

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	22
Program Memory Size	32KB (16K x 16)
Program Memory Type	EPROM, UV
EEPROM Size	-
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 5x10b
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Through Hole
Package / Case	28-CDIP (0.300", 7.62mm) Window
Supplier Device Package	28-CerDip
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18c252-jw

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.0 MEMORY ORGANIZATION

There are two memory blocks in Enhanced MCU devices. These memory blocks are:

- Program Memory
- Data Memory

Program and data memory use separate buses so that concurrent access can occur.

4.1 Program Memory Organization

A 21-bit program counter is capable of addressing the 2-Mbyte program memory space. Accessing a location between the physically implemented memory and the 2-Mbyte address will cause a read of all '0's (a NOP instruction).

PIC18C252 and PIC18C452 have 32 Kbytes of EPROM, while PIC18C242 and PIC18C442 have 16 Kbytes of EPROM. This means that PIC18CX52 devices can store up to 16K of single word instructions, and PIC18CX42 devices can store up to 8K of single word instructions.

The RESET vector address is at 0000h and the interrupt vector addresses are at 0008h and 0018h.

Figure 4-1 shows the Program Memory Map for PIC18C242/442 devices and Figure 4-2 shows the Program Memory Map for PIC18C252/452 devices.

4.9 Data Memory Organization

The data memory is implemented as static RAM. Each register in the data memory has a 12-bit address, allowing up to 4096 bytes of data memory. Figure 4-6 and Figure 4-7 show the data memory organization for the PIC18CXX2 devices.

The data memory map is divided into as many as 16 banks that contain 256 bytes each. The lower 4 bits of the Bank Select Register (BSR<3:0>) select which bank will be accessed. The upper 4 bits for the BSR are not implemented.

The data memory contains Special Function Registers (SFR) and General Purpose Registers (GPR). The SFRs are used for control and status of the controller and peripheral functions, while GPRs are used for data storage and scratch pad operations in the user's application. The SFRs start at the last location of Bank 15 (0xFFF) and extend downwards. Any remaining space beyond the SFRs in the Bank may be implemented as GPRs. GPRs start at the first location of Bank 0 and grow upwards. Any read of an unimplemented location will read as '0's.

The entire data memory may be accessed directly, or indirectly. Direct addressing may require the use of the BSR register. Indirect addressing requires the use of a File Select Register (FSRn) and corresponding Indirect File Operand (INDFn). Each FSR holds a 12-bit address value that can be used to access any location in the Data Memory map without banking.

The instruction set and architecture allow operations across all banks. This may be accomplished by indirect addressing or by the use of the MOVFF instruction. The MOVFF instruction is a two-word/two-cycle instruction that moves a value from one register to another.

To ensure that commonly used registers (SFRs and select GPRs) can be accessed in a single cycle, regardless of the current BSR values, an Access Bank is implemented. A segment of Bank 0 and a segment of Bank 15 comprise the Access RAM. Section 4.10 provides a detailed description of the Access RAM.

4.9.1 GENERAL PURPOSE REGISTER FILE

The register file can be accessed either directly, or indirectly. Indirect addressing operates using the File Select Registers (FSRn) and corresponding Indirect File Operand (INDFn). The operation of indirect addressing is shown in Section 4.12.

Enhanced MCU devices may have banked memory in the GPR area. GPRs are not initialized by a Power-on Reset and are unchanged on all other RESETS.

Data RAM is available for use as GPR registers by all instructions. The top half of bank 15 (0xF80 to 0xFFF) contains SFRs. All other banks of data memory contain GPR registers, starting with bank 0.

4.9.2 SPECIAL FUNCTION REGISTERS

The Special Function Registers (SFRs) are registers used by the CPU and Peripheral Modules for controlling the desired operation of the device. These registers are implemented as static RAM. A list of these registers is given in Table 4-1 and Table 4-2.

The SFRs can be classified into two sets; those associated with the "core" function and those related to the peripheral functions. Those registers related to the "core" are described in this section, while those related to the operation of the peripheral features are described in the section of that peripheral feature.

The SFRs are typically distributed among the peripherals whose functions they control.

The unused SFR locations will be unimplemented and read as '0's. See Table 4-1 for addresses for the SFRs.

REGISTER FILE SUMMARY (CONTINUED) TABLE 4-2:

File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Details on page:
IPR2	_	_	_	—	BCLIP	LVDIP	TMR3IP	CCP2IP	1111	73
PIR2	—	—	_	—	BCLIF	LVDIF	TMR3IF	CCP2IF	0000	69
PIE2	_	_	_	_	BCLIE	LVDIE	TMR3IE	CCP2IE	0000	71
IPR1	PSPIP	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	1111 1111	72
PIR1	PSPIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	68
PIE1	PSPIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	70
TRISE	IBF	OBF	IBOV	PSPMODE	_	Data Direction	on bits for PO	RTE	0000 -111	88
TRISD	Data Directi	on Control Re	gister for POR	TD					1111 1111	85
TRISC	Data Direction Control Register for PORTC								1111 1111	83
TRISB	Data Direction Control Register for PORTB								1111 1111	80
TRISA	_	TRISA6 ⁽¹⁾	Data Directi	on Control Reg	ister for PORT	A			-111 1111	77
LATE	-	—	_	—	-		E Data Latch, E Data Latch		xxx	87
LATD	Read PORT	D Data Latch,	Write PORTE	Data Latch	•				xxxx xxxx	85
LATC	Read PORT	C Data Latch,	Write PORTO	C Data Latch					xxxx xxxx	83
LATB	Read PORT	B Data Latch,	Write PORTE	B Data Latch					xxxx xxxx	80
LATA	_	LATA6 ⁽¹⁾	Read PORT	A Data Latch, V	Write PORTA	Data Latch ⁽¹⁾			-xxx xxxx	77
PORTE	Read PORTE pins, Write PORTE Data Latch							000	87	
PORTD	Read PORTD pins, Write PORTD Data Latch							xxxx xxxx	85	
PORTC	Read PORTC pins, Write PORTC Data Latch							xxxx xxxx	83	
PORTB	Read PORT	B pins, Write	PORTB Data	Latch					xxxx xxxx	80
PORTA	—	RA6 ⁽¹⁾	Read PORT	A pins, Write P	ORTA Data La	atch ⁽¹⁾			-x0x 0000	77

