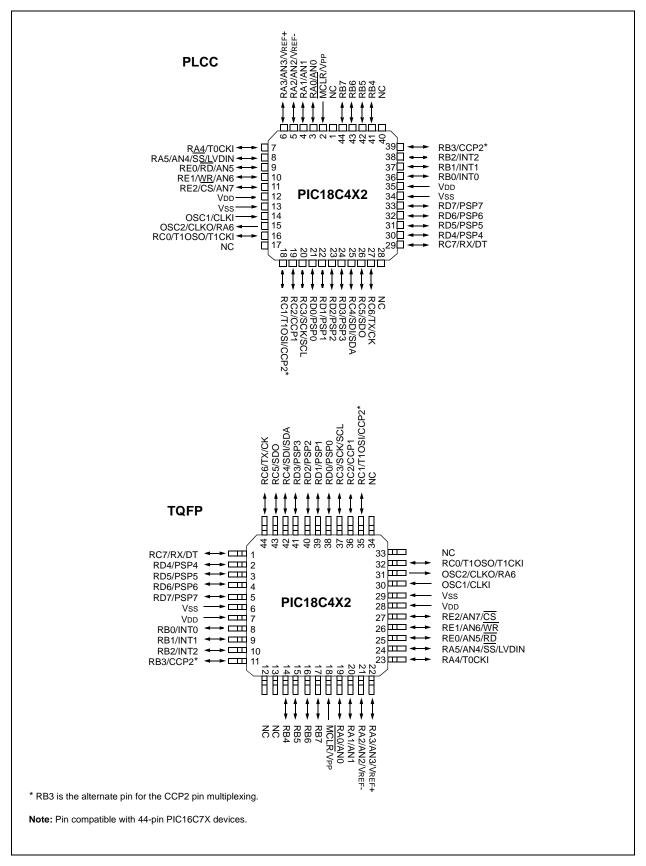


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	33
Program Memory Size	16KB (8K x 16)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LCC (J-Lead)
Supplier Device Package	44-PLCC (16.59x16.59)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18c442-i-l

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams

TABLE 1-2: PIC18C2X2 PINOUT I/O DESCRIPTIONS (CONTINUED)

Pin Name	Pin Number		Pin Buffer		Description		
Pin Name	DIP	SOIC	Туре	Туре	Description		
					PORTC is a bi-directional I/O port.		
RC0/T1OSO/T1CKI	11	11					
RC0			I/O	ST	Digital I/O.		
T1OSO			0		Timer1 oscillator output.		
T1CKI			I	ST	Timer1/Timer3 external clock input.		
RC1/T1OSI/CCP2	12	12					
RC1			I/O	ST	Digital I/O.		
T1OSI			I	CMOS	Timer1 oscillator input.		
CCP2			I/O	ST	Capture2 input, Compare2 output, PWM2 output.		
RC2/CCP1	13	13					
RC2			I/O	ST	Digital I/O.		
CCP1			I/O	ST	Capture1 input/Compare1 output/PWM1 output.		
RC3/SCK/SCL	14	14					
RC3			I/O	ST	Digital I/O.		
SCK			I/O	ST	Synchronous serial clock input/output for SPI mode.		
SCL			I/O	ST	Synchronous serial clock input/output for I ² C mode.		
RC4/SDI/SDA	15	15					
RC4			I/O	ST	Digital I/O.		
SDI			Ι	ST	SPI Data In.		
SDA			I/O	ST	I ² C Data I/O.		
RC5/SDO	16	16					
RC5			I/O	ST	Digital I/O.		
SDO			0	—	SPI Data Out.		
RC6/TX/CK	17	17					
RC6			I/O	ST	Digital I/O.		
TX			0		USART Asynchronous Transmit.		
СК			I/O	ST	USART Synchronous Clock (see related RX/DT).		
RC7/RX/DT	18	18		<u> </u>			
RC7			I/O	ST	Digital I/O.		
RX				ST	USART Asynchronous Receive.		
DT			I/O	ST	USART Synchronous Data (see related TX/CK).		
Vss	8, 19	8, 19	Р		Ground reference for logic and I/O pins.		
Vdd	20	20	Р	_	Positive supply for logic and I/O pins.		
Legend: TTL = TTL compatible input CMOS = CMOS compatible input or output							

TTL = TTL compatible input CMOS = ST = Schmitt Trigger input with CMOS levels I = Input egend:

CMOS compatible input or output

P = Power

O = Output OD = Open Drain (no P diode to VDD)

