

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	33
Program Memory Size	16KB (8K x 16)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18c442-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams

2.6.2 OSCILLATOR TRANSITIONS

The PIC18CXX2 devices contain circuitry to prevent "glitches" when switching between oscillator sources. Essentially, the circuitry waits for eight rising edges of the clock source that the processor is switching to. This ensures that the new clock source is stable and that it's pulse width will not be less than the shortest pulse width of the two clock sources.

A timing diagram indicating the transition from the main oscillator to the Timer1 oscillator is shown in Figure 2-8. The Timer1 oscillator is assumed to be running all the time. After the SCS bit is set, the processor is frozen at the next occurring Q1 cycle. After eight synchronization cycles are counted from the Timer1 oscillator, operation resumes. No additional delays are required after the synchronization cycles.

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q T10SI	FIGURE 2-8: TII	MING DIAGRAM FOR TRANSITIO	N FROM OSC1	TO TIME	R1 OSCILL	ATOR
110SI		$\begin{array}{c} Q1 \\ \cdot & \cdot \\ TT1P \\ \cdot & \cdot \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 6 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7$		3 Q4 Q1	Q2 Q3	Q4 Q1
SCS (OSCCON<0>) I Program PC X PC + 2	T10SI OSC1 OSC1 TOSC Internal System Clock					
Counter	(OSCCON<0>) Program PC	PC + 2		· · · · · · · · · · · · · · · · · · ·	PC † 4	

The sequence of events that takes place when switching from the Timer1 oscillator to the main oscillator will depend on the mode of the main oscillator. In addition to eight clock cycles of the main oscillator, additional delays may take place. If the main oscillator is configured for an external crystal (HS, XT, LP), then the transition will take place after an oscillator start-up time (Tost) has occurred. A timing diagram indicating the transition from the Timer1 oscillator to the main oscillator for HS, XT and LP modes is shown in Figure 2-9.

TABLE 3-1:	TIME-OUT IN VARIOUS SITUATIONS

Oscillator	Power-up	(2)	- (2)	Wake-up from
Configuration	PWRTE = 0 PWRTE = 1		Brown-out ⁽²⁾	SLEEP or Oscillator Switch
HS with PLL enabled ⁽¹⁾	72 ms + 1024Tosc + 2ms	1024Tosc + 2 ms	72 ms + 1024Tosc + 2ms	1024Tosc + 2 ms
HS, XT, LP	72 ms + 1024Tosc	1024Tosc	72 ms + 1024Tosc	1024Tosc
EC	72 ms	—	72 ms	—
External RC	72 ms	—	72 ms	—

Note 1: 2 ms is the nominal time required for the 4x PLL to lock.

2: 72 ms is the nominal Power-up Timer delay.

REGISTER 3-1: RCON REGISTER BITS AND POSITIONS

R/W-0	R/W-0	U-0	R/W-1	R/W-1	R/W-1	R/W-0	R/W-0
IPEN	LWRT	—	RI	TO	PD	POR	BOR
bit 7							bit 0

Note: See Register 4-3 on page 53 for bit definitions.

TABLE 3-2:STATUS BITS, THEIR SIGNIFICANCE AND THE INITIALIZATION CONDITION FOR
RCON REGISTER

Condition	Program Counter	RCON Register	RI	то	PD	POR	BOR	STKFUL	STKUNF
Power-on Reset	0000h	00-1 1100	1	1	1	0	0	u	u
MCLR Reset during normal operation	0000h	00-u uuuu	u	u	u	u	u	u	u
Software Reset during normal operation	0000h	0u-0 uuuu	0	u	u	u	u	u	u
Stack Full Reset during normal operation	0000h	0u-u uull	u	u	u	u	u	u	1
Stack Underflow Reset during normal operation	0000h	0u-u uull	u	u	u	u	u	1	u
MCLR Reset during SLEEP	0000h	00-u 10uu	u	1	0	u	u	u	u
WDT Reset	0000h	0u-u 01uu	1	0	1	u	u	u	u
WDT Wake-up	PC + 2	uu-u 00uu	u	0	0	u	u	u	u
Brown-out Reset	0000h	0u-1 11u0	1	1	1	1	0	u	u
Interrupt wake-up from SLEEP	PC + 2 ⁽¹⁾	uu-u 00uu	u	1	0	u	u	u	u

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0'.

Note 1: When the wake-up is due to an interrupt and the GIEH or GIEL bits are set, the PC is loaded with the interrupt vector (0x000008h or 0x000018h).

Register	Ар	olicabl	e Devi	ces	Power-on Reset, Brown-out Reset	MCLR Resets WDT Reset RESET Instruction Stack Resets	Wake-up via WDT or Interrupt	
ADRESH	242	442	252	452	xxxx xxxx	սսսս սսսս	uuuu uuuu	
ADRESL	242	442	252	452	xxxx xxxx	uuuu uuuu	uuuu uuuu	
ADCON0	242	442	252	452	0000 0000	0000 0000	uuuu uuuu	
ADCON1	242	442	252	452	0- 0000	0- 0000	u- uuuu	
CCPR1H	242	442	252	452	xxxx xxxx	uuuu uuuu	uuuu uuuu	
CCPR1L	242	442	252	452	xxxx xxxx	սսսս սսսս	uuuu uuuu	
CCP1CON	242	442	252	452	00 0000	00 0000	uu uuuu	
CCPR2H	242	442	252	452	xxxx xxxx	սսսս սսսս	uuuu uuuu	
CCPR2L	242	442	252	452	xxxx xxxx	սսսս սսսս	uuuu uuuu	
CCP2CON	242	442	252	452	00 0000	00 0000	uu uuuu	
TMR3H	242	442	252	452	xxxx xxxx	սսսս սսսս	uuuu uuuu	
TMR3L	242	442	252	452	xxxx xxxx	սսսս սսսս	uuuu uuuu	
T3CON	242	442	252	452	0000 0000	սսսս սսսս	uuuu uuuu	
SPBRG	242	442	252	452	xxxx xxxx	սսսս սսսս	uuuu uuuu	
RCREG	242	442	252	452	xxxx xxxx	սսսս սսսս	uuuu uuuu	
TXREG	242	442	252	452	xxxx xxxx	սսսս սսսս	սսսս սսսս	
TXSTA	242	442	252	452	0000 -01x	0000 -01u	uuuu -uuu	
RCSTA	242	442	252	452	0000 000x	0000 000u	uuuu uuuu	
IPR2	242	442	252	452	1111	1111	uuuu	
PIR2	242	442	252	452	0000	0000	uuuu (1)	
PIE2	242	442	252	452	0000	0000	uuuu	
IPR1	242	442	252	452	1111 1111	1111 1111	սսսս սսսս	
	242	442	252	452	-111 1111	-111 1111	-uuu uuuu	
PIR1	242	442	252	452	0000 0000	0000 0000	uuuu uuuu ⁽¹⁾	
	242	442	252	452	-000 0000	-000 0000	-uuu uuuu (1)	
PIE1	242	442	252	452	0000 0000	0000 0000	uuuu uuuu	
	242	442	252	452	-000 0000	-000 0000	-uuu uuuu	