Legend: x = unknown, u = unchanged, - = unimplemented, g = value depends on condition
Note 1: RA6 and associated bits are configured as port pins in RCIO and ECIO oscillator mode only, and read '0' in all other oscillator modes.
2: Bit 21 of the TBLPTRU allows access to the device configuration bits.

7.6 INT0 Interrupt

External interrupts on the RB0/INT0, RB1/INT1 and RB2/INT2 pins are edge triggered: either rising, if the corresponding INTEDGx bit is set in the INTCON2 register, or falling, if the INTEDGx bit is clear. When a valid edge appears on the RBx/INTx pin, the corresponding flag bit INTxF is set. This interrupt can be disabled by clearing the corresponding enable bit INTxE. Flag bit INTxF must be cleared in software in the Interrupt Service Routine before re-enabling the interrupt. All external interrupts (INT0, INT1 and INT2) can wake-up the processor from SLEEP, if bit INTxE was set prior to going into SLEEP. If the global interrupt enable bit GIE set, the processor will branch to the interrupt vector following wake-up.

Interrupt priority for INT1 and INT2 is determined by the value contained in the interrupt priority bits, INT1IP (INTCON3<6>) and INT2IP (INTCON3<7>). There is no priority bit associated with INT0. It is always a high priority interrupt source.

7.7 TMR0 Interrupt

In 8-bit mode (which is the default), an overflow (FFh \rightarrow 00h) in the TMR0 register will set flag bit TMR0IF. In 16-bit mode, an overflow (FFFFh \rightarrow 0000h) in the TMR0H:TMR0L registers will set flag bit TMR0IF. The interrupt can be enabled/disabled by setting/clearing enable bit TOIE (INTCON<5>). Interrupt priority for Timer0 is determined by the value contained in the interrupt priority bit TMR0IP (INTCON2<2>). See Section 8.0 for further details on the Timer0 module.

7.8 PORTB Interrupt-on-Change

An input change on PORTB<7:4> sets flag bit RBIF (INTCON<0>). The interrupt can be enabled/disabled by setting/clearing enable bit, RBIE (INTCON<3>). Interrupt priority for PORTB Interrupt-on-change is determined by the value contained in the interrupt priority bit, RBIP (INTCON2<0>).

7.9 Context Saving During Interrupts

During an interrupt, the return PC value is saved on the stack. Additionally, the WREG, STATUS and BSR registers are saved on the fast return stack. If a fast return from interrupt is not used (see Section 4.3), the user may need to save the WREG, STATUS and BSR registers in software. Depending on the user's application, other registers may also need to be saved. Example 7-1 saves and restores the WREG, STATUS and BSR registers during an Interrupt Service Routine.

MOVWF	W_TEMP	; W_TEMP is in virtual bank
MOVFF	STATUS, STATUS_TEMP	; STATUS_TEMP located anywhere
MOVFF	BSR, BSR_TEMP	; BSR located anywhere
;		
; USER	ISR CODE	
;		
MOVFF	BSR_TEMP, BSR	; Restore BSR
MOVF	W_TEMP, W	; Restore WREG
MOVFF	STATUS TEMP, STATUS	; Restore STATUS
	—	

TABLE 8-1: PORTA FUNCTIONS

Name	Bit#	Buffer	Function
RA0/AN0	bit0	TTL	Input/output or analog input.
RA1/AN1	bit1	TTL	Input/output or analog input.
RA2/AN2/VREF-	bit2	TTL	Input/output or analog input or VREF
RA3/AN3/VREF+	bit3	TTL	Input/output or analog input or VREF+.
RA4/T0CKI	bit4	ST	Input/output or external clock input for Timer0. Output is open drain type.
RA5/SS/AN4/LVDIN	bit5	TTL	Input/output or slave select input for synchronous serial port or analog input, or low voltage detect input.
OSC2/CLKO/RA6	bit6	TTL	OSC2 or clock output or I/O pin.

Legend: TTL = TTL input, ST = Schmitt Trigger input

TABLE 8-2: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other RESETS
PORTA	—	RA6	RA5	RA4	RA3	RA2	RA1	RA0	0x 0000	0u 0000
LATA		Latch A	Latch A Data Output Register						xx xxxx	uu uuuu
TRISA		PORTA	PORTA Data Direction Register						11 1111	11 1111
ADCON1	ADFM	ADCS2	—	—	PCFG3	PCFG2	PCFG1	PCFG0	0- 0000	0- 0000

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTA.

 $\ensuremath{\textcircled{}^\circ}$ 1999-2013 Microchip Technology Inc.

NOTES:

14.3.5 SLAVE MODE

In Slave mode, the data is transmitted and received as the external clock pulses appear on SCK. When the last bit is latched, the SSPIF interrupt flag bit is set.