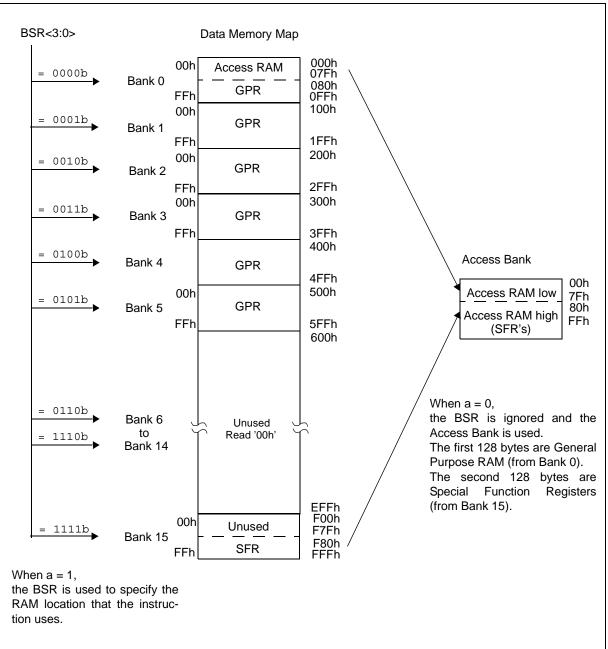
2.7 Effects of SLEEP Mode on the On-chip Oscillator

When the device executes a SLEEP instruction, the on-chip clocks and oscillator are turned off and the device is held at the beginning of an instruction cycle (Q1 state). With the oscillator off, the OSC1 and OSC2 signals will stop oscillating. Since all the transistor

switching currents have been removed, SLEEP mode achieves the lowest current consumption of the device (only leakage currents). Enabling any on-chip feature that will operate during SLEEP will increase the current consumed during SLEEP. The user can wake from SLEEP through external RESET, Watchdog Timer Reset, or through an interrupt.

TABLE 2-3:OSC1 AND OSC2 PIN STATES IN SLEEP MODE

OSC Mode	OSC1 Pin	OSC2 Pin
RC	Floating, external resistor should pull high	At logic low
RCIO	Floating, external resistor should pull high	Configured as PORTA, bit 6
ECIO	Floating	Configured as PORTA, bit 6
EC	Floating	At logic low
LP, XT, and HS	Feedback inverter disabled, at quiescent voltage level	Feedback inverter disabled, at quiescent voltage level


Note: See Table 3-1, in Section 3.0 RESET, for time-outs due to SLEEP and MCLR Reset.

2.8 Power-up Delays

Power up delays are controlled by two timers, so that no external RESET circuitry is required for most applications. The delays ensure that the device is kept in RESET until the device power supply and clock are stable. For additional information on RESET operation, see the "RESET" section.

The first timer is the Power-up Timer (PWRT), which optionally provides a fixed delay of 72 ms (nominal) on power-up only (POR and BOR). The second timer is the Oscillator Start-up Timer, OST, intended to keep the chip in RESET until the crystal oscillator is stable.

With the PLL enabled (HS/PLL oscillator mode), the time-out sequence following a Power-on Reset is different from other oscillator modes. The time-out sequence is as follows: First, the PWRT time-out is invoked after a POR time delay has expired. Then, the Oscillator Start-up Timer (OST) is invoked. However, this is still not a sufficient amount of time to allow the PLL to lock at high frequencies. The PWRT timer is used to provide an additional fixed 2ms (nominal) time-out to allow the PLL ample time to lock to the incoming clock frequency.

FIGURE 4-7: DATA MEMORY MAP FOR PIC18C252/452

7.3 PIE Registers

The PIE registers contain the individual enable bits for the peripheral interrupts. Due to the number of peripheral interrupt sources, there are two Peripheral Interrupt Enable Registers (PIE1, PIE2). When IPEN = 0, the PEIE bit must be set to enable any of these peripheral interrupts.

REGISTER 7-6: PERIPHERAL INTERRUPT ENABLE REGISTER 1 (PIE1)

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	PSPIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	
	bit 7							bit 0	
bit 7	PSPIE: Parallel Slave Port Read/Write Interrupt Enable bit								
		s the PSP re s the PSP r							
bit 6		Converter Ir							
		s the A/D in	•						
	0 = Disable	es the A/D ir	nterrupt						
bit 5	RCIE: USA	RT Receive	e Interrupt E	nable bit					
		s the USAR							
h:+ 4		es the USAF		•					
bit 4		RT Transmi s the USAR							
		s the USAR							
bit 3	SSPIE: Ma	ster Synchr	onous Seria	l Port Interr	upt Enable bit				
		s the MSSP							
		es the MSSF							
bit 2		CP1 Interru		it					
		s the CCP1 is the CCP1	-						
bit 1		MR2 to PR2	•	rrunt Enable	- hit				
bit i				•					
	 1 = Enables the TMR2 to PR2 match interrupt 0 = Disables the TMR2 to PR2 match interrupt 								
bit 0	TMR1IE: T	MR1 Overflo	ow Interrupt	Enable bit					
	1 = Enables the TMR1 overflow interrupt								
	0 = Disable	es the TMR1	overflow in	iterrupt					
	Legend:]	
	R = Reada	hla hit	\\/ \\	/ritable bit	U = Unimple	omontad hi	it read as "	ר י	
	- n = Value			Bit is set	0 = 0 minipi		x = Bit is ur		
	- n = value	al FUR	I = D	IL IS SEL	U = DILISC	lealeu	x = Dit is uf	INTOWN	

