		
After Instruct				
WREG		C4		

itter instruction		
WREG	=	0xC4
REG	=	0xB5
PRODH	=	0x8A
PRODL	=	0x94

TBL	RD	Table Read	ł		
Synt	ax:	[label]	TBLRD (*; *+; *-; +	-*)
Ope	rands:	None			
Ope	ration:	if TBLRD *,			
				$PTR)) \rightarrow $	TABLAT;
		if TBLRD *-	R - No Ch +	lange;	
				$PTR)) \rightarrow $	TABLAT;
				TBLPTR;	
		if TBLRD *- (Prog M		$PTR)) \rightarrow $	TABI AT'
			R) -1 \rightarrow 1		17 (BE) (1,
		if TBLRD +			
				TBLPTR; PTR)) \rightarrow	TABI AT'
Stati	us Affected			, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	17 (BE) (1,
	oding:		0000	0000	10nn
LIIC	Julig.	0000	0000	0000	nn=0 *
					=1 *+ =2 *-
					=3 +*
Des	cription:	This instruc			
		contents of address the	-	-	
		pointer call			
		is used.			
		The TBLPT to each byt			
		TBLPTR ha			
		TBLPT	R[0] = 0:	Least Sig	gnificant
		Byte of	f Progran	n Memory	Word
				Most Sig	
				n Memory	
		The TBLRD value of TE			odify the
		 no chang 	je		
		 post-incr 			
		 post-dec 			
		• pre-incre	ment		
Wor		1			
Cycl		2			
QC	ycle Activit		00	~	1
	Q1 Decode	Q2 No	Q3 No		
	Decoue	operation	operation		
	No	No	No		

TBLRD	Table Read	d (co	ont'd)
Example 1:	TBLRD *+	;	
Before Instru	iction		
TABLAT TBLPTR MEMORY (0x00A356)	= = =	0x55 0x00A356 0x34
After Instruct	ion		
TABLAT TBLPTR		=	0x34 0x00A357
Example 2:	TBLRD +*	;	
Before Instru	iction		
	0x01A357) 0x01A358)	= = =	0xAA 0x01A357 0x12 0x34
After Instruct	ion		
TABLAT TBLPTR		=	0x34 0x01A358

operation (Read Program Memory)

operation

operation

operation (Write TABLAT)

20.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers are supported with a full range of hardware and software development tools:

- Integrated Development Environment
 - MPLAB[®] IDE Software
- Assemblers/Compilers/Linkers
 - MPASM[™] Assembler
 - MPLAB C17 and MPLAB C18 C Compilers
 - MPLINK[™] Object Linker/
 - MPLIB[™] Object Librarian
- Simulators
 - MPLAB SIM Software Simulator
- Emulators
 - MPLAB ICE 2000 In-Circuit Emulator
- ICEPIC[™] In-Circuit Emulator
- In-Circuit Debugger
 - MPLAB ICD for PIC16F87X
- Device Programmers
 - PRO MATE[®] II Universal Device Programmer
- PICSTART[®] Plus Entry-Level Development Programmer
- Low Cost Demonstration Boards
 - PICDEM[™]1 Demonstration Board
 - PICDEM 2 Demonstration Board
 - PICDEM 3 Demonstration Board
 - PICDEM 17 Demonstration Board
 - KEELOQ[®] Demonstration Board

20.1 MPLAB Integrated Development Environment Software

The MPLAB IDE software brings an ease of software development previously unseen in the 8-bit microcontroller market. The MPLAB IDE is a Windows[®]-based application that contains:

- An interface to debugging tools
 - simulator
 - programmer (sold separately)
 - emulator (sold separately)
 - in-circuit debugger (sold separately)
- A full-featured editor
- A project manager
- Customizable toolbar and key mapping
- A status bar
- On-line help

The MPLAB IDE allows you to:

- Edit your source files (either assembly or 'C')
- One touch assemble (or compile) and download to PIC MCU emulator and simulator tools (automatically updates all project information)
- Debug using:
 - source files
 - absolute listing file
 - machine code

The ability to use MPLAB IDE with multiple debugging tools allows users to easily switch from the costeffective simulator to a full-featured emulator with minimal retraining.

20.2 MPASM Assembler

The MPASM assembler is a full-featured universal macro assembler for all PIC MCUs.