TABLE 3-3: INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition

Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).

3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.

- 4: See Table 3-2 for RESET value for specific condition.
- 5: Bit 6 of PORTA, LATA, and TRISA are enabled in ECIO and RCIO oscillator modes only. In all other oscillator modes, they are disabled and read '0'.
- **6:** The long write enable is only reset on a POR or $\overline{\text{MCLR}}$ Reset.
- 7: Bit 6 of PORTA, LATA and TRISA are not available on all devices. When unimplemented, they are read as '0'.

4.13.1 RCON REGISTER

The Reset Control (RCON) register contains flag bits that allow differentiation between the sources of a device RESET. These flags include the TO, PD, POR, BOR and RI bits. This register is readable and writable.

Note 1: If the BOREN configuration bit is set (Brown-out Reset enabled), the BOR bit is '1' on a Power-on Reset. After a Brown-out Reset has occurred, the BOR bit will be clear and must be set by firmware to indicate the occurrence of the next Brown-out Reset. If the BOREN configuration bit is clear (Brown-out Reset disabled), BOR is unknown after Power-on Reset and Brown-out Reset conditions. 2: It is recommended that the POR bit be set after a Power-on Reset has been detected, so that subsequent Power-on

Resets may be detected.

REGISTER 4-3: RCON REGISTER

R/W-0	R/W-0	U-0	R/W-1	R/W-1	R/W-1	R/W-0	R/W-0
IPEN	LWRT	—	RI	TO	PD	POR	BOR
bit 7							bit 0

DIL / IFEN. III. III. III. FIIOIILY ENADIE DIL	bit 7	IPEN: Interrupt Priority Enable bit
--	-------	--

- 1 = Enable priority levels on interrupts
- 0 = Disable priority levels on interrupts (16CXXX compatibility mode)
- bit 6 LWRT: Long Write Enable bit
 - 1 = Enable TBLWT to internal program memory
 - Once this bit is set, it can only be cleared by a POR or MCLR Reset.
 - 0 = Disable TBLWT to internal program memory; TBLWT only to external program memory
- bit 5 Unimplemented: Read as '0'
- bit 4 **RI:** RESET Instruction Flag bit
 - 1 = The RESET instruction was not executed
 - The RESET instruction was executed causing a device RESET (must be set in software after a Brown-out Reset occurs)
- bit 3 TO: Watchdog Time-out Flag bit
 - 1 = After power-up, CLRWDT instruction, or SLEEP instruction
 - 0 = A WDT time-out occurred
- bit 2 **PD**: Power-down Detection Flag bit
 - 1 = After power-up or by the CLRWDT instruction
 - 0 = By execution of the SLEEP instruction
- bit 1 **POR:** Power-on Reset Status bit
 - 1 = A Power-on Reset has not occurred
 - 0 = A Power-on Reset occurred
 - (must be set in software after a Power-on Reset occurs)
- bit 0 **BOR:** Brown-out Reset Status bit
 - 1 = A Brown-out Reset has not occurred
 - 0 = A Brown-out Reset occurred
 - (must be set in software after a Brown-out Reset occurs)

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR reset	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

REGISTER 8-1: TRISE REGISTER

- n = Value at POR

	R-0	R-0	R/W-0	R/W-0	U-0	R/W-1	R/W-1	R/W-1		
	IBF	OBF	IBOV	PSPMODE	_	TRISE2	TRISE1	TRISE0		
	bit 7							bit 0		
bit 7	IBF: Input	Buffer Full \$	Status bit							
	1 = A word 0 = No wo	d has been r rd has been	received an received	d waiting to be	read by th	e CPU				
bit 6	OBF: Outp	OBF: Output Buffer Full Status bit								
	1 = The ou 0 = The ou	utput buffer : utput buffer	still holds a has been re	previously writ ad	ten word					
bit 5	IBOV : Inpu	ut Buffer Ov	erflow Dete	ct bit (in Micro	processor r	mode)				
	1 = A write (must 0 = No ove	e occurred w be cleared in erflow occur	/hen a prev n software) red	iously input wo	ord has not	been read				
bit 4	PSPMODE: Parallel Slave Port Mode Select bit									
	 1 = Parallel Slave Port mode 0 = General purpose I/O mode 									
bit 3	Unimplem	Unimplemented: Read as '0'								
bit 2	TRISE2: R	E2 Directio	n Control b	it						
	1 = Input 0 = Output	t								
bit 1	TRISE1: R	E1 Directio	n Control b	it						
	1 = Input 0 = Output	t								
bit 0	TRISE0: R	E0 Directio	n Control b	it						
	1 = Input									
	0 = Output	t								
	Legend:									
	R = Reada	able bit	W = V	Writable bit	U = Unim	plemented l	bit, read as	'0'		

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

FIGURE 15-3: ASYNCHRONOUS TRANSMISSION (BACK TO BACK)

TABLE 15-6: REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION

Name	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0							Bit 0	Value or POR, BOR	١	Valu all o RES	e on ther ETS
INTCON	GIE/GIEH	PEIE/ GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INTOIF	RBIF	0000 000	x	0000	000u
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 000	00	0000	0000
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 000	00	0000	0000
IPR1	PSPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	0000 000	00	0000	0000
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 -00)x	0000	-00x
TXREG	USART Transmit Register									00	0000	0000
TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -01	0	0000	-010
SPBRG	Baud Rate Generator Register									00	0000	0000

Legend: x = unknown, - = unimplemented locations read as '0'.