Name	Bit#	Buffer Type	Function
RE0/RD/AN5	bit0	ST/TTL ⁽¹⁾	Input/output port pin or read control input in Parallel Slave Port mode or analog input: RD
			1 = Not a read operation0 = Read operation. Reads PORTD register (if chip selected).
RE1/WR/AN6	bit1	ST/TTL ⁽¹⁾	Input/output port pin or write control input in Parallel Slave Port mode or analog input: WR 1 = Not a write operation 0 = Write operation. Writes PORTD register (if chip selected).
RE2/CS/AN7	bit2	ST/TTL ⁽¹⁾	Input/output port pin or chip select control input in Parallel Slave Port mode or analog input: \overline{CS} 1 = Device is not selected 0 = Device is selected

Legend: ST = Schmitt Trigger input, TTL = TTL input

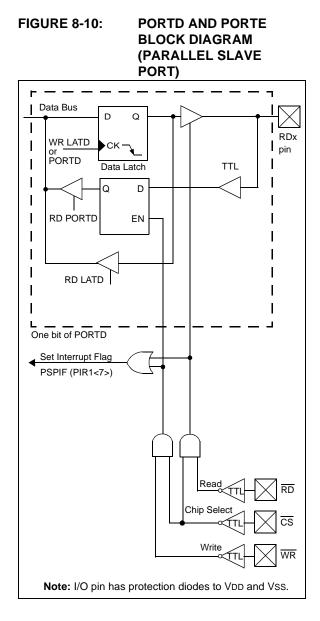
Note 1: Input buffers are Schmitt Triggers when in I/O mode and TTL buffers when in Parallel Slave Port mode.

TABLE 8-10:	SUMMARY OF REGISTERS ASSOCIATED WITH PORTE
-------------	--

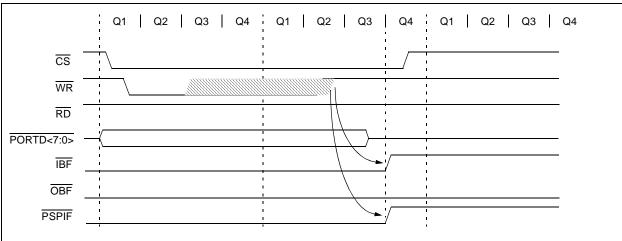
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other RESETS
PORTE	_	—	_	_	_	RE2	RE1	RE0	000	000
LATE	_	—		—	_	LATE Data	Output Reg	lister	xxx	uuu
TRISE	IBF	OBF	IBOV	PSPMODE	—	PORTE Data Direction bits			0000 -111	0000 -111
ADCON1	ADFM	ADCS2	—	_	PCFG3	PCFG2	PCFG1	PCFG0	0000	0000

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by PORTE.

8.6 Parallel Slave Port


The Parallel Slave Port is implemented on the 40-pin devices only (PIC18C4X2).

PORTD operates as an 8-bit wide, parallel slave port, or microprocessor port, when control bit PSPMODE (TRISE<4>) is set. It is asynchronously readable and writable by the external world through RD control input pin RE0/RD and WR control input pin RE1/WR.


It can directly interface to an 8-bit microprocessor data bus. The external microprocessor can read or write the PORTD latch as an 8-bit latch. Setting bit PSPMODE enables port pin RE0/RD to be the RD input, <u>RE1/WR</u> to be the WR input and RE2/CS to be the CS (chip select) input. For this functionality, the corresponding data direction bits of the TRISE register (TRISE<2:0>) must be configured as inputs (set). The A/D port configuration bits PCFG2:PCFG0 (ADCON1<2:0>) must be set, which will configure pins RE2:RE0 as digital I/O.

A write to the PSP occurs when both the $\overline{\text{CS}}$ and $\overline{\text{WR}}$ lines are first detected low. A read from the PSP occurs when both the $\overline{\text{CS}}$ and $\overline{\text{RD}}$ lines are first detected low.

The PORTE I/O pins become control inputs for the microprocessor port when bit PSPMODE (TRISE<4>) is set. In this mode, the user must make sure that the TRISE<2:0> bits are set (pins are configured as digital inputs), and the ADCON1 is configured for digital I/O. In this mode, the input buffers are TTL.