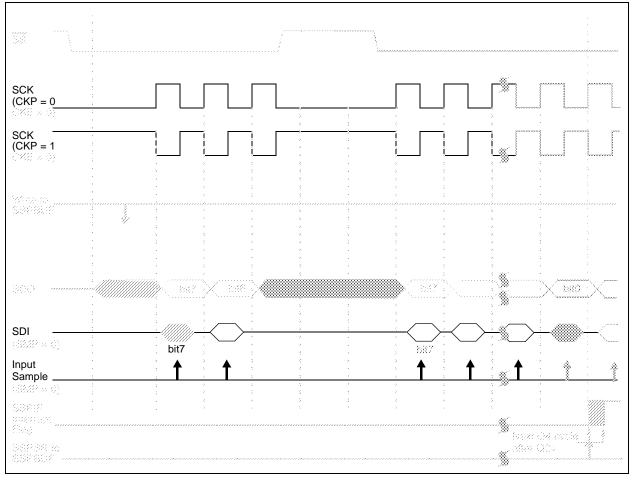
While in Slave mode, the external clock is supplied by the external clock source on the SCK pin. This external clock must meet the minimum high and low times as specified in the electrical specifications.

While in SLEEP mode, the slave can transmit/receive data. When a byte is received, the device will wake-up from SLEEP.

14.3.6 SLAVE SELECT SYNCHRONIZATION

The \overline{SS} pin allows a Synchronous Slave mode. The SPI must be in Slave mode with \overline{SS} pin control enabled (SSPCON1<3:0> = 04h). The pin must not be driven low for the \overline{SS} pin to function as an input. The Data Latch must be high. When the \overline{SS} pin is low, transmission and reception are enabled and the SDO pin is driven. When the \overline{SS} pin goes high,

the SDO pin is no longer driven, even if in the middle of a transmitted byte, and becomes a floating output. External pull-up/pull-down resistors may be desirable, depending on the application.


Note 1: When the SPI is in Slave mode with \overline{SS}
pin control enabled (SSPCON<3:0> =
0100), the SPI module will reset if the \overline{SS}
pin is set to VDD.

2: If the SPI is used in Slave mode with CKE set, then the SS pin control must be enabled.

When the SPI module resets, the bit counter is forced to 0. This can be done by either forcing the \overline{SS} pin to a high level, or clearing the SSPEN bit.

To emulate two-wire communication, the SDO pin can be connected to the SDI pin. When the SPI needs to operate as a receiver, the SDO pin can be configured as an input. This disables transmissions from the SDO. The SDI can always be left as an input (SDI function), since it cannot create a bus conflict.

FIGURE 14-4: SLAVE SYNCHRONIZATION WAVEFORM

Note 1: XT, HS or LP oscillator mode assumed.

2: GIE = '1' assumed. In this case, after wake- up, the processor jumps to the interrupt routine. If GIE = '0', execution will continue in-line.

3: TOST = 1024TOSC (drawing not to scale) This delay will not occur for RC and EC osc modes.

4: CLKOUT is not available in these osc modes, but shown here for timing reference.

18.4 Program Verification/Code Protection

If the code protection bit(s) have not been programmed, the on-chip program memory can be read out for verification purposes.

Note: Microchip Technology does not recommend code protecting windowed devices.

18.5 ID Locations

Five memory locations (200000h - 200004h) are designated as ID locations, where the user can store checksum or other code identification numbers. These locations are accessible during normal execution through the TBLRD instruction or during program/verify. The ID locations can be read when the device is code protected.

18.6 In-Circuit Serial Programming

PIC18CXXX microcontrollers can be serially programmed while in the end application circuit. This is simply done with two lines for clock and data, and three other lines for power, ground and the programming voltage. This allows customers to manufacture boards with unprogrammed devices, and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

19.0 INSTRUCTION SET SUMMARY

The PIC18CXXX instruction set adds many enhancements to the previous PIC instruction sets, while maintaining an easy migration from these PIC MCU instruction sets.

Most instructions are a single program memory word (16-bits), but there are three instructions that require two program memory locations.

Each single word instruction is a 16-bit word divided into an OPCODE, which specifies the instruction type and one or more operands, which further specify the operation of the instruction.

The instruction set is highly orthogonal and is grouped into four basic categories:

- Byte-oriented operations
- **Bit-oriented** operations
- Literal operations
- Control operations

The PIC18CXXX instruction set summary in Table 19-2 lists **byte-oriented**, **bit-oriented**, **literal** and **control** operations. Table 19-1 shows the opcode field descriptions.

Most byte-oriented instructions have three operands:

- 1. The file register (specified by 'f')
- 2. The destination of the result (specified by 'd')
- 3. The accessed memory (specified by 'a')

The file register designator 'f' specifies which file register is to be used by the instruction.

The destination designator 'd' specifies where the result of the operation is to be placed. If 'd' is zero, the result is placed in the WREG register. If 'd' is one, the result is placed in the file register specified in the instruction.

All **bit-oriented** instructions have three operands:

- 1. The file register (specified by 'f')
- 2. The bit in the file register (specified by 'b')
- 3. The accessed memory (specified by 'a')

The bit field designator 'b' selects the number of the bit affected by the operation, while the file register designator 'f' represents the number of the file in which the bit is located.

The **literal** instructions may use some of the following operands:

- A literal value to be loaded into a file register (specified by 'k')
- The desired FSR register to load the literal value into (specified by 'f')
- No operand required (specified by '---')

The **control** instructions may use some of the following operands:

- A program memory address (specified by 'n')
- The mode of the Call or Return instructions (specified by 's')
- The mode of the Table Read and Table Write instructions (specified by 'm')
- No operand required (specified by '---')

All instructions are a single word, except for three double word instructions. These three instructions were made double word instructions so that all the required information is available in these 32-bits. In the second word, the 4 MSb's are 1's. If this second word is executed as an instruction (by itself), it will execute as a NOP.