Shaded cells are not used for Asynchronous Transmission.

Note 1: The PSPIF, PSPIE and PSPIP bits are reserved on the PIC18C2X2 devices. Always maintain these bits clear.

The analog reference voltage is software selectable to either the device's positive and negative supply voltage (VDD and VSS) or the voltage level on the RA3/AN3/ VREF+ pin and RA2/AN2/VREF-.

The A/D converter has a unique feature of being able to operate while the device is in SLEEP mode. To operate in SLEEP, the A/D conversion clock must be derived from the A/D's internal RC oscillator.

The output of the sample and hold is the input into the converter, which generates the result via successive approximation.

A device RESET forces all registers to their RESET state. This forces the A/D module to be turned off and any conversion is aborted.

Each port pin associated with the A/D converter can be configured as an analog input (RA3 can also be a voltage reference) or as a digital I/O.

The ADRESH and ADRESL registers contain the result of the A/D conversion. When the A/D conversion is complete, the result is loaded into the ADRESH/ ADRESL registers, the GO/DONE bit (ADCON0<2>) is cleared, and A/D interrupt flag bit ADIF is set. The block diagram of the A/D module is shown in Figure 16-1.

FIGURE 16-1: A/D BLOCK DIAGRAM

FIGURE 17-2: LOW VOLTAGE DETECT (LVD) BLOCK DIAGRAM

The LVD module has an additional feature that allows the user to supply the trip voltage to the module from an external source. This mode is enabled when bits LVDL3:LVDL0 are set to 1111. In this state, the comparator input is multiplexed from the external input pin LVDIN (Figure 17-3). This gives flexibility, because it allows a user to configure the Low Voltage Detect interrupt to occur at any voltage in the valid operating range.

Note 1: XT, HS or LP oscillator mode assumed.

2: GIE = '1' assumed. In this case, after wake- up, the processor jumps to the interrupt routine. If GIE = '0', execution will continue in-line.

3: TOST = 1024TOSC (drawing not to scale) This delay will not occur for RC and EC osc modes.

4: CLKOUT is not available in these osc modes, but shown here for timing reference.

18.4 Program Verification/Code Protection

If the code protection bit(s) have not been programmed, the on-chip program memory can be read out for verification purposes.

Note: Microchip Technology does not recommend code protecting windowed devices.

18.5 ID Locations

Five memory locations (200000h - 200004h) are designated as ID locations, where the user can store checksum or other code identification numbers. These locations are accessible during normal execution through the TBLRD instruction or during program/verify. The ID locations can be read when the device is code protected.

18.6 In-Circuit Serial Programming

PIC18CXXX microcontrollers can be serially programmed while in the end application circuit. This is simply done with two lines for clock and data, and three other lines for power, ground and the programming voltage. This allows customers to manufacture boards with unprogrammed devices, and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