FIGURE 8-11: PARALLEL SLAVE PORT WRITE WAVEFORMS

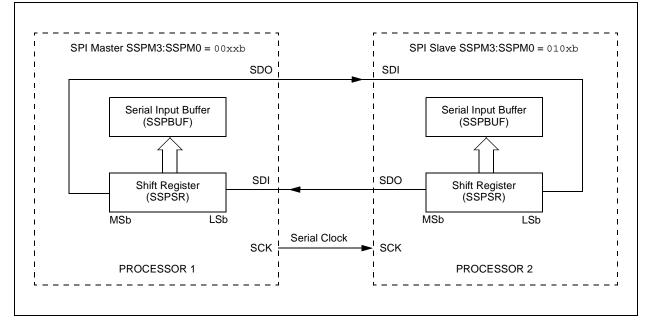
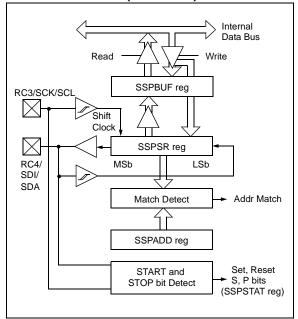

14.3.3 TYPICAL CONNECTION

Figure 14-2 shows a typical connection between two microcontrollers. The master controller (Processor 1) initiates the data transfer by sending the SCK signal. Data is shifted out of both shift registers on their programmed clock edge, and latched on the opposite edge of the clock. Both processors should be programmed to same Clock Polarity (CKP), then both con-

trollers would send and receive data at the same time. Whether the data is meaningful (or dummy data) depends on the application software. This leads to three scenarios for data transmission:

- Master sends data Slave sends dummy data
- Master sends data Slave sends data
- Master sends dummy data Slave sends data

FIGURE 14-2: SPI MASTER/SLAVE CONNECTION


14.4 MSSP I²C Operation

The MSSP module in I²C mode, fully implements all master and slave functions (including general call support) and provides interrupts on START and STOP bits in hardware to determine a free bus (multi-master function). The MSSP module implements the standard mode specifications, as well as 7-bit and 10-bit addressing.

Two pins are used for data transfer. These are the RC3/ SCK/SCL pin, which is the clock (SCL), and the RC4/ SDI/SDA pin, which is the data (SDA). The user must configure these pins as inputs or outputs through the TRISC<4:3> bits.

The MSSP module functions are enabled by setting MSSP enable bit SSPEN (SSPCON<5>).

The MSSP module has six registers for I^2C operation. These are the:

- MSSP Control Register1 (SSPCON1)
- MSSP Control Register2 (SSPCON2)
- MSSP Status Register (SSPSTAT)
- Serial Receive/Transmit Buffer (SSPBUF)
- MSSP Shift Register (SSPSR) Not directly accessible
- MSSP Address Register (SSPADD)

The SSPCON1 register allows control of the I^2C operation. Four mode selection bits (SSPCON<3:0>) allow one of the following I^2C modes to be selected:

- I²C Master mode, clock = OSC/4 (SSPADD +1)
- I²C Slave mode (7-bit address)
- I²C Slave mode (10-bit address)
- I²C Slave mode (7-bit address), with START and STOP bit interrupts enabled
- I²C Slave mode (10-bit address), with START and STOP bit interrupts enabled
- I²C Firmware controlled master operation, slave is idle

Selection of any I²C mode with the SSPEN bit set, forces the SCL and SDA pins to be open drain, provided these pins are programmed to be inputs by setting the appropriate TRISC bits.

14.4.1 SLAVE MODE

In Slave mode, the SCL and SDA pins must be configured as inputs (TRISC<4:3> set). The MSSP module will override the input state with the output data when required (slave-transmitter).

When an address is matched or the data transfer after an address match is received, the hardware automatically will generate the Acknowledge (\overline{ACK}) pulse and load the SSPBUF register with the received value currently in the SSPSR register.

There are certain conditions that will cause the MSSP module not to give this ACK pulse. These are if either (or both):

- a) The buffer full bit BF (SSPSTAT<0>) was set before the transfer was received.
- b) The overflow bit SSPOV (SSPCON<6>) was set before the transfer was received.

In this case, the SSPSR register value is not loaded into the SSPBUF, but bit SSPIF (PIR1<3>) is set. The BF bit is cleared by reading the SSPBUF register, while bit SSPOV is cleared through software.

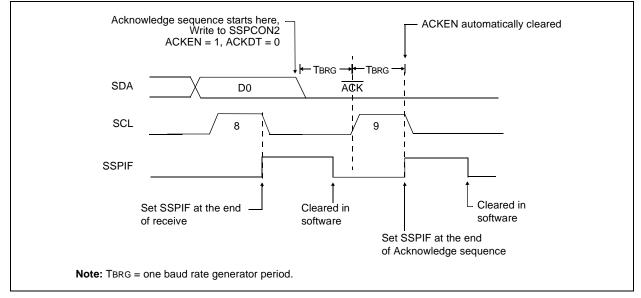
The SCL clock input must have a minimum high and low for proper operation. The high and low times of the I^2C specification, as well as the requirement of the MSSP module, are shown in timing parameter #100 and parameter #101.