The MPASM assembler has a command line interface and a Windows shell. It can be used as a stand-alone application on a Windows 3.x or greater system, or it can be used through MPLAB IDE. The MPASM assembler generates relocatable object files for the MPLINK object linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, an absolute LST file that contains source lines and generated machine code, and a COD file for debugging.

The MPASM assembler features include:

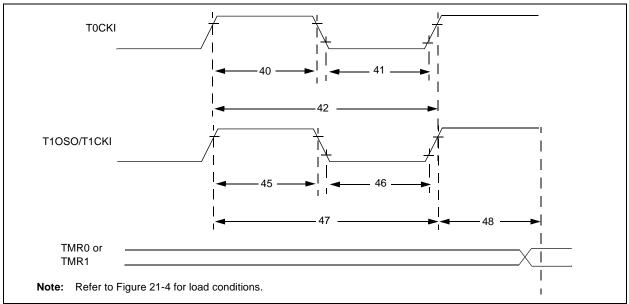
- Integration into MPLAB IDE projects.
- User-defined macros to streamline assembly code.
- Conditional assembly for multi-purpose source files.
- Directives that allow complete control over the assembly process.

20.3 MPLAB C17 and MPLAB C18 C Compilers

The MPLAB C17 and MPLAB C18 Code Development Systems are complete ANSI 'C' compilers for Microchip's PIC17CXXX and PIC18CXXX family of microcontrollers, respectively. These compilers provide powerful integration capabilities and ease of use not found with other compilers.

For easier source level debugging, the compilers provide symbol information that is compatible with the MPLAB IDE memory display.

21.0 ELECTRICAL CHARACTERISTICS


(±)

Absolute Maximum Ratings ^(†)	
Ambient temperature under bias	55°C to +125°C
Storage temperature	65°C to +150°C
Voltage on any pin with respect to Vss (except VDD, MCLR, and RA4)	0.3 V to (VDD + 0.3 V)
Voltage on VDD with respect to Vss	0.3 V to +7.5 V
Voltage on MCLR with respect to Vss (Note 2)	0 V to +13.25 V
Voltage on RA4 with respect to Vss	0 V to +8.5 V
Total power dissipation (Note 1)	1.0 W
Maximum current out of Vss pin	300 mA
Maximum current into VDD pin	250 mA
Input clamp current, Iik (VI < 0 or VI > VDD)	±20 mA
Output clamp current, Ioк (Vo < 0 or Vo > VDD)	±20 mA
Maximum output current sunk by any I/O pin	25 mA
Maximum output current sourced by any I/O pin	25 mA
Maximum current sunk by PORTA, PORTB, and PORTE (Note 3) (combined)	200 mA
Maximum current sourced by PORTA, PORTB, and PORTE (Note 3) (combined)	200 mA
Maximum current sunk by PORTC and PORTD (Note 3) (combined)	200 mA
Maximum current sourced by PORTC and PORTD (Note 3) (combined)	200 mA
Note 1: Power dissipation is calculated as follows:	

- Pdis = VDD x {IDD \sum IOH} + \sum {(VDD-VOH) x IOH} + \sum (VOI x IOL)
- **2:** Voltage spikes below Vss at the MCLR/VPP pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50-100Ω should be used when applying a "low" level to the MCLR/VPP pin, rather than pulling this pin directly to Vss.
- **3:** PORTD and PORTE not available on the PIC18C2X2 devices.

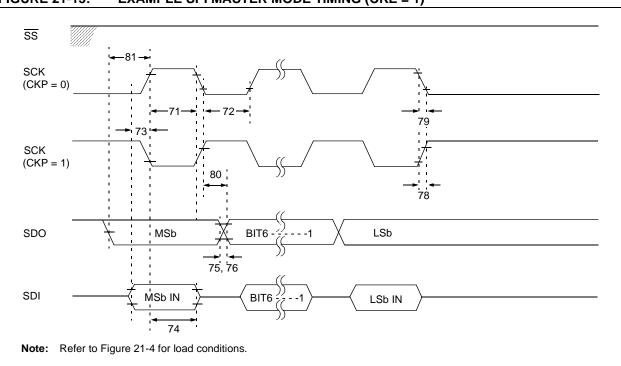

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

FIGURE 21-9: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS

TABLE 21-8:	TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS
-------------	---