TABLE 19-2: PIC18CXXX INSTRUCTION SET

OperandsDescriptionCyclesMSbLSbAffectedNotesBYTE-ORIENTED FILE REGISTER OPERATIONSADDWFf, d, aAdd WREG and f1001001daffffffffC, DC, Z, OV, N1, 2ADDWFCf, d, aAdd WREG and Carry bit to f1001000daffffffffZ, N1, 2ANDWFf, d, aAND WREG with f1001001daffffffffZ, N1, 2CLRFf, aClear f10110101affffffffZ2COMFf, d, aComplement f10110101affffffffZ2CPFSEQf, aCompare f with WREG, skip =1 (2 or 3)0110001affffffffNone4CPFSGTf, aCompare f with WREG, skip >1 (2 or 3)0110010affffffffNone1, 2DECFf, d, aDecrement f11000001daffffffffNone1, 2, 3, 4DECFSZf, d, aDecrement f, Skip if 01 (2 or 3)010011daffffffffNone1, 2, 3, 4INCFf, d, aIncrement f1001010daffffffffNone1, 2, 3, 4INCFf, d, aIncrement f1001010daffffffffNone1, 2, 3, 4INCFf, d, aIncrement f, Skip if 01 (2 or 3)001011daffffffff	Mnemonic,		Description	Cualaa	16-bit Instruction Word Status		Status	Natas		
BYTE-ORIENTED FILE REGISTER OPERATIONSADDWFf, d, aAdd WREG and f1001001daffffffffC, DC, Z, OV, N1, 2ADDWFCf, d, aAdd WREG and Carry bit to f1001000daffffffffC, DC, Z, OV, N1, 2ANDWFf, d, aAND WREG with f1001001daffffffffZ, N1, 2CLRFf, aClear f10110101affffffffZ, N1, 2COMFf, d, aComplement f1000111daffffffffZ2COMFf, aCompare f with WREG, skip =1 (2 or 3)0110001affffNone4CPFSEQf, aCompare f with WREG, skip >1 (2 or 3)0110010affffffffNone4CPFSLTf, aDecrement f1000001daffffffffNone1, 2, 3, 4DECFf, d, aDecrement f, Skip if 01 (2 or 3)010011daffffffffNone1, 2, 3, 4INCFf, d, aIncrement f, Skip if 01 (2 or 3)010011daffffffffNone1, 2, 3, 4INCFSZf, d, aIncrement f, Skip if 01 (2 or 3)011111daffffffffNone1, 2, 3, 4INCFSZf, d, aIncrement f, Skip if Not 01 (2 or 3)011111daffffffffNone4INCFSZf, d, aIncreme	Operands	6	Description	Cycles	MSb			LSb	Affected	Notes
ADDWFf, d, aAdd WREG and f1001001daffffffffC, DC, Z, OV, N1, 2ADDWFCf, d, aAdd WREG and Carry bit to f1001000daffffffffC, DC, Z, OV, N1, 2ANDWFf, d, aAND WREG with f1000101daffffffffZ, N1, 2CLRFf, aClear f10110101affffffffZ2COMFf, d, aComplement f1000111daffffffffZ2CPFSEQf, aCompare f with WREG, skip =1 (2 or 3)0110001affffffffNone4CPFSGTf, aCompare f with WREG, skip >1 (2 or 3)0110010affffffffNone4CPFSLTf, aDecrement f1000001daffffffffNone1, 2, 3, 4DECFf, d, aDecrement f, Skip if 01 (2 or 3)011011daffffffffNone1, 2, 3, 4INCFf, d, aIncrement f, Skip if 01 (2 or 3)010011daffffffffNone1, 2, 3, 4INCFSZf, d, aIncrement f, Skip if 01 (2 or 3)001011daffffffffNone4INCFSZf, d, aIncrement f, Skip if Not 01 (2 or 3)001010daffffffffNone4INFSNZf, d, aIncrement f, Skip if Not 01 (2 or 3)001010da <th>BYTE-ORIENT</th> <th>red f</th> <th>FILE REGISTER OPERATIONS</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	BYTE-ORIENT	red f	FILE REGISTER OPERATIONS							
ADDWFCf, d, aAdd WREG and Carry bit to f1001000daffffffffC, DC, Z, OV, N1, 2ANDWFf, d, aAND WREG with f1000101daffffffffZ, N1, 2CLRFf, aClear f10110101affffffffZ2COMFf, d, aComplement f1000111daffffffffZ2CPFSEQf, aCompare f with WREG, skip =1 (2 or 3)0110001affffffffNone4CPFSGTf, aCompare f with WREG, skip >1 (2 or 3)0110010affffffffNone4CPFSLTf, aCompare f with WREG, skip 1 (2 or 3)0110000affffffffNone1, 2DECFf, d, aDecrement f1000001daffffffffNone1, 2, 3, 4DECFSZf, d, aDecrement f, Skip if 01 (2 or 3)010011daffffffffNone1, 2, 3, 4INCFf, d, aIncrement f1001010daffffffffNone1, 2, 3, 4INCFSZf, d, aIncrement f, Skip if 01 (2 or 3)001010daffffffffNone4INFSNZf, d, aIncrement f, Skip if Not 01 (2 or 3)001010daffffffffNone4INFSNZf, d, aIncrement f, Skip if Not 01 (2 or 3)001010daffff	ADDWF f, c	d, a	Add WREG and f	1	0010	01da	ffff	ffff	C, DC, Z, OV, N	1, 2
ANDWFf, d, aAND WREG with f1000101daffffffffZ, N1,2CLRFf, aClear f10110101affffffffZ2COMFf, d, aComplement f1000111daffffffffZ, N1, 2CPFSEQf, aCompare f with WREG, skip =1(2 or 3)0110001affffffffNone4CPFSGTf, aCompare f with WREG, skip >1(2 or 3)0110010affffffffNone4CPFSLTf, aCompare f with WREG, skip <	ADDWFC f, c	d, a	Add WREG and Carry bit to f	1	0010	00da	ffff	ffff	C, DC, Z, OV, N	1, 2
CLRFf, aClear f10110101affffffffZ2COMFf, d, aComplement f1001111daffffffffZ, N1, 2CPFSEQf, aCompare f with WREG, skip =1 (2 or 3)0110001affffffffNone4CPFSGTf, aCompare f with WREG, skip >1 (2 or 3)0110010affffffffNone4CPFSLTf, aCompare f with WREG, skip 1 (2 or 3)0110000affffffffNone1, 2DECFf, d, aDecrement f1000001daffffffffNone1, 2, 3, 4DECFSZf, d, aDecrement f, Skip if 01 (2 or 3)001011daffffffffNone1, 2, 3, 4INCFf, d, aIncrement f1001010daffffffffNone1, 2, 3, 4INCFSZf, d, aIncrement f, Skip if 01 (2 or 3)001011daffffffffNone4INCFSZf, d, aIncrement f, Skip if 01 (2 or 3)001111daffffffffNone4INFSNZf, d, aIncrement f, Skip if Not 01 (2 or 3)001111daffffffffNone4INFSNZf, d, aIncrement f, Skip if Not 01 (2 or 3)001010daffffffffNone4	ANDWF f, c	d, a	AND WREG with f	1	0001	01da	ffff	ffff	Z, N	1,2
COMFf, d, aComplement f1000111daffffffffZ, N1, 2CPFSEQf, aCompare f with WREG, skip =1 (2 or 3)0110001affffffffNone4CPFSGTf, aCompare f with WREG, skip >1 (2 or 3)0110010affffffffNone4CPFSLTf, aCompare f with WREG, skip <	CLRF f, a	а	Clear f	1	0110	101a	ffff	ffff	Z	2
CPFSEQf, aCompare f with WREG, skip = CPFSGT1 (2 or 3)0110001affffffffNone4CPFSGTf, aCompare f with WREG, skip > CPFSLT1 (2 or 3)0110010affffffffNone4CPFSLTf, aCompare f with WREG, skip < DECF1 (2 or 3)0110000affffffffNone4DECFf, d, aDecrement f1000001daffffffffNone1, 2, 3, 4DECFSZf, d, aDecrement f, Skip if 01 (2 or 3)001011daffffffffNone1, 2, 3, 4DCFSNZf, d, aDecrement fSkip if Not 01 (2 or 3)010011daffffffffNone1, 2, 3, 4INCFf, d, aIncrement f1001010daffffffffNone1, 2, 3, 4INCFSZf, d, aIncrement f, Skip if 01 (2 or 3)011111daffffffffNone4INESNZf, d, aIncrement f, Skip if Not 01 (2 or 3)001111daffffffffNone4	COMF f, c	d, a	Complement f	1	0001	11da	ffff	ffff	Z, N	1, 2
CPFSGTf, aCompare f with WREG, skip >1 (2 or 3)0110010affffffffNone4CPFSLTf, aCompare f with WREG, skip <	CPFSEQ f, a	а	Compare f with WREG, skip =	1 (2 or 3)	0110	001a	ffff	ffff	None	4
CPFSLTf, aCompare f with WREG, skip <1 (2 or 3)0110000affffffffNone1, 2DECFf, d, aDecrement f1000001daffffffffC, DC, Z, OV, N1, 2, 3, 4DECFSZf, d, aDecrement f, Skip if 01 (2 or 3)001011daffffffffNone1, 2, 3, 4DCFSNZf, d, aDecrement f, Skip if Not 01 (2 or 3)010011daffffffffNone1, 2, 3, 4INCFf, d, aIncrement f1001010daffffffffC, DC, Z, OV, N1, 2, 3, 4INCFSZf, d, aIncrement f, Skip if 01 (2 or 3)001111daffffffffNone4INFSNZf, d, aIncrement f, Skip if Not 01 (2 or 3)010010daffffffffNone4	CPFSGT f, a	а	Compare f with WREG, skip >	1 (2 or 3)	0110	010a	ffff	ffff	None	4
DECFf, d, aDecrement f1000001daffffffffC, DC, Z, OV, N1, 2, 3, 4DECFSZf, d, aDecrement f, Skip if 01 (2 or 3)001011daffffffffNone1, 2, 3, 4DCFSNZf, d, aDecrement f, Skip if Not 01 (2 or 3)010011daffffffffNone1, 2, 3, 4INCFf, d, aIncrement f1001010daffffffffC, DC, Z, OV, N1, 2, 3, 4INCFSZf, d, aIncrement f, Skip if 01 (2 or 3)001111daffffffffNone4INFSNZf, d, aIncrement f, Skip if Not 01 (2 or 3)010010daffffffffNone4	CPFSLT f, a	а	Compare f with WREG, skip <	1 (2 or 3)	0110	000a	ffff	ffff	None	1, 2
DECFSZf, d, aDecrement f, Skip if 01 (2 or 3)001011daffffffffNone1, 2, 3, 4DCFSNZf, d, aDecrement f, Skip if Not 01 (2 or 3)010011daffffffffNone1, 2INCFf, d, aIncrement f1001010daffffffffC, DC, Z, OV, N1, 2, 3, 4INCFSZf, d, aIncrement f, Skip if 01 (2 or 3)001111daffffffffNone4INESNZf, d, aIncrement f, Skip if Not 01 (2 or 3)010010daffffffffNone4	DECF f, c	d, a	Decrement f	1	0000	01da	ffff	ffff	C, DC, Z, OV, N	1, 2, 3, 4
DCFSNZf, d, aDecrement f, Skip if Not 01 (2 or 3)010011daffffffffNone1, 2INCFf, d, aIncrement f1001010daffffffffC, DC, Z, OV, N1, 2, 3, 4INCFSZf, d, aIncrement f, Skip if 01 (2 or 3)001111daffffffffNone4INESNZf, d, aIncrement f, Skip if Not 01 (2 or 3)010010daffffffffNone4	DECFSZ f, c	d, a	Decrement f, Skip if 0	1 (2 or 3)	0010	11da	ffff	ffff	None	1, 2, 3, 4
INCF f, d, a Increment f 1 0010 10da ffff C, DC, Z, OV, N 1, 2, 3, 4 INCFSZ f, d, a Increment f, Skip if 0 1 (2 or 3) 0011 11da ffff ffff None 4 INESNZ f, d, a Increment f, Skip if Not 0 1 (2 or 3) 0100 10da ffff ffff None 4	DCFSNZ f, c	d, a	Decrement f, Skip if Not 0	1 (2 or 3)	0100	11da	ffff	ffff	None	1, 2
INCFSZ f, d, a Increment f, Skip if 0 1 (2 or 3) 0011 11da ffff fff None 4 INFSNZ f, d, a Increment f, Skip if Not 0 1 (2 or 3) 0100 10da ffff ffff None 1 2	INCF f, c	d, a	Increment f	1	0010	10da	ffff	ffff	C, DC, Z, OV, N	1, 2, 3, 4
INFSNZ f. d. a Increment f. Skip if Not 0 1 (2 or 3) 0100 10da ffff ffff None 1 2	INCFSZ f, c	d, a	Increment f, Skip if 0	1 (2 or 3)	0011	11da	ffff	ffff	None	4
	INFSNZ f, c	d, a	Increment f, Skip if Not 0	1 (2 or 3)	0100	10da	ffff	ffff	None	1, 2
IORWF f, d, a Inclusive OR WREG with f 1 0001 00da ffff ffff Z, N 1, 2	IORWF f, c	d, a	Inclusive OR WREG with f	1	0001	00da	ffff	ffff	Z, N	1, 2
MOVF f, d, a Move f 1 0101 00da ffff ffff Z, N 1	MOVF f, c	d, a	Move f	1	0101	00da	ffff	ffff	Z, N	1
MOVFF f _s , f _d Move f _s (source) to 1st word 2 1100 ffff ffff ffff None	MOVFF f _s ,	, f _d	Move f _s (source) to 1st word	2	1100	ffff	ffff	ffff	None	
f _d (destination)2nd word 1111 ffff ffff ffff	, i i i i i i i i i i i i i i i i i i i	ũ	f _d (destination)2nd word		1111	ffff	ffff	ffff		
MOVWF f, a Move WREG to f 1 0110 111a ffff ffff None	MOVWF f, a	а	Move WREG to f	1	0110	111a	ffff	ffff	None	
MULWF f, a Multiply WREG with f 1 0000 001a ffff ffff None	MULWF f, a	а	Multiply WREG with f	1	0000	001a	ffff	ffff	None	
NEGF f, a Negate f 1 0110 110a ffff ffff C, DC, Z, OV, N 1, 2	NEGF f, a	а	Negate f	1	0110	110a	ffff	ffff	C, DC, Z, OV, N	1, 2
RLCF f, d, a Rotate Left f through Carry 1 0011 01da ffff fff C, Z, N	RLCF f, c	d, a	Rotate Left f through Carry	1	0011	01da	ffff	ffff	C, Z, N	
RLNCF f, d, a Rotate Left f (No Carry) 1 0100 01da ffff Z, N 1, 2	RLNCF f, c	d, a	Rotate Left f (No Carry)	1	0100	01da	ffff	ffff	Z, N	1, 2
RRCF f, d, a Rotate Right f through Carry 1 0011 00da ffff fff C, Z, N	RRCF f, c	d, a	Rotate Right f through Carry	1	0011	00da	ffff	ffff	C, Z, N	
RRNCF f, d, a Rotate Right f (No Carry) 1 0100 00da ffff fff Z, N	RRNCF f, c	d, a	Rotate Right f (No Carry)	1	0100	00da	ffff	ffff	Z, N	
SETF f, a Set f 1 0110 100a ffff ffff None	SETF f, a	а	Set f	1	0110	100a	ffff	ffff	None	
SUBFWB f, d, a Subtract f from WREG with 1 0101 01da ffff fff C, DC, Z, OV, N 1, 2	SUBFWB f, c	d, a	Subtract f from WREG with	1	0101	01da	ffff	ffff	C, DC, Z, OV, N	1, 2
borrow			borrow							
SUBWF f, d, a Subtract WREG from f 1 0101 11da ffff fff C, DC, Z, OV, N	SUBWF f, c	d, a	Subtract WREG from f	1	0101	11da	ffff	ffff	C, DC, Z, OV, N	
SUBWFB f, d, a Subtract WREG from f with 1 0101 10da ffff ffff C, DC, Z, OV, N 1, 2	SUBWFB f, c	d, a	Subtract WREG from f with	1	0101	10da	ffff	ffff	C, DC, Z, OV, N	1, 2
borrow			borrow							
SWAPF f, d, a Swap nibbles in f 1 0011 10da ffff ffff None 4	SWAPF f, c	d, a	Swap nibbles in f	1	0011	10da	ffff	ffff	None	4
TSTFSZ f, a Test f, skip if 0 1 (2 or 3) 0110 011a ffff ffff None 1, 2	TSTFSZ f, a	a	Test f, skip if 0	1 (2 or 3)	0110	011a	ffff	ffff	None	1, 2
XORWF f, d, a Exclusive OR WREG with f 1 0001 10da ffff fff Z, N	XORWF f, c	d, a	Exclusive OR WREG with f	1	0001	10da	ffff	ffff	Z, N	
BIT-ORIENTED FILE REGISTER OPERATIONS	BIT-ORIENTED	D FIL	E REGISTER OPERATIONS							•
BCF f, b, a Bit Clear f 1 1001 bbba ffff fff None 1.2	BCF f. b	b, a	Bit Clear f	1	1001	bbba	ffff	ffff	None	1, 2
BSF f, b, a Bit Set f 1 1000 bbba ffff ffff None 1, 2	BSF f, b	b, a	Bit Set f	1	1000	bbba	ffff	ffff	None	1, 2
BTFSC f, b, a Bit Test f, Skip if Clear 1 (2 or 3) 1011 bbba ffff ffff None 3.4	BTFSC f. t	b, a	Bit Test f, Skip if Clear	1 (2 or 3)	1011	bbba	ffff	ffff	None	3, 4
BTFSS f, b, a Bit Test f, Skip if Set 1 (2 or 3) 1010 bbba ffff ffff None 3.4	BTFSS f.t	b, a	Bit Test f, Skip if Set	1 (2 or 3)	1010	bbba	ffff	ffff	None	3, 4
BTG f, d, a Bit Toggle f 1 0111 bbba ffff ffff None 1.2	BTG f. c	d, a	Bit Toggle f	1	0111	bbba	ffff	ffff	None	1, 2

Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned.

3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

4: Some instructions are 2 word instructions. The second word of these instructions will be executed as a NOP, unless the first word of the instruction retrieves the information embedded in these 16-bits. This ensures that all program memory locations have a valid instruction.

5: If the table write starts the write cycle to internal memory, the write will continue until terminated.

CLRF	Clear f	CLRWDT	Clear Wate	Clear Watchdog Timer		
Syntax:	[<i>label</i>] CLRF f [,a]	Syntax:	[label] C	[label] CLRWDT		
Operands:	rands: $0 \le f \le 255$ $a \in [0,1]$		None $000h \rightarrow W$			
Operation:	$\begin{array}{l} 000h \rightarrow f \\ 1 \rightarrow Z \end{array}$		$\begin{array}{c} 000h \rightarrow W \\ 1 \rightarrow \overline{\text{TO}}, \end{array}$	DT postscal	er,	
Status Affected:	Z		$1 \rightarrow PD$			
Encoding:	0110 101a ffff ffff	Status Affected:	TO, PD	T		
Description:	Clears the contents of the specified	Encoding:	0000	0000 000	00 0100	
	register. If 'a' is 0, the Access Bank will be selected, overriding the BSR value. If 'a' = 1, then the bank will be selected as per the BSR value	Description:	CLRWDT instruction resets the Watchdog Timer. It also resets the postscaler of the WDT. Status bits TO and PD are set.			
	(default).	Words:	1			
Words:	1	Cycles:	1			
Cycles:	1	Q Cycle Activity:	:			
Q Cycle Activity	r:	Q1	Q2	Q3	Q4	
Q1 Decode	Q2 Q3 Q4 Read Process Write register 'f' Data register 'f'	Decode	No operation	Process Data	No operation	
	Togister 1 Data Togister 1	Example:	CLRWDT			
Example:	CLRF FLAG_REG,1	Before Instru	uction			
Before Instr	uction	WDT COL	unter =	?		
FLAG_R	EG = 0x5A	After Instruct	tion			
After Instruc	xtion EG = 0x00	WDT COU WDT POS TO PD	unter = stscaler = = =	0x00 0 1 1		

RRNCF	Rotate Ri	ght f (no ca	rry)	SETF
Syntax:	[label]	RRNCF f	[,d [,a]	Syntax:
Operands:	0 ≤ f ≤ 255 d ∈ [0,1] a ∈ [0,1]	5		Operands:
Operation:	$(f < n >) \rightarrow (f < 0) $	dest <n-1>, dest<7></n-1>		Operation: Status Affected
Status Affected:	N,Z			Encoding:
Encoding:	0100	00da ff	ff ffff	Description.
Description:	The conterrotated or the result is 1, the register 'f'	ents of regist the bit to the r is placed in esult is place (default). If	er 'f' are ight. If 'd' is 0, WREG. If 'd' ed back in 'a' is 0, the	Words:
	Access B	ank will be s	elected, over-	Cycles:
	riding the the bank v	BSR value. I will be select	f 'a' is 1, then ed as per the	Q Cycles.
	BSR valu	e (default).		Q1
	Ľ	 register 	er f	Decode
Words:	1			
Cycles:	1			Example:
Q Cycle Activity:				Before Ins
Q1	Q2	Q3	Q4	REG Δfter Instr
Decode	Read register 'f'	Process Data	Write to destination	REG
Example 1:	RRNCF	REG, 1, 0		
Before Instru	iction			
REG	= 1101 (0111		
After Instruct	= 1110 :	1011		
Example 2:	RRNCF	REG, 0, 0		
Before Instru	iction			
WREG REG	= ? = 1101 (0111		
After Instruct	tion			
WREG REG	= 1110 : = 1101 (1011 0111		

ynt	ax:	[<i>label</i>] SE	TF f[,	a]					
pei	rands:	0 ≤ f ≤ 255 a ∈ [0,1]	$\begin{array}{l} 0\leq f\leq 255\\ a\in[0,1] \end{array}$						
реі	ration:	$FFh\tof$							
tatu	is Affected:	None							
ncc	oding:	0110	100a	ffff	ffff				
eso	cription:	The conte ter are se Access Ba riding the the bank v BSR value	ents of th t to FFh ank will BSR val will be se e (defau	ne spec . If 'a' is be sele lue. If 'a elected It).	ified regis- s 0, the cted, over- a' is 1, then as per the				
/ord	ds:	1							
ycl	es:	1							
2 C	ycle Activity:								
	Q1	Q2	Q3	3	Q4				
	Decode	Read register 'f'	Proce Data	ess a	Write register 'f'				
xar	nple:	SETF	RE	G,1					
	Before Instruction REG = 0x5A								
	After Instruction								

0xFF

=

Set f

 $\ensuremath{\textcircled{}^{\odot}}$ 1999-2013 Microchip Technology Inc.

TBL	RD	Table Read	d						
Synt	ax:	[label]	TBLRD (*; *+; *-; +	-*)				
Ope	rands:	None							
Ope	ration:	if TBLRD *, (Prog Mem (TBLPTR)) → TABLAT; TBLPTR - No Change; if TBLRD *+, (Prog Mem (TBLPTR)) → TABLAT; (TBLPTR) +1 → TBLPTR; if TBLRD *-, (Prog Mem (TBLPTR)) → TABLAT; (TBLPTR) -1 → TBLPTR; if TBLRD +*, (TBLPTR) +1 → TBLPTR; (Prog Mem (TBLPTR)) → TABLAT;							
Statu	us Affected	: None			[
Enco	oding:	0000	0000	0000	10nn nn=0 * =1 *+ =2 *- =3 +*				
	contents of Program Memory (P.M.). To address the program memory, a pointer called Table Pointer (TBLPTR) is used. The TBLPTR (a 21-bit pointer) points to each byte in the program memory. TBLPTR has a 2 Mbyte address range.								
		Byte o	t Program	n Memory	VVord				
		Byte o	f Progran	n Memory	Word				
	The TBLRD instruction can modify the value of TBLPTR as follows: • no change • post-increment • post-decrement • pro increment								
Wor	ds:	1							
Cycl	es:	2							
QC	ycle Activit	iy:							
	Q1	Q2	Q3	Q	4				
	Decode	No	No	N	D				
	No	No	No	No No					

TBLRD		Table R	ead	l (co	nt'd)
Example	<u>1</u> :	TBLRD	*+	;	
Befor	re Instruc	tion			
r I	TABLAT TBLPTR MEMORY(0	x00A356)	= = =	0x55 0x00A356 0x34
After	Instructio	n			
г - - -	TABLAT TBLPTR			= =	0x34 0x00A357
Example	<u>2</u> :	TBLRD	+*	;	
Befor	re Instruc	tion			
- - 	TABLAT TBLPTR MEMORY(0 MEMORY(0	x01A357 x01A358))	= = =	0xAA 0x01A357 0x12 0x34
After	Instructio TABLAT TBLPTR	n		=	0x34 0x01A358

operation (Read Program Memory)

operation

operation

operation (Write TABLAT)

21.2 DC Characteristics: PIC18CXX2 (Industrial, Extended) PIC18LCXX2 (Industrial)

рс сн	ARACTE	RISTICS	Standard O Operating te	perating Cor emperature	$\begin{array}{l} \textbf{-40^{\circ}C} \leq \text{TA} \leq \textbf{+85^{\circ}C} \text{ for industrial} \\ \textbf{-40^{\circ}C} \leq \text{TA} \leq \textbf{+125^{\circ}C} \text{ for extended} \\ \end{array}$		
Param No.	Symbol	Characteristic	Min	Мах	Units	Conditions	
	VIL	Input Low Voltage					
		I/O ports:					
D030		with TTL buffer	Vss	0.15Vdd	V	VDD < 4.5V	
D030A			—	0.8	V	$4.5V \le VDD \le 5.5V$	
D031		with Schmitt Trigger buffer	Vss	0.2VDD	V		
		RC3 and RC4	Vss	0.3VDD	V		
D032		MCLR	Vss	0.2Vdd	V		
D032A		OSC1 (in XT, HS and LP modes)	Vss	0.3Vdd	V		
Dooo		and $110SI$	1/22	0.01/77			
D033	N /	USCT (IN RC and EC mode)."	VSS	0.2VDD	V		
	VIH						
D 040			0.051/	N /= -			
D040		with IIL buffer	0.25VDD + 0.8V	VDD	V	VDD < 4.5V	
D040A			2.0	Vdd	V	$4.5V \leq V\text{DD} \leq 5.5V$	
D041		with Schmitt Trigger buffer	0.8Vdd	Vdd	V		
		RC3 and RC4	0.7Vdd	Vdd	V		
D042		MCLR, OSC1 (EC mode)	0.8Vdd	Vdd	V		
D042A		OSC1 (in XT, HS and LP modes) and T1OSI	0.7Vdd	Vdd	V		
D043		OSC1 (RC mode) ⁽¹⁾	0.9Vdd	Vdd	V		
	lı∟	Input Leakage Current ^(2,3)					
D060		I/O ports	—	±1	μA	$Vss \le VPIN \le VDD,$ Pin at hi-impedance	
D061		MCLR	_	±5	μA	$Vss \le VPIN \le VDD$	
D063		OSC1	—	±5	μA	$Vss \leq V \text{PIN} \leq V \text{DD}$	
	IPU	Weak Pull-up Current					
D070	IPURB	PORTB weak pull-up current	50	400	μA	VDD = 5V, VPIN = VSS	

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC MCU be driven with an external clock while in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

TABLE 21-21: A/D CONVERTER CHARACTERISTICS: PIC18CXX2 (INDUSTRIAL, EXTENDED) PIC18LCXX2 (INDUSTRIAL)

Param No.	Symbol	Charac	teristic	Min	Тур	Max	Units	Conditions
A01	NR	Resolution		—	—	10	bit	$VREF=VDD\geq 3.0V$
				—	—	10	bit	VREF = VDD < 3.0V
A03	EIL	Integral linearity error		—	-	<±1	LSb	$VREF=VDD\geq 3.0V$
				—	—	<±2	LSb	VREF = VDD < 3.0V
A04	Edl	Differential linea	arity error	—	_	<±1	LSb	$VREF=VDD\geq 3.0V$
				—	—	< <u>±2</u>	LSb	VREF = VDD < 3.0V
A05	Efs	Full scale error		—	_	<±1	LSb	$VREF=VDD\geq 3.0V$
				—	—	<±1	LSb	VREF = VDD < 3.0V
A06	EOFF	Offset error		—	—	<±1	LSb	$VREF=VDD\geq 3.0V$
				—	—	<±1	LSb	VREF = VDD < 3.0V
A10	—	Monotonicity	g	uaranteed ⁽³⁾		_	$VSS \leq VAIN \leq VREF$	
A20	Vref	Reference voltage		0V	—	—	V	
A20A		(Vrefh - Vrefl)		3V	—	—	V	For 10-bit resolution
A21	Vrefh	Reference voltage High		AVss	—	AVDD + 0.3V	V	
A22	Vrefl	Reference voltage Low		AVss - 0.3V	_	AVDD	V	
A25	VAIN	Analog input voltage		AVss - 0.3V	—	VREF + 0.3V	V	
A30	ZAIN	Recommended analog voltage	impedance of source	—	—	10.0	kΩ	
A40	IAD	A/D conversion	PIC18 C XXX	—	180	—	μΑ	Average current
		current (VDD)	PIC18LCXXX	—	90	—	μΑ	consumption when A/D is on (Note 1) .
A50	IREF	VREF input curr	ent (Note 2)	10		1000	μΑ	During VAIN acquisition. Based on differential of VHOLD to VAIN. To charge CHOLD, see Section 16.0.
					—	10	μA	During A/D conversion cycle.

Note 1: When A/D is off, it will not consume any current other than minor leakage current. The power-down current spec includes any such leakage from the A/D module. VREF current is from RA2/AN2/VREF- and RA3/AN3/VREF+ pins or AVDD and AVss pins, whichever is selected as reference input.

2: VSS \leq VAIN \leq VREF

3: The A/D conversion result never decreases with an increase in the Input Voltage, and has no missing codes.

Package Marking Information (Cont'd)

40-Lead PDIP

Example

PIC18C452

-I/JW

0115017

28- and 40-Lead JW (CERDIP)

44-Lead TQFP

Example

Example

 \mathbf{v}

MICROCHIP

44-Lead PLCC

Example

DS39026D-page 278

APPENDIX E: MIGRATION FROM MID-RANGE TO ENHANCED DEVICES

A detailed discussion of the differences between the mid-range MCU devices (i.e., PIC16CXXX) and the enhanced devices (i.e., PIC18CXXX) is provided in AN716, "*Migrating Designs from PIC16C74A/74B to PIC18C442.*" The changes discussed, while device specific, are generally applicable to all mid-range to enhanced device migrations.

This Application Note is available as Literature Number DS00716.

APPENDIX F: MIGRATION FROM HIGH-END TO ENHANCED DEVICES

A detailed discussion of the migration pathway and differences between the high-end MCU devices (i.e., PIC17CXXX) and the enhanced devices (i.e., PIC18CXXX) is provided in AN726, "*PIC17CXXX to PIC18CXXX Migration*." This Application Note is available as Literature Number DS00726.

NOTES:

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MTP, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

Analog-for-the-Digital Age, Application Maestro, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, SQI, Serial Quad I/O, Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA and Z-Scale are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

GestIC and ULPP are registered trademarks of Microchip Technology Germany II GmbH & Co. & KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 1999-2013, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

ISBN: 9781620769676

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEEL0Q® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and mulfacture of development systems is ISO 9001:2000 certified.