14.4.10 ACKNOWLEDGE SEQUENCE TIMING

An Acknowledge sequence is enabled by setting the Acknowledge sequence enable bit, ACKEN (SSPCON2<4>). When this bit is set, the SCL pin is pulled low and the contents of the Acknowledge data bit is presented on the SDA pin. If the user wishes to generate an Acknowledge, then the ACKDT bit should be cleared. If not, the user should set the ACKDT bit before starting an Acknowledge sequence. The baud rate generator then counts for one rollover period (TBRG) and the SCL pin is de-asserted (pulled high). When the SCL pin is sampled high (clock arbitration), the baud rate generator counts for TBRG. The SCL pin is then pulled low. Following this, the ACKEN bit is automatically cleared, the baud rate generator is turned off and the MSSP module then goes into IDLE mode (Figure 14-20).

14.4.10.1 WCOL Status Flag

If the user writes the SSPBUF when an Acknowledge sequence is in progress, then WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).


14.4.11 STOP CONDITION TIMING

A STOP bit is asserted on the SDA pin at the end of a receive/transmit by setting the STOP sequence enable bit, PEN (SSPCON2<2>). At the end of a receive/transmit, the SCL line is held low after the falling edge of the ninth clock. When the PEN bit is set, the master will assert the SDA line low. When the SDA line is sampled low, the baud rate generator is reloaded and counts down to 0. When the baud rate generator times out, the SCL pin will be brought high, and one TBRG (baud rate generator rollover count) later, the SDA pin will be de-asserted. When the SDA pin is sampled high while SCL is high, the P bit (SSPSTAT<4>) is set. A TBRG later, the PEN bit is cleared and the SSPIF bit is set (Figure 14-21).

14.4.11.1 WCOL Status Flag

If the user writes the SSPBUF when a STOP sequence is in progress, then the WCOL bit is set and the contents of the buffer are unchanged (the write doesn't occur).

FIGURE 14-20: ACKNOWLEDGE SEQUENCE WAVEFORM

NOTES:

ANDWF	AND WRE	EG with f		BC	Branch if	Carry		
Syntax:	[<i>label</i>] A	NDWF f[,d [,a]	Syntax:	[<i>label</i>] B	[<i>label</i>]BC n		
Operands:	$0 \leq f \leq 255$			Operands:	-128 ≤ n ≤	$-128 \le n \le 127$		
	$\begin{array}{l} d \in [0,1] \\ a \in [0,1] \end{array}$			Operation:	Operation: if carry bit is '1' (PC) + 2 + 2n \rightarrow PC		;	
Operation:	(WREG) .	AND. (f) \rightarrow d	est	Status Affected	I: None			
Status Affected:	N,Z			Encoding:	1110	0010 nn	nn nnnn	
Encoding:	0001	01da ffi	ff ffff	Description:	If the Carr	y bit is '1', th	nen the pro-	
Description:	with regist is stored in result is st (default). I Bank will b	nts of WREG ter 'f'. If 'd' is in WREG. If 'd tored back in of 'a' is 0, the be selected. I not be overrid	0, the result d' is 1, the register 'f' Access f 'a' is 1, the	Words:	added to t have incre instructior PC+2+2n	omplement n he PC. Sind emented to f n, the new ac	umber '2n' is ce the PC will etch the next ddress will be ction is then n.	
Words:	1			Cycles:	1(2)			
Cycles:	1			Q Cycle Activi				
Q Cycle Activity:				If Jump:				
Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	
Decode	Read register 'f'	Process Data	Write to destination	Decode	Read literal 'n'	Process Data	Write to PC	
Example:	ANDWF	REG, 0, 0		No operation	No operation	No operation	No operation	
Before Instru				If No Jump:				
WREG	$= 0 \times 17$			Q1	Q2	Q3	Q4	
REG	= 0x17 = 0xC2			Decode	Read literal 'n'	Process	No	
After Instruct	ion				П	Data	operation	
WREG REG	= 0x02 = 0xC2			Example:	HERE	BC 5		
				Before Ins		ldress (HER) ()	
				PC	= au	luiess (HER	LE)	

If Carry PC If Carry PC

= = = l; address (HERE+12) 0; address (HERE+2)

MOVFF	Move f to	o f			
Syntax:	[label]	MOVFF	f_s, f_d		
Operands:	$\begin{array}{l} 0 \leq f_s \leq 4 \\ 0 \leq f_d \leq 4 \end{array}$				
Operation:	$(f_{S}) \to f_{d}$				
Status Affected:	None				
Encoding: 1st word (source) 2nd word (destin.)	1100 1111	ffff ffff	ffff ffff	ffff _s ffff _d	
Description:	The contents of source register 'f _s ' are moved to destination register 'f _d '. Location of source 'f _s ' can be anywhere in the 4096 byte data space (000h to FFFh), and location of destination 'f _d ' can also be any-				

where from 000h to FFFh. Either source or destination can be WREG (a useful special situation). MOVFF is particularly useful for transferring a data memory location to a peripheral register (such as the transmit buffer or an I/O port).

The MOVFF instruction cannot use the PCL, TOSU, TOSH or TOSL as the destination register.