All single word instructions are executed in a single instruction cycle, unless a conditional test is true or the program counter is changed as a result of the instruction. In these cases, the execution takes two instruction cycles, with the additional instruction cycle(s) executed as a NOP.

The double word instructions execute in two instruction cycles.

One instruction cycle consists of four oscillator periods. Thus, for an oscillator frequency of 4 MHz, the normal instruction execution time is 1 μ s. If a conditional test is true, or the program counter is changed as a result of an instruction, the instruction execution time is 2 μ s. Two word branch instructions (if true) would take 3 μ s.

Figure 19-1 shows the general formats that the instructions can have.

All examples use the format `nnh' to represent a hexadecimal number, where `h' signifies a hexadecimal digit.

The Instruction Set Summary, shown in Table 19-2, lists the instructions recognized by the Microchip assembler (MPASMTM).

Section 19.1 provides a description of each instruction.

TABLE 19-2: PIC18CXXX INSTRUCTION SET

Mnemonic,		Description	Quality	16-bit Instruction Word				Status	
Opera	nds	Description	Cycles	MSb			LSb	Affected	Notes
BYTE-ORI	ENTED F	FILE REGISTER OPERATIONS							
ADDWF	f, d, a	Add WREG and f	1	0010	01da	ffff	ffff	C, DC, Z, OV, N	1, 2
ADDWFC	f, d, a	Add WREG and Carry bit to f	1	0010	00da	ffff	ffff	C, DC, Z, OV, N	1, 2
ANDWF	f, d, a	AND WREG with f	1	0001	01da	ffff	ffff	Z, N	1,2
CLRF	f, a	Clear f	1	0110	101a	ffff	ffff	Z	2
COMF	f, d, a	Complement f	1	0001	11da	ffff	ffff	Z, N	1, 2
CPFSEQ	f, a	Compare f with WREG, skip =	1 (2 or 3)	0110	001a	ffff	ffff	None	4
CPFSGT	f, a	Compare f with WREG, skip >	1 (2 or 3)	0110	010a	ffff	ffff	None	4
CPFSLT	f, a	Compare f with WREG, skip <	1 (2 or 3)	0110	000a	ffff	ffff	None	1, 2
DECF	f, d, a	Decrement f	1	0000	01da	ffff	ffff	C, DC, Z, OV, N	1, 2, 3, 4
DECFSZ	f, d, a	Decrement f, Skip if 0	1 (2 or 3)	0010	11da	ffff	ffff	None	1, 2, 3, 4
DCFSNZ	f, d, a	Decrement f, Skip if Not 0	1 (2 or 3)	0100	11da	ffff	ffff	None	1, 2
INCF	f, d, a	Increment f	1	0010	10da	ffff	ffff	C, DC, Z, OV, N	1, 2, 3, 4
INCFSZ	f, d, a	Increment f, Skip if 0	1 (2 or 3)	0011	11da	ffff	ffff	None	4
INFSNZ	f, d, a	Increment f, Skip if Not 0	1 (2 or 3)	0100	10da	ffff	ffff	None	1, 2
IORWF	f, d, a	Inclusive OR WREG with f	1	0001	00da	ffff	ffff	Z, N	1, 2
MOVF	f, d, a	Move f	1	0101	00da	ffff	ffff	Z, N	1
MOVFF	f _s , f _d	Move f _s (source) to 1st word	2	1100	ffff	ffff	ffff	None	
	0 u	f _d (destination)2nd word		1111	ffff	ffff	ffff		
MOVWF	f, a	Move WREG to f	1	0110	111a	ffff	ffff	None	
MULWF	f, a	Multiply WREG with f	1	0000	001a	ffff	ffff	None	
NEGF	f, a	Negate f	1	0110	110a	ffff	ffff	C, DC, Z, OV, N	1, 2
RLCF	f, d, a	Rotate Left f through Carry	1	0011	01da	ffff	ffff	C, Z, N	
RLNCF	f, d, a	Rotate Left f (No Carry)	1	0100	01da	ffff	ffff	Z, N	1, 2
RRCF	f, d, a	Rotate Right f through Carry	1	0011	00da	ffff	ffff	C, Z, N	
RRNCF	f, d, a	Rotate Right f (No Carry)	1	0100	00da	ffff	ffff	Z, N	
SETF	f, a	Set f	1	0110	100a	ffff	ffff	None	
SUBFWB	f, d, a	Subtract f from WREG with	1	0101	01da	ffff	ffff	C, DC, Z, OV, N	1, 2
	6	borrow							
SUBWF	f, d, a	Subtract WREG from f	1		11da	ffff	ffff	C, DC, Z, OV, N	4 0
SUBWFB	f, d, a	Subtract WREG from f with	1	0101	10da	ffff	tttt	C, DC, Z, OV, N	1, 2
		borrow							
SWAPF	f, d, a	Swap nibbles in f	1		10da	ffff	ffff	None	4
TSTFSZ	f, a	Test f, skip if 0	1 (2 or 3)	0110		ffff		None	1, 2
XORWF	f, d, a	Exclusive OR WREG with f	1	0001	10da	ffff	ffff	Ζ, Ν	
	ITED FIL	E REGISTER OPERATIONS	1	r				I	
BCF	f, b, a	Bit Clear f	1	1001	bbba	ffff	ffff	None	1, 2
BSF	f, b, a	Bit Set f	1	1000	bbba	ffff	ffff	None	1, 2
BTFSC	f, b, a	Bit Test f, Skip if Clear	1 (2 or 3)	1011	bbba	ffff	ffff	None	3, 4
BTFSS	f, b, a	Bit Test f, Skip if Set	1 (2 or 3)	1010	bbba	ffff	ffff	None	3, 4
BTG	f, d, a	Bit Toggle f	1	0111	bbba	ffff	ffff	None	1, 2

Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned.