Param No.	Symbol		Characteristic		Min	Max	Units	Conditions		
40	Tt0H	T0CKI H	ligh Pulse Width	No Prescaler	0.5Tcy + 20		ns			
				With Prescaler	10	_	ns			
41	Tt0L	T0CKI L	ow Pulse Width	No Prescaler	0.5Tcy + 20	_	ns			
				With Prescaler	10		ns			
42	Tt0P	T0CKI P	Period	No Prescaler	Tcy + 10		ns			
				With Prescaler	Greater of: 20 ns or <u>TcY + 40</u> N		ns	N = prescale value (1, 2, 4,, 256)		
45	Tt1H	t1H T1CKI High Time	Synchronous, no	o prescaler	0.5Tcy + 20	_	ns			
			•	•	Synchronous,	PIC18CXXX	10	_	ns	
			with prescaler	PIC18LCXXX	25	_	ns			
			Asynchronous	PIC18CXXX	30	_	ns			
				PIC18LCXXX	40	_	ns			
46	Tt1L	T1CKI	Synchronous, no	prescaler	0.5Tcy + 20	_	ns			
		Low Time	Synchronous,	PIC18CXXX	15	_	ns			
			with prescaler	PIC18LCXXX	30	_	ns			
			Asynchronous	PIC18CXXX	30	_	ns			
			-	PIC18LCXXX	40	_	ns			
47	Tt1P	T1CKI input period	Synchronous		Greater of: 20 ns or <u>Tcy + 40</u> N		ns	N = prescale value (1, 2, 4, 8)		
			Asynchronous		60		ns			
	Ft1	T1CKI o	scillator input freq	scillator input frequency range		50	kHz			
48	Tcke2tmrl	Delay fro	om external T1CK crement	I clock edge to	2Tosc	7Tosc				

FIGURE 21-13: EXAMPLE SPI MASTER MODE TIMING (CKE = 1)


TABLE 21-12: EXAMPLE SPI MODE REQUIREMENTS (MASTER MODE, CKE = 1)

Param. No.	Symbol	Characteristic		Min	Max	Units	Conditions
71	TscH	SCK input high time	Continuous	1.25Tcy + 30		ns	
71A		(Slave mode)	Single Byte	40	_	ns	(Note 1)
72	TscL	SCK input low time	Continuous	1.25Tcy + 30		ns	
72A		(Slave mode)	Single Byte	40	_	ns	(Note 1)
73	TdiV2scH, TdiV2scL	Setup time of SDI data input to SCK edge		100	_	ns	
73A	Тв2в	Last clock edge of Byte1 to the 1st clock edge of Byte2		1.5Tcy + 40	_	ns	(Note 2)
74	TscH2diL, TscL2diL	Hold time of SDI data input to SCK edge		100	_	ns	
75	TdoR	SDO data output rise time PIC18CXXX		_	25	ns	
			PIC18LCXXX		45	ns	
76	TdoF	SDO data output fall time		—	25	ns	
78	TscR	SCK output rise time	PIC18CXXX	_	25	ns	
		(Master mode)	PIC18LCXXX		45	ns	
79	TscF	SCK output fall time (Master	mode)	_	25	ns	
80	TscH2doV,	SDO data output valid after PIC18CXXX		_	50	ns	
	TscL2doV	SCK edge	edge PIC18LCXXX		100	ns	
81	TdoV2scH, TdoV2scL	SDO data output setup to SCK edge		Тсү	—	ns	

Note 1: Requires the use of Parameter # 73A.

2: Only if Parameter # 71A and # 72A are used.

Note:

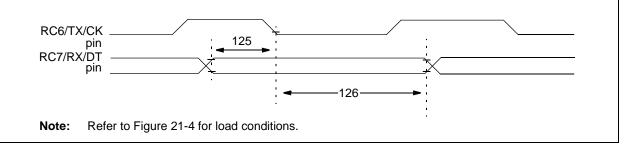


TABLE 21-19: USART SYNCHRONOUS TRANSMISSION REQUIREMENTS

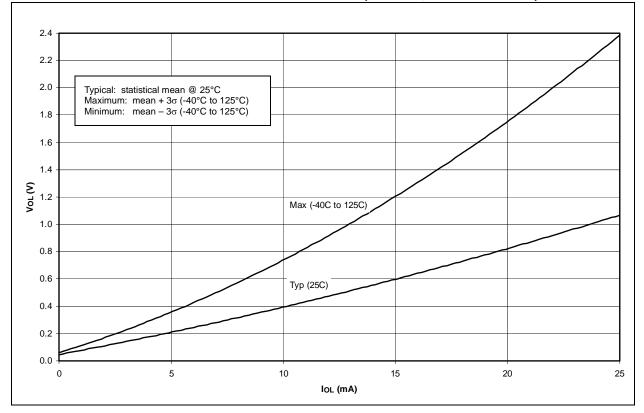
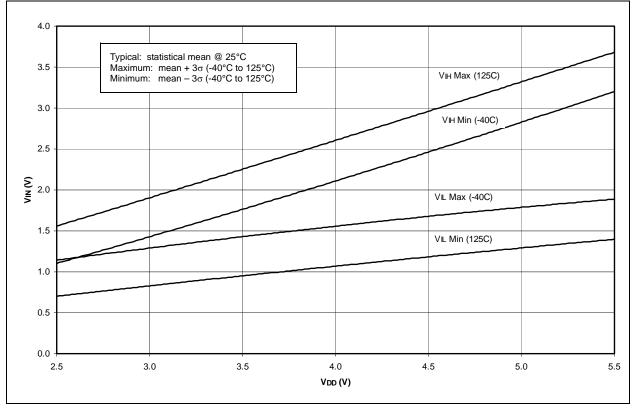
Refer to Figure 21-4 for load conditions.

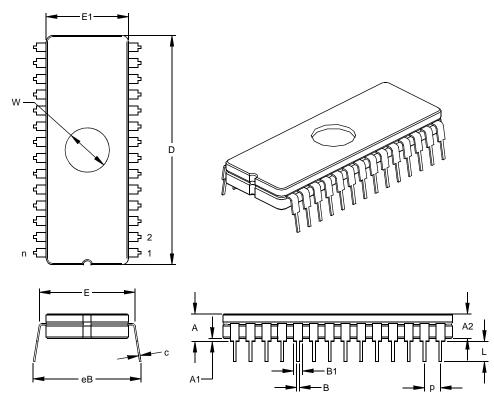
Param. No.	Symbol	Characteristic		Min	Мах	Units	Conditions
120	TckH2dtV	SYNC XMIT (MASTER & SLAVE)					
		Clock high to data out valid	PIC18 C XXX	_	40	ns	
			PIC18LCXXX		100	ns	
121	Tckrf	Clock out rise time and fall time (Master mode)	PIC18 C XXX	_	25	ns	
			PIC18LCXXX	_	50	ns	
122	Tdtrf	Data out rise time and fall time	PIC18CXXX	_	25	ns	
			PIC18LCXXX		50	ns	

FIGURE 21-21: USART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING

TABLE 21-20: USART SYNCHRONOUS RECEIVE REQUIREMENTS

Param. No.	Symbol	Characteristic	Min	Max	Units	Conditions
125	TdtV2ckl	SYNC RCV (MASTER & SLAVE) Data hold before CK \downarrow (DT hold time)	10		20	
126	TckL2dtl	Data hold after CK \downarrow (DT hold time)	15		ns ns	


FIGURE 22-23: TYPICAL AND MAXIMUM Vol vs. lol (VDD = 3V, -40°C TO +125°C)

28-Lead Ceramic Dual In-line with Window (JW) - 600 mil (CERDIP)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units			INCHES*			MILLIMETERS			
Dimensio	n Limits	MIN	NOM	MAX	MIN	NOM	MAX			
Number of Pins	n		28			28				
Pitch	р		.100			2.54				
Top to Seating Plane	А	.195	.210	.225	4.95	5.33	5.72			
Ceramic Package Height	A2	.155	.160	.165	3.94	4.06	4.19			
Standoff	A1	.015	.038	.060	0.38	0.95	1.52			
Shoulder to Shoulder Width	Е	.595	.600	.625	15.11	15.24	15.88			
Ceramic Pkg. Width	E1	.514	.520	.526	13.06	13.21	13.36			
Overall Length	D	1.430	1.460	1.490	36.32	37.08	37.85			
Tip to Seating Plane	L	.125	.138	.150	3.18	3.49	3.81			
Lead Thickness	С	.008	.010	.012	0.20	0.25	0.30			
Upper Lead Width	B1	.050	.058	.065	1.27	1.46	1.65			
Lower Lead Width	В	.016	.020	.023	0.41	0.51	0.58			
Overall Row Spacing §	eB	.610	.660	.710	15.49	16.76	18.03			
Window Diameter	W	.270	.280	.290	6.86	7.11	7.37			

Sontolling Parameter
 Significant Characteristic
 JEDEC Equivalent: MO-103
 Drawing No. C04-013