Words:

Cycles:

Q Cycle Activity:

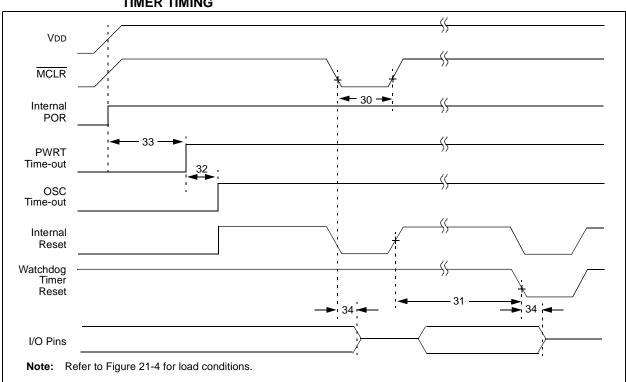
Q1

Q1	Q2	Q3	Q4
Decode	Read register 'f' (src)	Process Data	No operation
Decode	No operation No dummy read	No operation	Write register 'f' (dest)

Example:

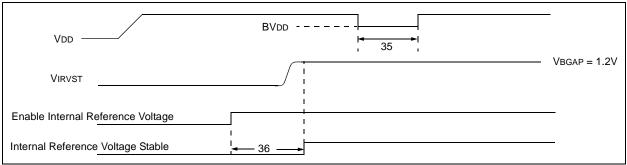
MOVFF REG1, REG2

Before Instruction


REG1 REG2	= =	0x33 0x11
After Instruction		
REG1	=	0x33,
REG2	=	0x33

2

2 (3)


MO\	/LB	Move lite	Move literal to low nibble in BSR						
Synt	ax:	[label]	[<i>label</i>] MOVLB k						
Ope	rands:	$0 \le k \le 25$	$0 \le k \le 255$						
Ope	ration:	$k \to BSR$	$k \rightarrow BSR$						
Statu	us Affected:	None							
Enco	oding:	0000	0001	kkkk	kkkk				
Desc	cription:		The 8-bit literal 'k' is loaded into the Bank Select Register (BSR).						
Wor	ds:	1							
Cycl	es:	1							
QC	ycle Activity								
	Q1	Q2	Q3		Q4				
	Decode	Read literal 'k'	Proce Data		Write eral 'k' to BSR				
<u>Exar</u>	Example: MOVLB 5								

Before Instruction		
BSR register	=	0x02
After Instruction		
BSR register	=	0x05

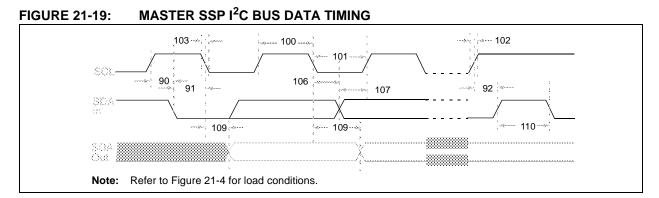

FIGURE 21-7: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING

FIGURE 21-8: BROWN-OUT RESET TIMING

TABLE 21-7:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER
AND BROWN-OUT RESET REQUIREMENTS

Param. No.	Symbol	Characteristic	Min	Тур	Мах	Units	Conditions
30	TmcL	MCLR Pulse Width (low)	2			μS	
31	Twdt	Watchdog Timer Time-out Period (No Postscaler)	7	18	33	ms	
32	Tost	Oscillation Start-up Timer Period	1024Tosc	_	1024Tosc	—	Tosc = OSC1 period
33	TPWRT	Power up Timer Period	28	72	132	ms	
34	Tıoz	I/O Hi-impedance from MCLR Low or Watchdog Timer Reset	_	2	—	μS	
35	TBOR	Brown-out Reset Pulse Width	200	_	_	μS	$VDD \le BVDD$ (See D005)
36	Tivrst	Time for Internal Reference Voltage to become stable	—	20	50	μS	

