

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

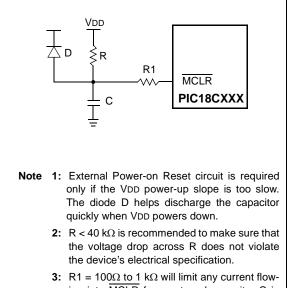
Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	33
Program Memory Size	16KB (8K x 16)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LCC (J-Lead)
Supplier Device Package	44-PLCC (16.59x16.59)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18c442-e-l

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong


NOTES:

3.1 Power-on Reset (POR)

A Power-on Reset pulse is generated on-chip when VDD rise is detected. To take advantage of the POR circuitry, just tie the MCLR pin directly (or through a resistor) to VDD. This will eliminate external RC components usually needed to create a Power-on Reset delay. A minimum rise rate for VDD is specified (parameter D004). For a slow rise time, see Figure 3-2.

When the device starts normal operation (i.e., exits the RESET condition), device operating parameters (voltage, frequency, temperature, etc.) must be met to ensure operation. If these conditions are not met, the device must be held in reset until the operating conditions are met.

FIGURE 3-2: EXTERNAL POWER-ON RESET CIRCUIT (FOR SLOW VDD POWER-UP)

ing into MCLR from external capacitor C in the event of MCLR/VPP pin breakdown, due to Electrostatic Discharge (ESD) or Electrical Overstress (EOS).

3.2 Power-up Timer (PWRT)

The Power-up Timer provides a fixed nominal time-out (parameter #33) only on power-up from the POR. The Power-up Timer operates on an internal RC oscillator. The chip is kept in reset as long as the PWRT is active. The PWRT's time delay allows VDD to rise to an acceptable level. A configuration bit is provided to enable/ disable the PWRT.

The power-up time delay will vary from chip-to-chip due to VDD, temperature and process variation. See DC parameter #33 for details.

3.3 Oscillator Start-up Timer (OST)

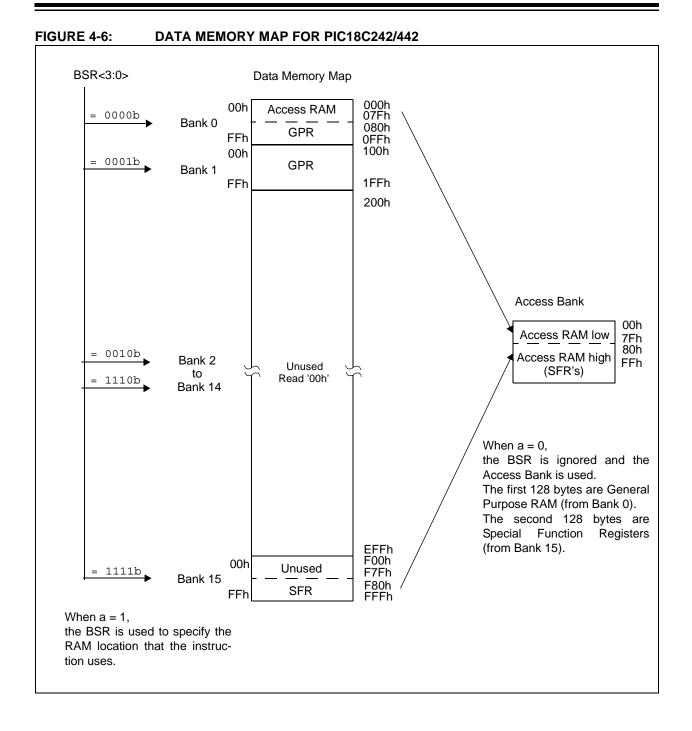
The Oscillator Start-up Timer (OST) provides a 1024 oscillator cycle (from OSC1 input) delay after the PWRT delay is over (parameter #32). This ensures that the crystal oscillator or resonator has started and stabilized.

The OST time-out is invoked only for XT, LP and HS modes and only on Power-on Reset or wake-up from SLEEP.

3.4 PLL Lock Time-out

With the PLL enabled, the time-out sequence following a Power-on Reset is different from other oscillator modes. A portion of the Power-up Timer is used to provide a fixed time-out that is sufficient for the PLL to lock to the main oscillator frequency. This PLL lock time-out (TPLL) is typically 2 ms and follows the oscillator startup time-out (OST).

3.5 Brown-out Reset (BOR)


A configuration bit, BOREN, can disable (if clear/ programmed), or enable (if set) the Brown-out Reset circuitry. If VDD falls below parameter D005 for greater than parameter #35, the brown-out situation will reset the chip. A RESET may not occur if VDD falls below parameter D005 for less than parameter #35. The chip will remain in Brown-out Reset until VDD rises above BVDD. The Power-up Timer will then be invoked and will keep the chip in RESET an additional time delay (parameter #33). If VDD drops below BVDD while the Power-up Timer is running, the chip will go back into a Brown-out Reset and the Power-up Timer will be initialized. Once VDD rises above BVDD, the Power-up Timer will execute the additional time delay.

3.6 Time-out Sequence

On power-up, the time-out sequence is as follows: First, PWRT time-out is invoked after the POR time delay has expired. Then, OST is activated. The total time-out will vary based on oscillator configuration and the status of the PWRT. For example, in RC mode with the PWRT disabled, there will be no time-out at all. Figure 3-3, Figure 3-4, Figure 3-5, Figure 3-6 and Figure 3-7 depict time-out sequences on power-up.

Since the time-outs occur from the POR pulse, if $\overline{\text{MCLR}}$ is kept low long enough, the time-outs will expire. Bringing $\overline{\text{MCLR}}$ high will begin execution immediately (Figure 3-5). This is useful for testing purposes or to synchronize more than one PIC18CXXX device operating in parallel.