3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

4: Some instructions are 2 word instructions. The second word of these instructions will be executed as a NOP, unless the first word of the instruction retrieves the information embedded in these 16-bits. This ensures that all program memory locations have a valid instruction.

5: If the table write starts the write cycle to internal memory, the write will continue until terminated.

19.1 Instruction Set

ADD	DLW	ADD liter	ADD literal to WREG					
Synt	ax:	[<i>label</i>] A	[<i>label</i>] ADDLW k					
Ope	rands:	$0 \le k \le 25$	5					
Ope	ration:	(WREG) +	$ k \to WF $	REG				
Statu	us Affected:	N,OV, C, I	DC, Z					
Enco	oding:	0000	1111	kkkk	kkkk			
Des	cription:	to the 8-bi	The contents of WREG are added to the 8-bit literal 'k' and the result is placed in WREG.					
Wor	ds:	1						
Cycl	es:	1	1					
QC	cycle Activity:							
	Q1	Q2	Q3		Q4			
	Decode	Read literal 'k'	Proces Data	-	/rite to VREG			
Example:ADDLW $0x15$ Before InstructionWREG = $0x10$ After InstructionWREG = $0x25$								

ADDWF	ADD WR	EG to f						
Syntax:	[label] A	[<i>label</i>] ADDWF f [,d [,a] f [,d [,a]						
Operands:	0 ≤ f ≤ 255 d ∈ [0,1] a ∈ [0,1]							
Operation:	(WREG) -	+ (f) \rightarrow c	lest					
Status Affected:	N,OV, C,	DC, Z						
Encoding:	0010	01da	fff	f	ffff			
Description:	the result is 1, the re ister 'f' (de Access B	Add WREG to register 'f'. If 'd' is 0, the result is stored in WREG. If 'd' is 1, the result is stored back in reg- ister 'f' (default). If 'a' is 0, the Access Bank will be selected. If 'a' is 1, the BSR is used.						
Words:	1							
Cycles:	1							
Q Cycle Activity								
Q1	Q2	Q3	3		Q4			
Decode	Read register 'f'	Proce Data			/rite to stination			
Example:	ADDWF	REG,	0, 0					
Before Instru	uction							
WREG REG	= 0x17 = 0xC2							
After Instruc	tion							
WDEC	- 0~09							

WREG	=	0xD9
REG	=	0xC2

IORLW Inclusive OR literal with WRE									
Synt	ax:	[label]	IORLW	k					
Ope	rands:	$0 \le k \le 25$	$0 \leq k \leq 255$						
Ope	ration:	(WREG)	.OR. k –	→ WRE	G				
State	us Affected:	N,Z							
Enco	oding:	0000	1001	kkkk	kkkk				
Des	cription:	with the e	The contents of WREG are OR'ed with the eight-bit literal 'k'. The result is placed in WREG.						
Wor	ds:	1							
Cycl	es:	1							
QC	cycle Activity:								
	Q1	Q2	Q3	}	Q4				
	Decode	Read literal 'k'	Proce Data		Write to WREG				
Example: Before Instruc		IORLW	0x35						
WREG = 0x9A After Instruction									

WREG = 0xBF

IORWF	Inclusive	OR WR	EG wi	th f
Syntax:	[label]	IORWF	f [,d	[,a]
Operands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$	5		
Operation:	(WREG) .	OR. (f) -	→ dest	I
Status Affected:	N,Z			
Encoding:	0001	00da	ffff	ffff
	WREG. If placed bar If 'a' is 0, 1 selected, o If 'a' = 1, t	ck in reg the Acce overridir	jister 'f ess Ba ig the I	" (default) nk will be BSR value
	selected a (default).	as per th	e BSR	
Words:	selected a	as per th	e BSR	
Words: Cycles:	selected a (default).	as per th	e BSR	
	selected a (default). 1	as per th	e BSR	
Cycles:	selected a (default). 1	is per th Q3		
Cycles: Q Cycle Activity:	selected a (default). 1 1		SS	value
Cycles: Q Cycle Activity: Q1	selected a (default). 1 1 Q2 Read register 'f'	Q3 Proce	SS a	Q4 Write to

Delore instruction				
RESULT	=	0x13		
WREG	=	0x91		
After Instruct	ion			
RESULT = 0x13				

RCA	LL	Relative C	Call			
Synt	ax:	[<i>label</i>] R	[<i>label</i>] RCALL n			
Ope	rands:	-1024 ≤ n	$-1024 \le n \le 1023$			
Ope	ration:	()	$(PC) + 2 \rightarrow TOS,$ (PC) + 2 + 2n \rightarrow PC			
Statu	us Affected:	None				
Enco	oding:	1101	1nnn	nnnn	nnnn	
	cription:	Subroutine 1K from th return add onto the si compleme Since the I to fetch th new addre This instru instruction	e current ress (PC tack. The ent numbe PC will ha e next ins ess will be iction is a	locatic +2) is p en, add er '2n' to tve incr struction e PC+2	on. First, bushed the 2's the PC. emented n, the +2n.	
Wor	ds:	1				
Cycl	es:	2				
QC	Cycle Activity	:				
	Q1	Q2	Q3		Q4	
	Decode	Read literal 'n'	Process Data	s Wr	ite to PC	
		Push PC to stack				
	No operation	No operation	No operatio	n op	No peration	

Before Instruction

PC = Address(HERE)

After Instruction

PC = Address(Jump) TOS = Address(HERE+2)

RES	ET	Reset			
Synt	ax:	[label]	RESET		
Ope	rands:	None			
Ope	ration:	Reset all registers and flags that are affected by a MCLR reset.			
State	us Affected:	All			
Enco	oding:	0000	0000 1	111	1111
Des	cription:		UCTION PROVID		2
Wor	ds:	1			
Cycl	es:	1			
QC	cycle Activity:				
	Q1	Q2	Q3		Q4
	Decode	Start	No		No
		reset	operation	ор	eration

Example: RESET

After Instruction			
Registers	=	Reset	Value
Flags*	=	Reset	Value

SLEEP	Enter SL	EEP mode		SUBFWB	Subtract	f from WRE	G with borro
Syntax:	[label]	SLEEP		Syntax:	[label]	SUBFWB	f [,d [,a]
Operands:	None			Operands:	$0 \le f \le 25$	-	
Operation:	$00h \rightarrow W$	/DT,			d ∈ [0,1]		
		T postscaler,			a ∈ [0,1]		
	$1 \rightarrow TO, 0 \rightarrow PD$			Operation:		$-(f) - (\overline{C}) -$	→ dest
				Status Affected:	N,OV, C,	DC, Z	
Status Affected:	TO, PD			Encoding:	0101	01da f	fff fff
Encoding:	0000	0000 000		Description:		register 'f' an	
Description:		er-down statu				from WREG	
		The time-out et. Watchdog				thod). If 'd' is WREG. If 'd'	
		caler are clea			is stored i	in register 'f' (default). If 'a'
	The proc	essor is put i	nto SLEEP			cess Bank w	
	mode wit	th the oscillat	or stopped.			g the BSR va bank will be s	
Nords:	1					value (defau	
Cycles:	1			Words:	1		
Q Cycle Activity	<i>/</i> :			Cycles:	1		
Q1	Q2	Q3	Q4	Q Cycle Activity			
Decode	No	Process	Go to	Q1	Q2	Q3	Q4
	operation	Data	sleep	Decode	Read	Process	Write to
Example:	SLEEP				register 'f'	Data	destination
Before Instr	uction			Example 1:	SUBFWB	REG, 1,	0
$\overline{TO} =$?			Before Instru	uction		
PD =	?			REG	= 3		
After Instruc	1 †			WREG C	= 2 = 1		
$\frac{10}{PD} =$	0			After Instruc			
If WDT cause	es wake-up, tl	his bit is clea	red.	REG	= FF		
				WREG	= 2		
				C Z	= 0 = 0		
				Ν	= 1	; result :	is negativ
				Example 2:	SUBFWB	REG, 0,	0
				Before Instru	uction		
				REG	= 2		
				WREG C	= 5 = 1		
				After Instruc	tion		
				REG	= 2		
				WREG C	= 3 = 1		
				Z	= 1 = 0		
				Ν	= 0	; result :	is positiv
				Example 3:	SUBFWB	REG, 1,	0
				Before Instru			
				REG	= 1		
				WREG C	= 2 = 0		
				After Instruc	tion		
				REG	= 0		
				WREG	= 2		
				WREG C Z	= 2 = 1 = 1	; result :	is zero

SUBLW	Subtract WREG from literal	SUBWF	Subtract WREG from f
Syntax:	[<i>label</i>] SUBLW k	Syntax:	[<i>label</i>] SUBWF f[,d[,a]
Operands:	$0 \le k \le 255$	Operands:	$0 \le f \le 255$
Operation:	$k - (WREG) \rightarrow WREG$		d ∈ [0,1]
Status Affected:	N,OV, C, DC, Z		a ∈ [0,1]
Encoding:	0000 1000 kkkk kkkk	Operation:	(f) – (WREG) \rightarrow dest
Description:	WREG is subtracted from the	Status Affected:	N,OV, C, DC, Z
	eight-bit literal 'k'. The result is	Encoding:	0101 11da ffff ffff
	placed in WREG.	Description:	Subtract WREG from register 'f' (2's complement method). If 'd' is
Words:	1		0, the result is stored in WREG. If
Cycles:	1		'd' is 1, the result is stored back in register 'f' (default). If 'a' is 0, the
Q Cycle Activity: Q1	Q2 Q3 Q4		Access Bank will be selected,
Decode	Read Process Write to		overriding the BSR value. If 'a' is 1, then the bank will be selected
	literal 'k' Data WREG		as per the BSR value (default).
Example 1:	SUBLW 0x02	Words:	1
Before Instruc	ction	Cycles:	1
	= 1	Q Cycle Activity:	
د After Instructi	= ?	Q1	Q2 Q3 Q4
	= 1	Decode	Read Process Write to
С	= 1 ; result is positive		register 'f' Data destination
	= 0 = 0	Example 1:	SUBWF REG, 1, 0
European la Or		Before Instru	
Example 2:	SUBLW 0x02	REG WREG	= 3 = 2
Before Instruc		C	= ?
	= 2 = ?	After Instruct	ion = 1
After Instruction	on	WREG	= 2
	= 0	C Z	= 1 ; result is positive = 0
Z	= 1 ; result is zero = 1	N	= 0
	= 0	Example 2:	SUBWF REG, 0, 0
Example 3:	SUBLW 0x02	Before Instru	
Before Instruc		REG WREG	= 2 = 2
	= 3 = ?	C	= ?
After Instruction	on	After Instruct	
	= FF ; (2's complement)	REG WREG	= 2 = 0
-	= 0 ; result is negative = 0	C	= 1 ; result is zero
Ν	= 1	Z N	= 1 = 0
		Example 3:	SUBWF REG, 1, 0
		Before Instru	ction
		REG	= 1
		WREG C	= 2 = ?
		After Instruct	ion
		REG	= FFh ;(2's complement)
		WREG C	= 2 = 0 ; result is negative
		Z N	= 0 = 1