TABLE 21-18: MASTER SSP I²C BUS DATA REQUIREMENTS

Param. No.	Symbol	Charac	Min	Max	Units	Conditions	
100	Thigh	Clock high time	100 kHz mode	2(Tosc)(BRG + 1)	—	ms	
			400 kHz mode	2(Tosc)(BRG + 1)	_	ms	
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	—	ms	
101	TLOW	Clock low time	100 kHz mode	2(Tosc)(BRG + 1)	—	ms	
			400 kHz mode	2(Tosc)(BRG + 1)	—	ms	
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_	ms	
102	Tr	SDA and SCL	100 kHz mode	—	1000	ns	CB is specified to be
		rise time	400 kHz mode	20 + 0.1Св	300	ns	from 10 to 400 pF
			1 MHz mode ⁽¹⁾	_	300	ns	
103	TF	SDA and SCL	100 kHz mode		300	ns	CB is specified to be
		fall time	400 kHz mode	20 + 0.1Св	300	ns	from 10 to 400 pF
			1 MHz mode ⁽¹⁾	—	100	ns	
90	TSU:STA	START condition	100 kHz mode	2(Tosc)(BRG + 1)		ms	Only relevant for
		setup time	400 kHz mode	2(Tosc)(BRG + 1)	—	ms	Repeated START
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_	ms	condition
91	THD:STA	START condition	100 kHz mode	2(Tosc)(BRG + 1)		ms	After this period the
		hold time	400 kHz mode	2(Tosc)(BRG + 1)		ms	first clock pulse is
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_	ms	generated
106	THD:DAT	Data input	100 kHz mode	0	—	ns	
		hold time	400 kHz mode	0	0.9	ms	
			1 MHz mode ⁽¹⁾	TBD	_	ns	
107	TSU:DAT	Data input	100 kHz mode	250	_	ns	(Note 2)
		setup time	400 kHz mode	100	—	ns	
			1 MHz mode ⁽¹⁾	TBD	_	ns	
92	TSU:STO	STOP condition	100 kHz mode	2(Tosc)(BRG + 1)	—	ms	
		setup time	400 kHz mode	2(Tosc)(BRG + 1)		ms	
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_	ms	
109	ΤΑΑ	Output valid from	100 kHz mode	—	3500	ns	
		clock	400 kHz mode	—	1000	ns	
			1 MHz mode ⁽¹⁾			ns	
110	TBUF	Bus free time	100 kHz mode	4.7		ms	Time the bus must be
			400 kHz mode	1.3	—	ms	free before a new
			1 MHz mode ⁽¹⁾	TBD		ms	transmission can start
D102	Св	Bus capacitive loa		—	400	pF	

Note 1: Maximum pin capacitance = 10 pF for all I^2C pins.

2: A fast mode I²C bus device can be used in a standard mode I²C bus system, but parameter #107 ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line, parameter #102 + parameter #107 = 1000 + 250 = 1250 ns (for 100 kHz mode) before the SCL line is released.

TABLE 21-21: A/D CONVERTER CHARACTERISTICS: PIC18CXX2 (INDUSTRIAL, EXTENDED) PIC18LCXX2 (INDUSTRIAL)

Param No.	Symbol	Charac	teristic	Min	Тур	Max	Units	Conditions
A01	NR	Resolution		_	_	10 10	bit bit	$\label{eq:VREF} \begin{array}{l} VREF = VDD \geq 3.0V \\ VREF = VDD < 3.0V \end{array}$
A03	EIL	Integral linearity	_	_	<±1 <±2	LSb LSb	$\label{eq:VREF} \begin{array}{l} VREF = VDD \geq 3.0V \\ VREF = VDD < 3.0V \end{array}$	
A04	Edl	Differential lines	arity error	_	_	<±1 <±2	LSb LSb	$\label{eq:VREF} \begin{array}{l} VREF = VDD \geq 3.0V \\ VREF = VDD < 3.0V \end{array}$
A05	Efs	Full scale error		_	_	<±1 <±1	LSb LSb	$\label{eq:VREF} \begin{array}{l} VREF = VDD \geq 3.0V \\ VREF = VDD < 3.0V \end{array}$
A06	EOFF	Offset error		_	_	<±1 <±1	LSb LSb	$\label{eq:VREF} \begin{array}{l} VREF = VDD \geq 3.0V \\ VREF = VDD < 3.0V \end{array}$
A10	_	Monotonicity		g	uarantee	ed ⁽³⁾	—	$VSS \leq VAIN \leq VREF$
A20	Vref	Reference voltage		0V		—	V	
A20A		(VREFH - VREFL)		3V		_	V	For 10-bit resolution
A21	Vrefh	Reference voltage High		AVss	—	AVDD + 0.3V	V	
A22	Vrefl	Reference voltage Low		AVss - 0.3V	—	AVdd	V	
A25	VAIN	Analog input voltage		AVss - 0.3V	—	VREF + 0.3V	V	
A30	ZAIN	Recommended impedance of analog voltage source		—	—	10.0	kΩ	
A40	IAD	A/D conversion	PIC18 C XXX		180	—	μΑ	Average current
		current (VDD)	PIC18LCXXX	—	90	—	μΑ	consumption when A/D is on (Note 1) .
A50	A50 IREF VREF input current (Note 2)		10		1000	μΑ	During VAIN acquisition. Based on differential of VHOLD to VAIN. To charge CHOLD, see Section 16.0.	
				—	—	10	μΑ	During A/D conversion cycle.

Note 1: When A/D is off, it will not consume any current other than minor leakage current. The power-down current spec includes any such leakage from the A/D module. VREF current is from RA2/AN2/VREF- and RA3/AN3/VREF+ pins or AVDD and AVss pins, whichever is selected as reference input.

2: VSS \leq VAIN \leq VREF

3: The A/D conversion result never decreases with an increase in the Input Voltage, and has no missing codes.