Table 3-2 shows the RESET conditions for some Special Function Registers, while Table 3-3 shows the RESET conditions for all the registers.

$\ensuremath{\textcircled{}^{\circ}}$ 1999-2013 Microchip Technology Inc.

REGISTER FILE SUMMARY (CONTINUED) TABLE 4-2:

File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Details on page:
IPR2	_	_	_	—	BCLIP	LVDIP	TMR3IP	CCP2IP	1111	73
PIR2	—	—	_	—	BCLIF	LVDIF	TMR3IF	CCP2IF	0000	69
PIE2	_	_	_	_	BCLIE	LVDIE	TMR3IE	CCP2IE	0000	71
IPR1	PSPIP	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	1111 1111	72
PIR1	PSPIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	68
PIE1	PSPIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	70
TRISE	IBF	OBF	IBOV	PSPMODE	_	Data Direction	on bits for PO	RTE	0000 -111	88
TRISD	Data Directi	on Control Re	gister for POR	TD					1111 1111	85
TRISC	Data Directi	on Control Re	gister for POR	TC					1111 1111	83
TRISB	Data Direction Control Register for PORTB									80
TRISA	_	TRISA6 ⁽¹⁾	Data Directi	on Control Reg	ister for PORT	A			-111 1111	77
LATE	-	—	_	—	-		E Data Latch, E Data Latch		xxx	87
LATD	Read PORT	D Data Latch,	Write PORTE	Data Latch	•				xxxx xxxx	85
LATC	Read PORT	C Data Latch,	Write PORTO	C Data Latch					xxxx xxxx	83
LATB	Read PORT	B Data Latch,	Write PORTE	B Data Latch					xxxx xxxx	80
LATA	_	LATA6 ⁽¹⁾	Read PORT	A Data Latch, V	Write PORTA	Data Latch ⁽¹⁾			-xxx xxxx	77
PORTE	Read PORT	E pins, Write	PORTE Data	Latch					000	87
PORTD	Read PORT	D pins, Write	PORTD Data	Latch					xxxx xxxx	85
PORTC	Read PORT	C pins, Write	PORTC Data	Latch					xxxx xxxx	83
PORTB	Read PORT	B pins, Write	PORTB Data	Latch					xxxx xxxx	80
PORTA	—	RA6 ⁽¹⁾	Read PORT	A pins, Write P	ORTA Data La	atch ⁽¹⁾			-x0x 0000	77

Legend: x = unknown, u = unchanged, - = unimplemented, g = value depends on condition
Note 1: RA6 and associated bits are configured as port pins in RCIO and ECIO oscillator mode only, and read '0' in all other oscillator modes.
2: Bit 21 of the TBLPTRU allows access to the device configuration bits.

4.13 STATUS Register

The STATUS register, shown in Register 4-2, contains the arithmetic status of the ALU. The STATUS register can be the destination for any instruction, as with any other register. If the STATUS register is the destination for an instruction that affects the Z, DC, C, OV or N bits, then the write to these five bits is disabled. These bits are set or cleared according to the device logic. Therefore, the result of an instruction with the STATUS register as destination may be different than intended. For example, CLRF STATUS will clear the upper three bits and set the Z bit. This leaves the STATUS register as 000u uluu (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF, MOVFF and MOVWF instructions are used to alter the STATUS register, because these instructions do not affect the Z, C, DC, OV or N bits from the STATUS register. For other instructions not affecting any status bits, see Table 19-2.

Note:	The C and DC bits operate as a borrow and
	digit borrow bit respectively, in subtraction.

REGISTER 4-2: STATUS REGISTER

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	—	N	OV	Z	DC	С
bit 7							bit 0

bit 7-5 Unimplemented: Read as '0'

bit 4 N: Negative bit

This bit is used for signed arithmetic (2's complement). It indicates whether the result was negative, (ALU MSB = 1).

- 1 = Result was negative
- 0 = Result was positive

bit 3 OV: Overflow bit

This bit is used for signed arithmetic (2's complement). It indicates an overflow of the 7-bit magnitude, which causes the sign bit (bit7) to change state.

- 1 = Overflow occurred for signed arithmetic (in this arithmetic operation)
- 0 = No overflow occurred

bit 2 Z: Zero bit

1 = The result of an arithmetic or logic operation is zero

0 = The result of an arithmetic or logic operation is not zero

bit 1 DC: Digit carry/borrow bit

For ADDWF, ADDLW, SUBLW, and SUBWF instructions

1 = A carry-out from the 4th low order bit of the result occurred

- 0 = No carry-out from the 4th low order bit of the result
- **Note:** For borrow, the polarity is reversed. A subtraction is executed by adding the two's complement of the second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the bit 4 or bit 3 of the source register.

bit 0 **C:** Carry/borrow bit

For ADDWF, ADDLW, SUBLW, and SUBWF instructions

- 1 = A carry-out from the Most Significant bit of the result occurred
- 0 = No carry-out from the Most Significant bit of the result occurred
- **Note:** For borrow, the polarity is reversed. A subtraction is executed by adding the two's complement of the second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high or low order bit of the source register.

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR reset	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

REGISTER 8-1: TRISE REGISTER

- n = Value at POR

	R-0	R-0	R/W-0	R/W-0	U-0	R/W-1	R/W-1	R/W-1
	IBF	OBF	IBOV	PSPMODE	_	TRISE2	TRISE1	TRISE0
	bit 7							bit 0
bit 7	IBF: Input	Buffer Full S	Status bit					
	1 = A word	d has been r	eceived an	d waiting to be	e read by the	e CPU		
	0 = No wo	rd has been	received					
bit 6	OBF: Outp	out Buffer Fu	ull Status bi	t				
				previously write	tten word			
		utput buffer I						
bit 5	•			ct bit (in Micro	•			
			•	iously input wo	ord has not	been read		
	•	be cleared in erflow occur	,					
bit 4				lode Select bit				
DIL 4		L. Faraller 3 el Slave Port		iode Select bit				
		al purpose l						
bit 3		nented: Rea						
bit 2	•	E2 Direction		t				
	1 = Input			-				
	0 = Output	t						
bit 1	TRISE1: R	E1 Direction	n Control bi	t				
	1 = Input							
	0 = Output	t						
bit 0	TRISE0: R	E0 Direction	n Control bi	t				
	1 = Input							
	0 = Output	t						
	Legend:							
	R = Reada	able bit	W = V	Writable bit	U = Unim	plemented l	oit, read as '	0'

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

15.4.2 USART SYNCHRONOUS SLAVE RECEPTION

The operation of the Synchronous Master and Slave modes is identical, except in the case of the SLEEP mode and bit SREN, which is a "don't care" in Slave mode.

If receive is enabled by setting bit CREN prior to the SLEEP instruction, then a word may be received during SLEEP. On completely receiving the word, the RSR register will transfer the data to the RCREG register, and if enable bit RCIE bit is set, the interrupt generated will wake the chip from SLEEP. If the global interrupt is enabled, the program will branch to the interrupt vector.

To set up a Synchronous Slave Reception:

- Enable the synchronous master serial port by setting bits SYNC and SPEN and clearing bit CSRC.
- 2. If interrupts are desired, set enable bit RCIE.
- 3. If 9-bit reception is desired, set bit RX9.
- 4. To enable reception, set enable bit CREN.
- 5. Flag bit RCIF will be set when reception is complete. An interrupt will be generated if enable bit RCIE was set.
- 6. Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 7. Read the 8-bit received data by reading the RCREG register.
- 8. If any error occurred, clear the error by clearing bit CREN.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value PO BC	R,	all o	e on other SETS
INTCON	GIE/ GIEH	PEIE/ GIEL	TMR0IE	INTOIE	RBIE	TMR0IF	INTOIF	RBIF	0000	000x	0000	000u
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000	0000	0000	0000
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000	0000	0000	0000
IPR1	PSPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	0000	0000	0000	0000
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000	-00x	0000	-00x
RCREG	USART Receive Register								0000	0000	0000	0000
TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000	-010	0000	-010
SPBRG	Baud Rate Generator Register								0000	0000	0000	0000

TABLE 15-11: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE RECEPTION

Legend: x = unknown, - = unimplemented, read as '0'.

Shaded cells are not used for Synchronous Slave Reception.

Note 1: The PSPIF, PSPIE and PSPIP bits are reserved on the PIC18C2X2 devices. Always maintain these bits clear.

16.0 COMPATIBLE 10-BIT ANALOG-TO-DIGITAL CONVERTER (A/D) MODULE

The analog-to-digital (A/D) converter module has five inputs for the PIC18C2x2 devices and eight for the PIC18C4x2 devices. This module has the ADCON0 and ADCON1 register definitions that are compatible with the mid-range A/D module.

The A/D allows conversion of an analog input signal to a corresponding 10-bit digital number.

REGISTER 16-1: ADCON0 REGISTER

The A/D module has four registers. These registers are:

- A/D Result High Register (ADRESH)
- A/D Result Low Register (ADRESL)
- A/D Control Register 0 (ADCON0)
- A/D Control Register 1 (ADCON1)

The ADCON0 register, shown in Register 16-1, controls the operation of the A/D module. The ADCON1 register, shown in Register 16-2, configures the functions of the port pins.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0
ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE	_	ADON
bit 7							bit 0

bit 7-6 ADCS1:ADCS0: A/D Conversion Clock Select bits (ADCON0 bits in **bold**)

ADCON1 <adcs2></adcs2>	ADCON0 <adcs1:adcs0></adcs1:adcs0>	Clock Conversion
0	00	Fosc/2
0	01	Fosc/8
0	10	Fosc/32
0	11	FRC (clock derived from the internal A/D RC oscillator)
1	00	Fosc/4
1	01	Fosc/16
1	10	Fosc/64
1	11	FRC (clock derived from the internal A/D RC oscillator)

bit 5-3 CHS2:CHS0: Analog Channel Select bits

- 000 = channel 0 (AN0)
- 001 = channel 1 (AN1)
- 010 = channel 2 (AN2)
- 011 = channel 3 (AN3)
- 100 = channel 4 (AN4)
- 101 = channel 5 (AN5)
- 110 = channel 6 (AN6)
- 111 = channel 7 (AN7)
- **Note:** The PIC18C2X2 devices do not implement the full 8 A/D channels; the unimplemented selections are reserved. Do not select any unimplemented channel.

bit 2 GO/DONE: A/D Conversion Status bit

When ADON = 1:

- 1 = A/D conversion in progress (setting this bit starts the A/D conversion which is automatically cleared by hardware when the A/D conversion is complete)
- 0 = A/D conversion not in progress

bit 1 Unimplemented: Read as '0'

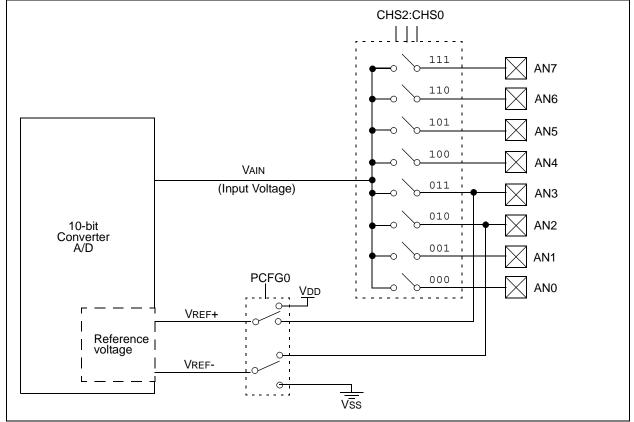
bit 0 ADON: A/D On bit

1 = A/D converter module is powered up

0 = A/D converter module is shut-off and consumes no operating current

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented b	oit, read as '0'
- n = Value at POR reset	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

The analog reference voltage is software selectable to either the device's positive and negative supply voltage (VDD and VSS) or the voltage level on the RA3/AN3/ VREF+ pin and RA2/AN2/VREF-.


The A/D converter has a unique feature of being able to operate while the device is in SLEEP mode. To operate in SLEEP, the A/D conversion clock must be derived from the A/D's internal RC oscillator.

The output of the sample and hold is the input into the converter, which generates the result via successive approximation.

A device RESET forces all registers to their RESET state. This forces the A/D module to be turned off and any conversion is aborted.

Each port pin associated with the A/D converter can be configured as an analog input (RA3 can also be a voltage reference) or as a digital I/O.

The ADRESH and ADRESL registers contain the result of the A/D conversion. When the A/D conversion is complete, the result is loaded into the ADRESH/ ADRESL registers, the GO/DONE bit (ADCON0<2>) is cleared, and A/D interrupt flag bit ADIF is set. The block diagram of the A/D module is shown in Figure 16-1.

FIGURE 16-1: A/D BLOCK DIAGRAM

MOVFF	Move f to	o f					
Syntax:	[label]	MOVFF	f_s, f_d				
Operands:	$\begin{array}{l} 0 \leq f_s \leq 4 \\ 0 \leq f_d \leq 4 \end{array}$						
Operation:	$(f_s) \rightarrow f_d$						
Status Affected:	None						
Encoding: 1st word (source) 2nd word (destin.)	1100 1111	ffff ffff	ffff ffff	ffff _s ffff _d			
Description:	The contents of source register f_{s} ' are moved to destination register f_{s} ' are moved to destination register f_{s} ' can be anywhere in the 4096 byte data space (000h to FFFh), and location of destination f_{d} ' can also be any-						

where from 000h to FFFh. Either source or destination can be WREG (a useful special situation). MOVFF is particularly useful for transferring a data memory location to a peripheral register (such as the transmit buffer or an I/O port).

The MOVFF instruction cannot use the PCL, TOSU, TOSH or TOSL as the destination register.

Words:

Cycles:

Q Cycle Activity:

01

Q1	Q2	Q2 Q3	
Decode	Read register 'f' (src)	Process Data	No operation
Decode	No operation No dummy read	No operation	Write register 'f' (dest)

Example:

MOVFF REG1, REG2

REG1 REG2	=	0x33 0x11
After Instruction		
REG1 REG2	= =	0x33, 0x33

2 2 (3)

MO\	/LB	Move lite	Move literal to low nibble in BSR							
Synt	ax:	MOVLB	k							
Ope	rands:	$0 \le k \le 25$	5							
Ope	ration:	$k \to BSR$								
Status Affected: None										
Enco	oding:	0000	0001	kkl	kk	kkkk				
Desc	cription:		The 8-bit literal 'k' is loaded into the Bank Select Register (BSR).							
Wor	ds:	1								
Cycl	es:	1	1							
QC	ycle Activity									
	Q1	Q2	Q3			Q4				
	Decode	Read literal 'k'	Proces Data		liter	Vrite al 'k' to 3SR				
	<u>nple</u> : Before Instru	MOVLB 5	5							

Before I	nstruction						
BSR	register	=	0x02				
After Instruction							
Alterins	liucion						

SLEEP	Enter SL	EEP mode		SUBFWB	Subtract	Subtract f from WREG with borrow			
Syntax:	[label]	SLEEP		Syntax:	[label]	[<i>label</i>] SUBFWB f[,d[,a]			
Operands:	None	None		Operands:		$0 \leq f \leq 255$			
Operation:	$00h \rightarrow W$	/DT,			d ∈ [0,1]				
		T postscaler,			a ∈ [0,1]				
	$1 \rightarrow TO, 0 \rightarrow PD$			Operation:		$-(f) - (\overline{C}) -$	→ dest		
				Status Affected:	N,OV, C,	DC, Z			
Status Affected:	TO, PD			Encoding:	0101	01da f	fff fff		
Encoding:	0000	0000 000		Description:		register 'f' an			
Description:		er-down statu				from WREG			
		The time-out et. Watchdog				thod). If 'd' is WREG. If 'd'			
		caler are clea			is stored i	in register 'f' (default). If 'a'		
	The proc	essor is put i	nto SLEEP			cess Bank w			
	mode wit	th the oscillat	or stopped.			g the BSR va bank will be s			
Nords:	1					value (defau			
Cycles:	1			Words:	1				
Q Cycle Activity	<i>/</i> :			Cycles:	1				
Q1	Q2	Q3	Q4	Q Cycle Activity					
Decode	No	Process	Go to	Q1	Q2	Q3	Q4		
	operation	Data	sleep	Decode	Read	Process	Write to		
Example:	SLEEP				register 'f'	Data	destination		
Before Instr	uction			Example 1:	SUBFWB	REG, 1,	0		
$\overline{TO} =$?			Before Instru	uction				
PD =	?			REG	= 3				
After Instruc	1 †			WREG C	= 2 = 1				
$\frac{10}{PD} =$	0			After Instruc					
If WDT cause	es wake-up, tl	his bit is clea	red.	REG	= FF				
				WREG	= 2				
				C Z	= 0 = 0				
				Ν	= 1	; result :	is negativ		
				Example 2:	SUBFWB	REG, 0,	0		
				Before Instru	uction				
				REG	= 2				
				WREG C	= 5 = 1				
				After Instruc	tion				
				REG	= 2				
				WREG C	= 3 = 1				
				Z	= 1 = 0				
				Ν	= 0	; result :	is positiv		
				Example 3:	SUBFWB	REG, 1,	0		
				Before Instru					
				REG	= 1				
				WREG C	= 2 = 0				
				After Instruc	tion				
				REG	= 0				
				WREG	= 2				
				WREG C Z	= 2 = 1 = 1	; result :	is zero		

20.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers are supported with a full range of hardware and software development tools:

- Integrated Development Environment
 - MPLAB® IDE Software
- Assemblers/Compilers/Linkers
 - MPASM[™] Assembler
 - MPLAB C17 and MPLAB C18 C Compilers
 - MPLINK[™] Object Linker/
 - MPLIB[™] Object Librarian
- Simulators
 - MPLAB SIM Software Simulator
- Emulators
 - MPLAB ICE 2000 In-Circuit Emulator
- ICEPIC[™] In-Circuit Emulator
- In-Circuit Debugger
 - MPLAB ICD for PIC16F87X
- Device Programmers
 - PRO MATE[®] II Universal Device Programmer
- PICSTART[®] Plus Entry-Level Development Programmer
- Low Cost Demonstration Boards
 - PICDEM[™]1 Demonstration Board
 - PICDEM 2 Demonstration Board
 - PICDEM 3 Demonstration Board
 - PICDEM 17 Demonstration Board
 - KEELOQ[®] Demonstration Board

20.1 MPLAB Integrated Development Environment Software

The MPLAB IDE software brings an ease of software development previously unseen in the 8-bit microcontroller market. The MPLAB IDE is a Windows[®]-based application that contains:

- An interface to debugging tools
 - simulator
 - programmer (sold separately)
 - emulator (sold separately)
 - in-circuit debugger (sold separately)
- A full-featured editor
- · A project manager
- Customizable toolbar and key mapping
- A status bar
- On-line help

The MPLAB IDE allows you to:

- Edit your source files (either assembly or 'C')
- One touch assemble (or compile) and download to PIC MCU emulator and simulator tools (automatically updates all project information)
- Debug using:
 - source files
 - absolute listing file
 - machine code

The ability to use MPLAB IDE with multiple debugging tools allows users to easily switch from the costeffective simulator to a full-featured emulator with minimal retraining.

20.2 MPASM Assembler

The MPASM assembler is a full-featured universal macro assembler for all PIC MCUs.

The MPASM assembler has a command line interface and a Windows shell. It can be used as a stand-alone application on a Windows 3.x or greater system, or it can be used through MPLAB IDE. The MPASM assembler generates relocatable object files for the MPLINK object linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, an absolute LST file that contains source lines and generated machine code, and a COD file for debugging.

The MPASM assembler features include:

- Integration into MPLAB IDE projects.
- User-defined macros to streamline assembly code.
- Conditional assembly for multi-purpose source files.
- Directives that allow complete control over the assembly process.

20.3 MPLAB C17 and MPLAB C18 C Compilers

The MPLAB C17 and MPLAB C18 Code Development Systems are complete ANSI 'C' compilers for Microchip's PIC17CXXX and PIC18CXXX family of microcontrollers, respectively. These compilers provide powerful integration capabilities and ease of use not found with other compilers.

For easier source level debugging, the compilers provide symbol information that is compatible with the MPLAB IDE memory display.

20.8 MPLAB ICD In-Circuit Debugger

Microchip's In-Circuit Debugger, MPLAB ICD, is a powerful, low cost, run-time development tool. This tool is based on the FLASH PIC16F87X and can be used to develop for this and other PIC microcontrollers from the PIC16CXXX family. The MPLAB ICD utilizes the in-circuit debugging capability built into the PIC16F87X. This feature, along with Microchip's In-Circuit Serial Programming[™] protocol, offers cost-effective in-circuit FLASH debugging from the graphical user interface of the MPLAB Integrated Development Environment. This enables a designer to develop and debug source code by watching variables, single-stepping and setting break points. Running at full speed enables testing hardware in real-time.

20.9 PRO MATE II Universal Device Programmer

The PRO MATE II universal device programmer is a full-featured programmer, capable of operating in stand-alone mode, as well as PC-hosted mode. The PRO MATE II device programmer is CE compliant.

The PRO MATE II device programmer has programmable VDD and VPP supplies, which allow it to verify programmed memory at VDD min and VDD max for maximum reliability. It has an LCD display for instructions and error messages, keys to enter commands and a modular detachable socket assembly to support various package types. In stand-alone mode, the PRO MATE II device programmer can read, verify, or program PIC devices. It can also set code protection in this mode.

20.10 PICSTART Plus Entry Level Development Programmer

The PICSTART Plus development programmer is an easy-to-use, low cost, prototype programmer. It connects to the PC via a COM (RS-232) port. MPLAB Integrated Development Environment software makes using the programmer simple and efficient.

The PICSTART Plus development programmer supports all PIC devices with up to 40 pins. Larger pin count devices, such as the PIC16C92X and PIC17C76X, may be supported with an adapter socket. The PICSTART Plus development programmer is CE compliant.

20.11 PICDEM 1 Low Cost PIC MCU Demonstration Board

The PICDEM 1 demonstration board is a simple board which demonstrates the capabilities of several of Microchip's microcontrollers. The microcontrollers supported are: PIC16C5X (PIC16C54 to PIC16C58A). PIC16C61, PIC16C62X, PIC16C71, PIC16C8X, PIC17C42, PIC17C43 and PIC17C44. All necessary hardware and software is included to run basic demo programs. The user can program the sample microcontrollers provided with the PICDEM 1 demonstration board on a PRO MATE II device programmer, or a PICSTART Plus development programmer, and easily test firmware. The user can also connect the PICDEM 1 demonstration board to the MPLAB ICE incircuit emulator and download the firmware to the emulator for testing. A prototype area is available for the user to build some additional hardware and connect it to the microcontroller socket(s). Some of the features include an RS-232 interface, a potentiometer for simulated analog input, push button switches and eight LEDs connected to PORTB.

20.12 PICDEM 2 Low Cost PIC16CXX Demonstration Board

The PICDEM 2 demonstration board is a simple demonstration board that supports the PIC16C62, PIC16C64, PIC16C65, PIC16C73 and PIC16C74 microcontrollers. All the necessary hardware and software is included to run the basic demonstration programs. The user can program the sample microcontrollers provided with the PICDEM 2 demonstration board on a PRO MATE II device programmer, or a PICSTART Plus development programmer, and easily test firmware. The MPLAB ICE in-circuit emulator may also be used with the PICDEM 2 demonstration board to test firmware. A prototype area has been provided to the user for adding additional hardware and connecting it to the microcontroller socket(s). Some of the features include a RS-232 interface, push button switches, a potentiometer for simulated analog input, a serial EEPROM to demonstrate usage of the I²C[™] bus and separate headers for connection to an LCD module and a keypad.

21.1 DC Characteristics

PIC18LCXX2 (Industrial)			Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial						
PIC18CXX2 (Industrial, Extended)			Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended						
Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions		
	Vdd	Supply Voltage							
D001		PIC18LCXX2	2.5	_	5.5	V	HS, XT, RC and LP osc mode		
D001		PIC18CXX2	4.2		5.5	V			
D002	Vdr	RAM Data Retention Voltage ⁽¹⁾	1.5	-	-	V			
D003	VPOR	VDD Start Voltage to ensure internal Power-on Reset signal		_	0.7	V	See section on Power-on Reset for details		
D004	Svdd	VDD Rise Rate to ensure internal Power-on Reset signal	0.05	—		V/ms	See section on Power-on Reset for details		
	VBOR	Brown-out Reset Voltag	ge						
D005		PIC18LCXX2							
		BORV1:BORV0 = 11	2.5	_	2.66	V			
		BORV1:BORV0 = 10	2.7		2.86	V			
		BORV1:BORV0 = 01	4.2	—	4.46	V			
		BORV1:BORV0 = 00	4.5	—	4.78	V			
D005		PIC18CXX2							
		BORV1:BORV0 = 1x	N.A.	—	N.A.	V	Not in operating voltage range of device		
		BORV1:BORV0 = 01	4.2	—	4.46	V			
		BORV1:BORV0 = 00	4.5	—	4.78	V			

Legend: Shading of rows is to assist in readability of the table.

Note 1: This is the limit to which VDD can be lowered in SLEEP mode, or during a device RESET, without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

- OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD MCLR = VDD; WDT enabled/disabled as specified.
- 3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or Vss, and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR,...).
- **4:** For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kOhm.

21.1 DC Characteristics (Continued)

PIC18LCXX2 (Industrial)		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial							
PIC18CXX2 (Industrial, Extended)				Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \leq TA \leq +85^{\circ}C$ for industrial $-40^{\circ}C \leq TA \leq +125^{\circ}C$ for extended					
Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions		
	Idd	Supply Current ^(2,4)							
D010		PIC18LCXX2		—	2	mA	XT, RC, RCIO osc configurations Fosc = 4 MHz, VDD = 2.5V		
D010		PIC18CXX2	—	—	4	mA	XT, RC, RCIO osc configurations Fosc = 4 MHz, VDD = $4.2V$		
D010A		PIC18LCXX2	—	—	55	μA	LP osc configuration Fosc = 32 kHz, VDD = $2.5V$		
D010A		PIC18CXX2		_	250	μA	LP osc configuration Fosc = 32 kHz, VDD = 4.2V		
D010C		PIC18LCXX2	—	—	38	mA	EC, ECIO osc configurations Fosc = 40 MHz, VDD = 5.5V		
D010C		PIC18CXX2	—	—	38	mA	EC, ECIO osc configurations Fosc = 40 MHz, VDD = 5.5V		
D013		PIC18LCXX2			3.5 25 38	mA mA mA	HS osc configuration Fosc = 6 MHz, VDD = $2.5V$ Fosc = 25 MHz, VDD = $5.5V$ HS + PLL osc configurations Fosc = 10 MHz, VDD = $5.5V$		
D013		PIC18CXX2	_	_	25 38	mA mA	HS osc configuration Fosc = 25 MHz, $VDD = 5.5V$ HS + PLL osc configurations Fosc = 10 MHz, $VDD = 5.5V$		
D014		PIC18LCXX2	_	_	55	μA	Timer1 osc configuration Fosc = 32 kHz , VDD = 2.5V		
D014		PIC18CXX2	_		200 250	μA μA	OSCB osc configuration Fosc = 32 kHz, VDD = 4.2V, -40°C to +85°C Fosc = 32 kHz, VDD = 4.2V, -40°C to +125°C		

Legend: Shading of rows is to assist in readability of the table.

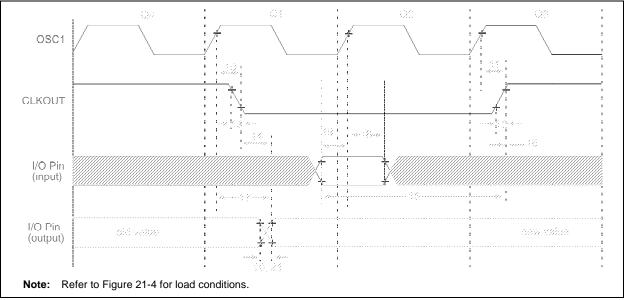
Note 1: This is the limit to which VDD can be lowered in SLEEP mode, or during a device RESET, without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD

MCLR = VDD; WDT enabled/disabled as specified.

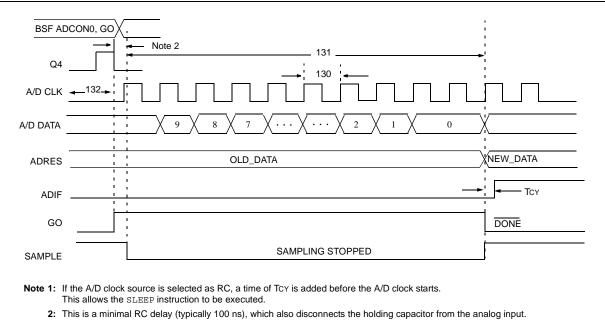

3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or VSS, and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR,...).

4: For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kOhm.

TABLE 21-5:	PLL CLOCK TIMING SPECIFICATION (VDD = 4.2V - 5.5V)

Param No.	Symbol	Characteristic	Min	Мах	Units	Conditions
	TRC	PLL Start-up Time (Lock Time)		2	ms	
	ΔCLK	CLKOUT Stability (Jitter) using PLL	-2	+2	%	

FIGURE 21-6: CLKOUT AND I/O TIMING


TABLE 21-6: CLKOUT AND I/O TIMING REQUIREMENTS

Param. No.	Symbol	Characteristic		Min	Тур	Мах	Units	Conditions
10	TosH2ckL	OSC1↑ to CLKOUT↓			75	200	ns	(1)
11	TosH2ckH	OSC1↑ to CLKOUT↑		—	75	200	ns	(1)
12	TckR	CLKOUT rise time		_	35	100	ns	(1)
13	TckF	CLKOUT fall time		_	35	100	ns	(1)
14	TckL2ioV	CLKOUT ↓ to Port out v	alid	_	_	0.5TCY + 20	ns	(1)
15	TioV2ckH	Port in valid before CLK	OUT ↑	0.25Tcy + 25	_		ns	(1)
16	TckH2iol	Port in hold after CLKO	JT ↑	0			ns	(1)
17	TosH2ioV	OSC1↑ (Q1 cycle) to Po	ort out valid	_	50	150	ns	
18	TosH2iol	OSC1↑ (Q2 cycle) to	PIC18CXXX	100	_		ns	
18A		Port input invalid (I/O in hold time)	PIC18LCXXX	200	—		ns	
19	TioV2osH	Port input valid to OSC1 (I/O in setup time)	1	0	—	—	ns	
20	TioR	Port output rise time	PIC18CXXX		12	25	ns	
20A			PIC18LCXXX		_	50	ns	
21	TioF	Port output fall time	PIC18CXXX		12	25	ns	
21A			PIC18LCXXX	_	_	50	ns	
22††	TINP	INT pin high or low time		Тсү	_		ns	
23††	Trbp	RB7:RB4 change INT high or low time		Тсү	_		ns	
24††	TRCP	RC7:RC4 change INT h	igh or low time	20			ns	

these parameters are asynchronous events not related to any internal clock edges.

Note 1: Measurements are taken in RC mode where CLKOUT output is 4 x Tosc.

TABLE 21-22: A/D CONVERSION REQUIREMENTS

Param No.	Symbol	Characte	Characteristic		Max	Units	Conditions
130	TAD	A/D clock period	PIC18CXXX	1.6	20 ⁽⁵⁾	μS	Tosc based, VREF $\geq 3.0V$
			PIC18LCXXX	3.0	20 ⁽⁵⁾	μS	Tosc based, VREF full range
			PIC18CXXX	2.0	6.0	μS	A/D RC mode
			PIC18LCXXX	3.0	9.0	μS	A/D RC mode
131	TCNV	Conversion time (not including acquisiti	11	12	TAD		
132	TACQ	Acquisition time (Note	3)	15 10		μs μs	$\begin{array}{l} -40^{\circ}C \leq Temp \leq 125^{\circ}C \\ 0^{\circ}C \leq Temp \leq 125^{\circ}C \end{array}$
135	Tswc	Switching Time from c	onvert \rightarrow sample	—	(Note 4)		
136	Тамр	Amplifier settling time	(Note 2)	1	_	μs	This may be used if the "new" input voltage has not changed by more than 1 LSb (i.e., 5 mV @ 5.12V) from the last sampled voltage (as stated on CHOLD).

Note 1: ADRES register may be read on the following TCY cycle.

2: See Section 16.0 for minimum conditions, when input voltage has changed more than 1 LSb.

3: The time for the holding capacitor to acquire the "New" input voltage, when the voltage changes full scale after the conversion (AVDD to AVSS, or AVSS to AVDD). The source impedance (*Rs*) on the input channels is 50Ω .

4: On the next Q4 cycle of the device clock.

5: The time of the A/D clock period is dependent on the device frequency and the TAD clock divider.

NOTES:

INDEX

Α

A/D	
A/D Converter Flag (ADIF Bit)	
A/D Converter Interrupt, Configuring	
ADCON0 Register	
ADCON1 Register	165, 166
ADRES Register	
Analog Port Pins	
Analog Port Pins, Configuring	
Associated Registers	
Block Diagram	
Block Diagram, Analog Input Model	
Configuring the Module	
Conversion Clock (TAD)	
Conversion Status (GO/DONE Bit)	
Conversions	171
Converter Characteristics	
Equations	
Sampling Requirements	
Sampling Time	
Special Event Trigger (CCP)	
Timing Diagram	
Absolute Maximum Ratings	235
ACKSTAT	
ADCON0 Register	
GO/DONE Bit	
ADCON1 Register	165, 166
ADDLW	
ADDWF	
ADDWFC	
ADRES Register	165, 167
Analog-to-Digital Converter. See A/D	
ANDLW	
ANDWF	
Assembler	
MPASM Assembler	229
_	

В

Baud Rate Generator	
BC	195
BCF	
BF	
Block Diagrams	
	407
A/D Converter	
Analog Input Model	168
Baud Rate Generator	136
Capture Mode Operation	109
Compare Mode Operation	110
Low Voltage Detect	
External Reference Source	174
Internal Reference Source	174
MSSP	
I ² C Mode	128
SPI Mode	
On-Chip Reset Circuit	25
Parallel Slave Port (PORTD and PORTE)	
PORTA	
RA3:RA0 and RA5 Port Pins	
RA4/T0CKI Pin	78
RA6 Pin	78

PORTB	
RB3 Pin	81
RB3:RB0 Port Pins	81
RB7:RB4 Port Pins	
PORTC (Peripheral Output Override)	
PORTD (I/O Mode)	
PORTE (I/O Mode)	87
PWM Operation (Simplified)	112
SSP (SPI Mode)	
Timer1	
Timer1 (16-bit R/W Mode)	
Timer2	102
Timer3	104
Timer3 (16-bit R/W Mode)	104
USART	
Asynchronous Receive	157
Asynchronous Transmit	155
Watchdog Timer	184
BN	196
BNC	197
BNOV	198
BNZ	198
BOR. See Brown-out Reset	
BOV	201
BRA	199
BRG. See Baud Rate Generator	
Brown-out Reset (BOR)	. 26, 179
Timing Diagram	
BSF	199
BTFSC	200
BTFSS	200
BTG	201
Bus Collision During a Repeated START Condition	147
Bus Collision During a START Condition	
Bus Collision During a STOP Condition	148
BZ	202

С

CALL	202
Capture (CCP Module)	-
Associated Registers	
Block Diagram	
CCP Pin Configuration	
CCPR1H:CCPR1L Registers	
Software Interrupt	
Timer1 Mode Selection	
Capture/Compare/PWM (CCP)	107
Capture Mode. See Capture	
CCP1	108
CCPR1H Register	108
CCPR1L Register	
CCP1CON and CCP2CON Registers	
CCP2	108
CCPR2H Register	
CCPR2L Register	
Compare Mode. See Compare	
Interaction of Two CCP Modules	108
PWM Mode. See PWM	
Timer Resources	108
Timing Diagram	250
Clocking Scheme	
CLRF	
CLRWDT	
	00

STOP Condition Receive or Transmit143
Time-out Sequence on Power-up
USART Asynchronous Master Transmission 156
USART Asynchronous Reception
USART Synchronous Reception161
USART Synchronous Transmission
Wake-up from SLEEP via Interrupt 186
Timing Diagrams and Specifications
A/D Conversion262
Brown-out Reset (BOR)248
Capture/Compare/PWM (CCP)
CLKOUT and I/O247
External Clock246
I ² C Bus Data257
I ² C Bus START/STOP Bits256
Oscillator Start-up Timer (OST)248
Parallel Slave Port (PSP)251
Power-up Timer (PWRT)248
RESET248
Timer0 and Timer1 249
USART Synchronous Receive
(Master/Slave)260
USART SynchronousTransmission
(Master/Slave)260
Watchdog Timer (WDT)248
TRISE Register
PSPMODE Bit
TSTFSZ
Two-Word Instructions
Example Cases41
TXSTA Register
BRGH Bit151

U

Universal Synchronous Asynchronous Receiver	
Transmitter. See USART.	
USART	149
Asynchronous Mode	155
Associated Registers, Receive	158
Associated Registers, Transmit	156
Master Transmission	156
Receive Block Diagram	157
Receiver	157
Reception	158
Transmit Block Diagram	155
Transmitter	155

Baud Rate Generator (BRG)	. 151
Associated Registers	. 151
Baud Rate Error, Calculating	
Baud Rate Formula	
Baud Rates, Asynchronous Mode	
(BRGH = 0)	. 153
Baud Rates, Asynchronous Mode	
(BRGH = 1)	. 154
Baud Rates, Synchronous Mode	
High Baud Rate Select (BRGH Bit)	
Sampling	
RCSTA Register	
Serial Port Enable (SPEN Bit)	
Synchronous Master Mode	. 159
Associated Registers, Reception	. 161
Associated Registers, Transmit	. 159
Reception	. 161
Timing Diagram, Synchronous Receive	. 260
Timing Diagram, Synchronous	
Transmission	260
Transmission	. 160
Associated Registers	. 159
Synchronous Slave Mode	. 162
Associated Registers, Receive	. 163
Associated Registers, Transmit	. 162
Reception	. 163
Transmission	. 162
TXSTA Register	. 149

W

Wake-up from SLEEP 179, 185
Timing Diagram 186
Using Interrupts 185
Watchdog Timer (WDT) 179, 183
Associated Registers 184
Block Diagram
Postscaler
Programming Considerations
RC Oscillator 183
Time-out Period183
Timing Diagram248
Waveform for General Call Address Sequence 133
WCOL 137, 139, 142
WCOL Status Flag 137
WDT
WWW, On-Line Support5

Х

XORLW	 227
XORWF	 228