SUB	WFB	Subtract	t WREG from	f with Borrow		
Synt	ax:	[label]	SUBWFB f	[,d [,a]		
Ope	rands:	$0 \leq f \leq 2$	55			
		d ∈ [0,1]				
~		a ∈ [0,1]				
	ration:	., .	$(f) - (WREG) - (\overline{C}) \rightarrow dest$			
	us Affected:	N,OV, C				
Enco	oding:	0101	10da ff	ff ffff		
Des	cription:	Subtract WREG and the carry flag (borrow) from register 'f' (2's comple- ment method). If 'd' is 0, the result is stored in WREG. If 'd' is 1, the result is stored back in register 'f' (default). If 'a' is 0, the Access Bank will be selected, overriding the BSR value. If 'a' is 1, then the bank will be selected as per the BSR value (default).				
Wor	ds:	1				
Cycl	es:	1				
QC	cycle Activity:					
	Q1	Q2	Q3	Q4		
	Decode	Read register 'f'	Process Data	Write to destination		
Exar	<u>mple 1</u> :	SUBWFB	REG, 1, 0			
	Before Instru	iction				
	REG	= 0x19	(0001 100			
	WREG C	= 0x0D = 1	(0000 110	1)		
	After Instruct					
	REG WREG	$= 0 \times 0 C$ $= 0 \times 0 D$	(0000 101 (0000 110			
	С	= 1	(0000 110	1)		
	Z N	= 0 = 0	; result i	s positive		
<u>Exar</u>	<u>mple 2</u> :	SUBWFB	REG, 0, 0	-		
	Before Instru	iction				
	REG WREG	= 0x1B = 0x1A	(0001 10 (0001 10			
	C	$=$ 0 \times 1 A	(0001 10	107		
	After Instruct					
	REG WREG	= 0x1B $= 0x00$	(0001 101	11)		
	C	= 1				
	Z N	= 1 = 0	; result i	s zero		
<u>Exar</u>	<u>mple 3:</u>	SUBWFB	REG, 1, 0			
	Before Instru	iction				
	REG	= 0x03	(0000 001			
	WREG C	= 0x0E = 1	(0000 110) _)		
	After Instruct	tion				
	REG	= 0xF5	(1111 010 ; [2's com]			
	WREG	= 0x0E	(0000 110			
	C Z	= 0 = 0				
	N	= 1	; result i	s negative		

SWAPF	Swap f				
Syntax:	[label] S	SWAPF	f [,d [,a]	
Operands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$	5			
Operation:	· · ·	$(f<3:0>) \rightarrow dest<7:4>,$ $(f<7:4>) \rightarrow dest<3:0>$			
Status Affected:	None	None			
Encoding:	0011	10da	ffff	ffff	
Description:	ister 'f' are result is pl the result (default). I Bank will t the BSR v bank will b	The upper and lower nibbles of reg- ister 'f' are exchanged. If 'd' is 0, the result is placed in WREG. If 'd' is 1, the result is placed in register 'f' (default). If 'a' is 0, the Access Bank will be selected, overriding the BSR value. If 'a' is 1, then the bank will be selected as per the BSR value (default).			
Words:	1	,	,		
Cycles:	1				
Q Cycle Activity:					
Q1	Q2	Q3		Q4	
Decode	Read register 'f'	Proces Data	-	Vrite to stination	
Example: Before Instru REG After Instruct REG	iction = 0x53	REG, 1,	0		

TBL	RD	Table Read	ł				
Synt	ax:	[label]	TBLRD (*; *+; *-; +	-*)		
Ope	rands:	None	None				
Ope	ration:	if TBLRD *,	if TBLRD *,				
			(Prog Mem (TBLPTR)) \rightarrow TABLAT;				
		if TBLRD *-	TBLPTR - No Change; if TBL RD *+				
				$PTR)) \rightarrow $	TABLAT;		
				TBLPTR;			
		if TBLRD *- (Prog M		$PTR)) \rightarrow $	TABI AT'		
			R) -1 \rightarrow 1		17 (BE) (1,		
		if TBLRD +					
				TBLPTR; PTR)) \rightarrow	TABI AT'		
Stati	us Affected			, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	17 (BE) (1,		
	oding:		0000	0000	10nn		
LIIC	Julig.	0000	0000	0000	nn=0 *		
					=1 *+ =2 *-		
					=3 +*		
Des	cription:	This instruc					
		contents of address the	-	-			
		pointer call					
		is used.					
		The TBLPT to each byt					
		TBLPTR ha					
		TBLPT	R[0] = 0:	Least Sig	gnificant		
		Byte of	f Progran	n Memory	Word		
				Most Sig			
				n Memory			
		The TBLRD value of TE			odify the		
		 no chang 	je				
		 post-incr 					
		 post-dec 					
		• pre-incre	ment				
Wor		1					
Cycl		2					
QC	ycle Activit		00	~	1		
	Q1 Decode	Q2 No	Q3 No				
	Decoue	operation	operation				
	No	No	No				

TBLRD	Table Read	d (co	ont'd)
Example 1:	TBLRD *+	;	
Before Instru	iction		
TABLAT TBLPTR MEMORY (0x00A356)	= = =	0x55 0x00A356 0x34
After Instruct	ion		
TABLAT TBLPTR		= =	0x34 0x00A357
Example 2:	TBLRD +*	;	
Before Instru	iction		
	0x01A357) 0x01A358)	= = =	0xAA 0x01A357 0x12 0x34
After Instruct	ion		
TABLAT TBLPTR		=	0x34 0x01A358

operation (Read Program Memory)

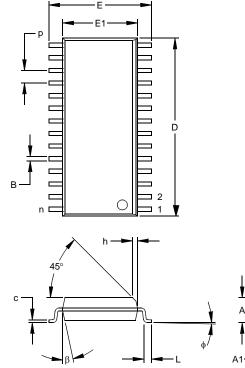
operation

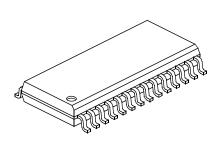
operation

operation (Write TABLAT)

21.2 DC Characteristics: PIC18CXX2 (Industrial, Extended) PIC18LCXX2 (Industrial)

DC CH	ARACTE	RISTICS	Standard O Operating te		hditions (unless otherwise stated) -40°C \leq TA \leq +85°C for industrial -40°C \leq TA \leq +125°C for extended		
Param No.	Symbol	Characteristic	Min	Max	Units	Conditions	
	VIL	Input Low Voltage					
		I/O ports:					
D030		with TTL buffer	Vss	0.15Vdd	V	VDD < 4.5V	
D030A				0.8	V	$4.5V \leq V \text{DD} \leq 5.5V$	
D031		with Schmitt Trigger buffer	Vss	0.2VDD	V V		
Dooo		RC3 and RC4 MCLR	Vss	0.3VDD	V		
D032			Vss	0.2VDD			
D032A		OSC1 (in XT, HS and LP modes) and T1OSI	Vss	0.3Vdd	V		
D033		OSC1 (in RC and EC mode) ⁽¹⁾	Vss	0.2Vdd	V		
	VIH	Input High Voltage					
		I/O ports:					
D040		with TTL buffer	0.25VDD + 0.8V	Vdd	V	VDD < 4.5V	
D040A			2.0	Vdd	V	$4.5V \leq V \text{DD} \leq 5.5V$	
D041		with Schmitt Trigger buffer	0.8Vdd	Vdd	V		
		RC3 and RC4	0.7Vdd	Vdd	V		
D042		MCLR, OSC1 (EC mode)	0.8Vdd	Vdd	V		
D042A		OSC1 (in XT, HS and LP modes) and T1OSI	0.7Vdd	Vdd	V		
D043		OSC1 (RC mode) ⁽¹⁾	0.9Vdd	Vdd	V		
	lı∟	Input Leakage Current ^(2,3)					
D060		I/O ports	—	±1	μA	Vss ≤ VPIN ≤ VDD, Pin at hi-impedance	
D061		MCLR	_	±5	μA	$Vss \le VPIN \le VDD$	
D063		OSC1	_	±5	μΑ	$Vss \le VPIN \le VDD$	
	IPU	Weak Pull-up Current			1		
D070	IPURB	PORTB weak pull-up current	50	400	μA	VDD = 5V, VPIN = VSS	


Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC MCU be driven with an external clock while in RC mode.


2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.


3: Negative current is defined as current sourced by the pin.

28-Lead Plastic Small Outline (SO) - Wide, 300 mil (SOIC)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	INCHES*			MILLIMETERS			
Dimensio	n Limits	MIN	NOM	MAX	MIN	NOM	MAX	
Number of Pins	n		28			28		
Pitch	р		.050			1.27		
Overall Height	А	.093	.099	.104	2.36	2.50	2.64	
Molded Package Thickness	A2	.088	.091	.094	2.24	2.31	2.39	
Standoff §	A1	.004	.008	.012	0.10	0.20	0.30	
Overall Width	Е	.394	.407	.420	10.01	10.34	10.67	
Molded Package Width	E1	.288	.295	.299	7.32	7.49	7.59	
Overall Length	D	.695	.704	.712	17.65	17.87	18.08	
Chamfer Distance	h	.010	.020	.029	0.25	0.50	0.74	
Foot Length	L	.016	.033	.050	0.41	0.84	1.27	
Foot Angle Top	ø	0	4	8	0	4	8	
Lead Thickness	С	.009	.011	.013	0.23	0.28	0.33	
Lead Width	В	.014	.017	.020	0.36	0.42	0.51	
Mold Draft Angle Top	α	0	12	15	0	12	15	
Mold Draft Angle Bottom	β	0	12	15	0	12	15	

* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MS-013

Drawing No. C04-052

APPENDIX C: CONVERSION CONSIDERATIONS

This appendix discusses the considerations for converting from previous versions of a device to the ones listed in this data sheet. Typically, these changes are due to the differences in the process technology used. An example of this type of conversion is from a PIC16C74A to a PIC16C74B.

Not Applicable

APPENDIX D: MIGRATION FROM BASELINE TO ENHANCED DEVICES

This section discusses how to migrate from a Baseline device (i.e., PIC16C5X) to an Enhanced MCU device (i.e., PIC18CXXX).

The following are the list of modifications over the PIC16C5X microcontroller family:

Not Currently Available