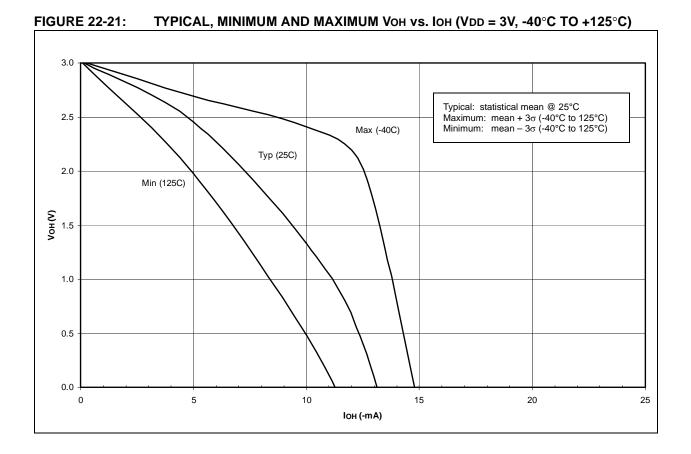
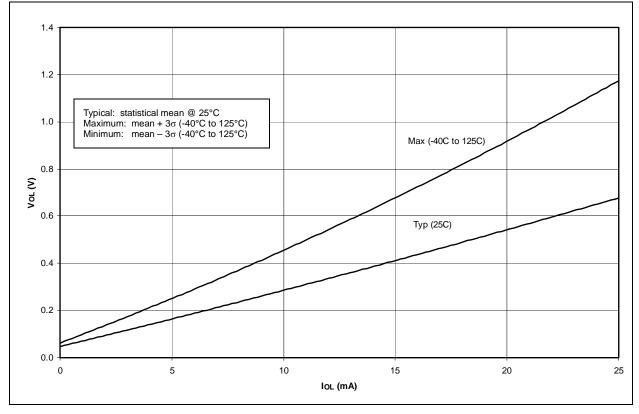



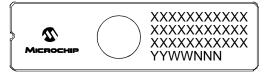

FIGURE 22-22: TYPICAL AND MAXIMUM Vol vs. lol (VDD = 5V, -40°C TO +125°C)

© 1999-2013 Microchip Technology Inc.

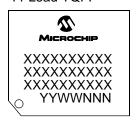
Package Marking Information (Cont'd)

40-Lead PDIP

Example



PIC18C452

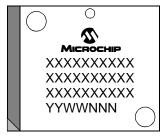

-I/JW

0115017

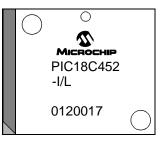
28- and 40-Lead JW (CERDIP)

44-Lead TQFP

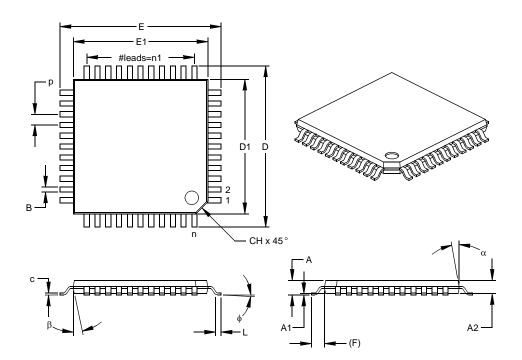
Example


Example

 \mathbf{v}


MICROCHIP

44-Lead PLCC


Example

DS39026D-page 278

44-Lead Plastic Thin Quad Flatpack (PT) 10x10x1 mm Body, 1.0/0.10 mm Lead Form (TQFP)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	INCHES			MILLIMETERS*			
Dimensi	MIN	NOM	MAX	MIN	NOM	MAX		
Number of Pins	n		44			44		
Pitch	р		.031			0.80		
Pins per Side	n1		11			11		
Overall Height	Α	.039	.043	.047	1.00	1.10	1.20	
Molded Package Thickness	A2	.037	.039	.041	0.95	1.00	1.05	
Standoff §	A1	.002	.004	.006	0.05	0.10	0.15	
Foot Length	L	.018	.024	.030	0.45	0.60	0.75	
Footprint (Reference)	(F)		.039		1.00			
Foot Angle	¢	0	3.5	7	0	3.5	7	
Overall Width	Е	.463	.472	.482	11.75	12.00	12.25	
Overall Length	D	.463	.472	.482	11.75	12.00	12.25	
Molded Package Width	E1	.390	.394	.398	9.90	10.00	10.10	
Molded Package Length	D1	.390	.394	.398	9.90	10.00	10.10	
Lead Thickness	С	.004	.006	.008	0.09	0.15	0.20	
Lead Width	В	.012	.015	.017	0.30	0.38	0.44	
Pin 1 Corner Chamfer	СН	.025	.035	.045	0.64	0.89	1.14	
Mold Draft Angle Top	α	5	10	15	5	10	15	
Mold Draft Angle Bottom	β	5	10	15	5	10	15	

* Controlling Parameter

§ Significant Characteristic

Notes:

Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MS-026

Drawing No. C04-076

NOTES: