

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	33
Program Memory Size	16KB (8K x 16)
Program Memory Type	EPROM, UV
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Through Hole
Package / Case	40-CDIP (0.600", 15.24mm) Window
Supplier Device Package	40-Cerdip
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18c442-jw

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	Pi	n Numt	per	D'	Duffer	
Pin Name	DIP	PLCC	TQFP	Pin Type	Buffer Type	Description
		1 200	14.1			PORTC is a bi-directional I/O port.
RC0/T1OSO/T1CKI	15	16	32			
RC0				I/O	ST	Digital I/O.
T1OSO				0	_	Timer1 oscillator output.
T1CKI				Ι	ST	Timer1/Timer3 external clock input.
RC1/T1OSI/CCP2	16	18	35			
RC1				I/O	ST	Digital I/O.
T1OSI					CMOS	Timer1 oscillator input.
CCP2	47	40		I/O	ST	Capture2 input, Compare2 output, PWM2 output.
RC2/CCP1 RC2	17	19	36	I/O	ST	Digital I/O
CCP1				1/O 1/O	ST	Digital I/O. Capture1 input/Compare1 output/PWM1 output.
RC3/SCK/SCL	18	20	37	"0	01	
RC3	10	20	57	I/O	ST	Digital I/O.
SCK				I/O	ST	Synchronous serial clock input/output for
						SPI mode.
SCL				I/O	ST	Synchronous serial clock input/output for
						I ² C mode.
RC4/SDI/SDA	23	25	42			
RC4				I/O	ST	Digital I/O.
SDI SDA				I I/O	ST ST	SPI Data In. I ² C Data I/O.
	24	20	43	1/0	31	T C Data 1/O.
RC5/SDO RC5	24	26	43	I/O	ST	Digital I/O.
SDO				0	_	SPI Data Out.
RC6/TX/CK	25	27	44	-		
RC6	20		••	I/O	ST	Digital I/O.
ТХ				0	_	USART Asynchronous Transmit.
СК				I/O	ST	USART Synchronous Clock (see related RX/DT).
RC7/RX/DT	26	29	1			
RC7				I/O	ST	Digital I/O.
RX					ST	USART Asynchronous Receive.
		41.1. 1		I/O	ST	USART Synchronous Data (see related TX/CK).
Legend: TTL = TTL ST = Schn						OS = CMOS compatible input or output

PIC18C4X2 PINOUT I/O DESCRIPTIONS (CONTINUED) **TABLE 1-3:**

ST = Schmitt Trigger input with CMOS levels I = Input

O = Output

P = Power

OD = Open Drain (no P diode to VDD)

Oscillator	Power-up	(2)	Brown-out ⁽²⁾	Wake-up from
Configuration	PWRTE = 0	PWRTE = 0PWRTE = 1		SLEEP or Oscillator Switch
HS with PLL enabled ⁽¹⁾	72 ms + 1024Tosc + 2ms	1024Tosc + 2 ms	72 ms + 1024Tosc + 2ms	1024Tosc + 2 ms
HS, XT, LP	72 ms + 1024Tosc	1024Tosc	72 ms + 1024Tosc	1024Tosc
EC	72 ms	_	72 ms	—
External RC	72 ms		72 ms	—

Note 1: 2 ms is the nominal time required for the 4x PLL to lock.

2: 72 ms is the nominal Power-up Timer delay.

REGISTER 3-1: RCON REGISTER BITS AND POSITIONS

R/W-0	R/W-0	U-0	R/W-1	R/W-1	R/W-1	R/W-0	R/W-0
IPEN	LWRT	—	RI	TO	PD	POR	BOR
bit 7							bit 0

Note: See Register 4-3 on page 53 for bit definitions.

TABLE 3-2:STATUS BITS, THEIR SIGNIFICANCE AND THE INITIALIZATION CONDITION FOR
RCON REGISTER

Condition	Program Counter	RCON Register	RI	то	PD	POR	BOR	STKFUL	STKUNF
Power-on Reset	0000h	00-1 1100	1	1	1	0	0	u	u
MCLR Reset during normal operation	0000h	00-u uuuu	u	u	u	u	u	u	u
Software Reset during normal operation	0000h	0u-0 uuuu	0	u	u	u	u	u	u
Stack Full Reset during normal operation	0000h	0u-u uull	u	u	u	u	u	u	1
Stack Underflow Reset during normal operation	0000h	0u-u uull	u	u	u	u	u	1	u
MCLR Reset during SLEEP	0000h	00-u 10uu	u	1	0	u	u	u	u
WDT Reset	0000h	0u-u 01uu	1	0	1	u	u	u	u
WDT Wake-up	PC + 2	uu-u 00uu	u	0	0	u	u	u	u
Brown-out Reset	0000h	0u-1 11u0	1	1	1	1	0	u	u
Interrupt wake-up from SLEEP	PC + 2 ⁽¹⁾	uu-u 00uu	u	1	0	u	u	u	u

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0'.

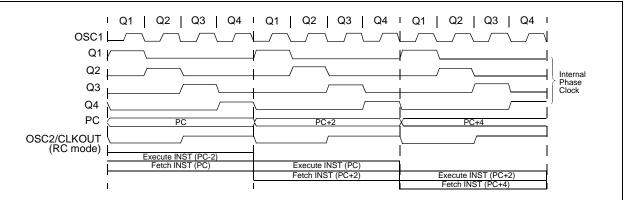
Note 1: When the wake-up is due to an interrupt and the GIEH or GIEL bits are set, the PC is loaded with the interrupt vector (0x000008h or 0x000018h).

4.3 Fast Register Stack

A "fast interrupt return" option is available for interrupts. A Fast Register Stack is provided for the STATUS, WREG and BSR registers and are only one in depth. The stack is not readable or writable and is loaded with the current value of the corresponding register when the processor vectors for an interrupt. The values in the registers are then loaded back into the working registers, if the FAST RETURN instruction is used to return from the interrupt.

A low or high priority interrupt source will push values into the stack registers. If both low and high priority interrupts are enabled, the stack registers cannot be used reliably for low priority interrupts. If a high priority interrupt occurs while servicing a low priority interrupt, the stack register values stored by the low priority interrupt will be overwritten.

If high priority interrupts are not disabled during low priority interrupts, users must save the key registers in software during a low priority interrupt.


If no interrupts are used, the fast register stack can be used to restore the STATUS, WREG and BSR registers at the end of a subroutine call. To use the fast register stack for a subroutine call, a FAST CALL instruction must be executed.

Example 4-1 shows a source code example that uses the fast register stack.

EXAMPLE 4-1: FAST REGISTER STACK CODE EXAMPLE

CALL SUB1, FAST	;STATUS, WREG, BSR ;SAVED IN FAST REGISTER ;STACK
SUB1	
RETURN FAST	;RESTORE VALUES SAVED ;IN FAST REGISTER STACK

FIGURE 4-4: CLOCK/INSTRUCTION CYCLE

4.4 PCL, PCLATH and PCLATU

The program counter (PC) specifies the address of the instruction to fetch for execution. The PC is 21-bits wide. The low byte is called the PCL register. This register is readable and writable. The high byte is called the PCH register. This register contains the PC<15:8> bits and is not directly readable or writable. Updates to the PCH register. The upper byte is called PCU. This register contains the PC<20:16> bits and is not directly readable or writable. Updates to the PCH register. The Upper byte is called PCU. This register contains the PC<20:16> bits and is not directly readable or writable. Updates to the PCU register may be performed through the PCLATU register.

The PC addresses bytes in the program memory. To prevent the PC from becoming misaligned with word instructions, the LSB of PCL is fixed to a value of '0'. The PC increments by 2 to address sequential instructions in the program memory.

The CALL, RCALL, GOTO and program branch instructions write to the program counter directly. For these instructions, the contents of PCLATH and PCLATU are not transferred to the program counter.

The contents of PCLATH and PCLATU will be transferred to the program counter by an operation that writes PCL. Similarly, the upper two bytes of the program counter will be transferred to PCLATH and PCLATU by an operation that reads PCL. This is useful for computed offsets to the PC (see Section 4.8.1).

4.5 Clocking Scheme/Instruction Cycle

The clock input (from OSC1) is internally divided by four to generate four non-overlapping quadrature clocks, namely Q1, Q2, Q3 and Q4. Internally, the program counter (PC) is incremented every Q1, the instruction is fetched from the program memory and latched into the instruction register in Q4. The instruction is decoded and executed during the following Q1 through Q4. The clocks and instruction execution flow is shown in Figure 4-4.

5.1.2 TABLAT - TABLE LATCH REGISTER

The Table Latch (TABLAT) is an 8-bit register mapped into the SFR space. The Table Latch is used to hold 8-bit data during data transfers between program memory and data memory.

5.1.3 TBLPTR - TABLE POINTER REGISTER

The Table Pointer (TBLPTR) addresses a byte within the program memory. The TBLPTR is comprised of three SFR registers (Table Pointer Upper Byte, High Byte and Low Byte). These three registers (TBLPTRU:TBLPTRH:TBLPTRL) join to form a 22-bit wide pointer. The lower 21-bits allow the device to address up to 2 Mbytes of program memory space. The 22nd bit allows access to the Device ID, the User ID and the Configuration bits.

The Table Pointer, TBLPTR, is used by the TBLRD and TBLWT instructions. These instructions can update the TBLPTR in one of four ways, based on the table operation. These operations are shown in Table 5-1. These operations on the TBLPTR only affect the lower 21-bits.

TABLE 5-1: TABLE POINTER OPERATIONS WITH TBLRD AND TBLWT INSTRUCTIONS

Example	Operation on Table Pointer
TBLRD* TBLWT*	TBLPTR is not modified
TBLRD*+ TBLWT*+	TBLPTR is incremented after the read/write
TBLRD*- TBLWT*-	TBLPTR is decremented after the read/write
TBLRD+* TBLWT+*	TBLPTR is incremented before the read/write

5.2 Internal Program Memory Read/ Writes

5.2.1 TABLE READ OVERVIEW (TBLRD)

The TBLRD instructions are used to read data from program memory to data memory.

TBLPTR points to a byte address in program space. Executing TBLRD places the byte pointed to into TAB-LAT. In addition, TBLPTR can be modified automatically for the next Table Read operation.

Table Reads from program memory are performed one byte at a time. The instruction will load TABLAT with the one byte from program memory pointed to by TBLPTR.

5.2.2 INTERNAL PROGRAM MEMORY WRITE BLOCK SIZE

The internal program memory of PIC18CXXX devices is written in blocks. For PIC18CXX2 devices, the write block size is 2 bytes. Consequently, Table Write operations to internal program memory are performed in pairs, one byte at a time. When a Table Write occurs to an even program memory address (TBLPTR<0> = 0), the contents of TABLAT are transferred to an internal holding register. This is performed as a short write and the program memory block is not actually programmed at this time. The holding register is not accessible by the user.

When a Table Write occurs to an odd program memory address (TBLPTR<0>=1), a long write is started. During the long write, the contents of TABLAT are written to the high byte of the program memory block and the contents of the holding register are transferred to the low byte of the program memory block.

Figure 5-3 shows the holding register and the program memory write blocks.

If a single byte is to be programmed, the low (even) byte of the destination program word should be read using TBLRD*, modified or changed, if required, and written back to the same address using TBLWT*+. The high (odd) byte should be read using TBLRD*, modified or changed if required, and written back to the same address using TBLWT. A write to the odd address will cause a long write to begin. This process ensures that existing data in either byte will not be changed unless desired.

7.1 INTCON Registers

The INTCON Registers are readable and writable registers, which contains various enable, priority, and flag bits.

REGISTER 7-1: INTCON REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W->
GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INTOIF	RBIF
bit 7							bit
GIE/GIEH: O When IPEN	Global Interrup = 0:	t Enable bit					
1 = Enables	all unmasked all interrupts	interrupts					
1 = Enables	all high priorit						
	Peripheral Inte		e bit				
	all unmasked all peripheral <u>= 1:</u>		terrupts				
	all low priority all low priority						
TMROIE: TM	IR0 Overflow I	nterrupt Ena	ble bit				
	the TMR0 ove the TMR0 ove		•				
INTOIE: INTO	DExternal Inte	rrupt Enable	bit				
	the INT0 extention the INT0 extent						
RBIE: RB P	ort Change Int	errupt Enabl	e bit				
	the RB port cl the RB port c						
TMR0IF: TM	IR0 Overflow I	nterrupt Flag	g bit				
	gister has ove gister did not	•	st be cleare	ed in softwa	re)		
INTOIF: INTO	External Inte	rrupt Flag bi	t				
	0 external inte 0 external inte	•	•	cleared in	software)		
RBIF: RB Po	ort Change Int	errupt Flag b	oit				
	one of the RB7 the RB7:RB4		0	·	cleared in	software)	
Legend:							
R = Readabl		W = Writal		•		t, read as '(
- n = Value a	t POR reset	'1' = Bit is	set	'0' = Bit is o	cleared	x = Bit is ur	known

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit, or the global enable bit. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt. This feature allows for software polling.

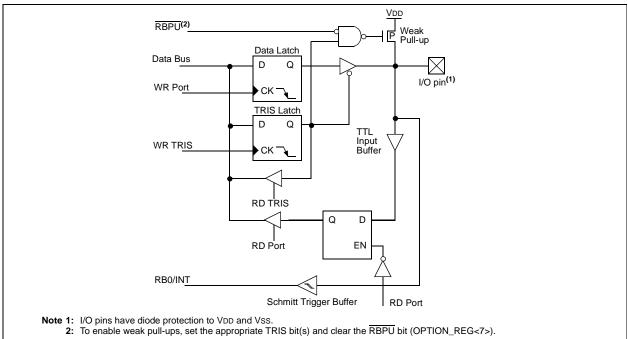
REGISTER 7-3: INTCON3 REGISTER

bit

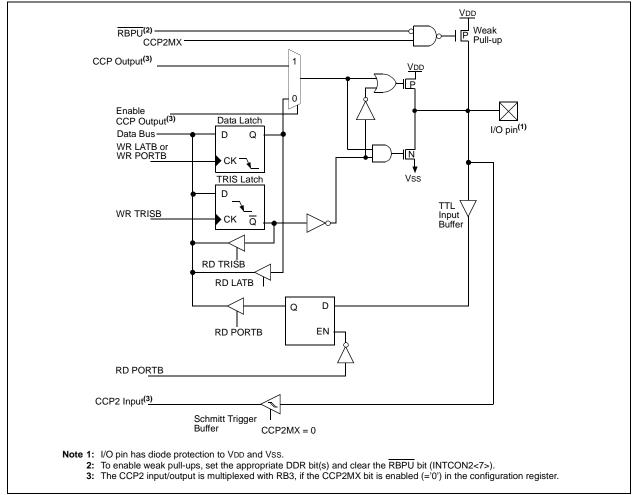
bit

bit bit

bit


bit bit

bit


R/W-1	R/W-1	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
INT2IP	INT1IP	—	INT2IE	INT1IE	—	INT2IF	INT1IF
bit 7							bit
INT2IP: IN	T2 External Ir	nterrupt Prio	rity bit				
1 = High pr 0 = Low pri	•						
INT1IP: IN	T1 External Ir	nterrupt Prio	rity bit				
1 = High pr 0 = Low pri	iority	·					
Unimplem	ented: Read	as '0'					
INT2IE: IN	T2 External Ir	nterrupt Ena	ble bit				
	s the INT2 ex s the INT2 ex						
INT1IE: IN	T1 External Ir	nterrupt Ena	ble bit				
	s the INT1 ex s the INT1 ex						
Unimplem	ented: Read	as '0'					
INT2IF: IN	T2 External Ir	nterrupt Flag	bit				
(must b	Γ2 external in e cleared in s Γ2 external in	software)					
INT1IF: IN	T1 External Ir	terrupt Flag	bit				
1 = The IN (must b	Γ1 external in e cleared in s Γ1 external in	terrupt occu software)	rred				
Legend:							
R = Reada	ble bit	W = Wr	itable bit	U = Unimp	lemented	bit, read as	'0'
	at POR reset	t '1' = Bit	is set	'0' = Bit is	cleared	x = Bit is ι	Inknown

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit, or the global enable bit. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt. This feature allows for software polling.

14.3 SPI Mode

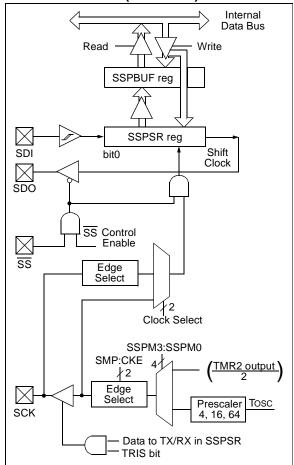
The SPI mode allows 8-bits of data to be synchronously transmitted and received simultaneously. All four modes of SPI are supported. To accomplish communication, typically three pins are used:

- Serial Data Out (SDO) RC5/SDO
- Serial Data In (SDI) RC4/SDI/SDA
- Serial Clock (SCK) RC3/SCK/SCL/LVOIN

Additionally, a fourth pin may be used when in a Slave mode of operation:

Slave Select (SS) - RA5/SS/AN4

14.3.1 OPERATION


When initializing the SPI, several options need to be specified. This is done by programming the appropriate control bits (SSPCON1<5:0>) and SSPSTAT<7:6>. These control bits allow the following to be specified:

- Master mode (SCK is the clock output)
- Slave mode (SCK is the clock input)
- Clock Polarity (Idle state of SCK)
- Data input sample phase (middle or end of data output time)
- Clock edge (output data on rising/falling edge of SCK)
- Clock Rate (Master mode only)
- Slave Select mode (Slave mode only)

Figure 14-1 shows the block diagram of the MSSP module, when in SPI mode.

FIGURE 14-1:

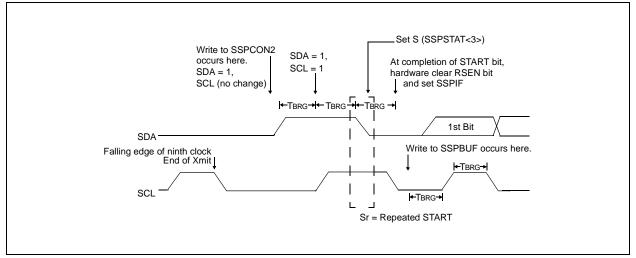
MSSP BLOCK DIAGRAM (SPI MODE)

The MSSP consists of a transmit/receive shift register (SSPSR) and a buffer register (SSPBUF). The SSPSR shifts the data in and out of the device, MSb first. The SSPBUF holds the data that was written to the SSPSR. until the received data is ready. Once the 8-bits of data have been received, that byte is moved to the SSPBUF register. Then the buffer full detect bit, BF (SSPSTAT<0>), and the interrupt flag bit, SSPIF, are set. This double buffering of the received data (SSPBUF) allows the next byte to start reception before reading the data that was just received. Any write to the SSPBUF register during transmission/reception of data will be ignored, and the write collision detect bit, WCOL (SSPCON1<7>), will be set. User software must clear the WCOL bit so that it can be determined if the following write(s) to the SSPBUF register completed successfully.

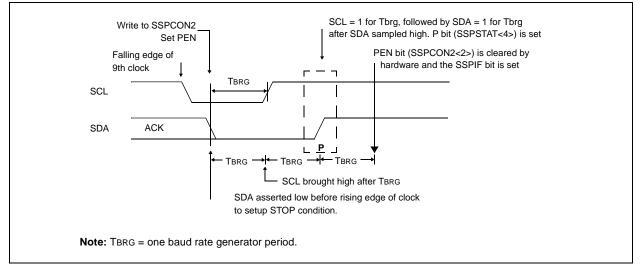
14.4.7 I²C MASTER MODE REPEATED START CONDITION TIMING

A Repeated START condition occurs when the RSEN bit (SSPCON2<1>) is programmed high and the I^2C logic module is in the idle state. When the RSEN bit is set, the SCL pin is asserted low. When the SCL pin is sampled low, the baud rate generator is loaded with the contents of SSPADD<5:0> and begins counting. The SDA pin is released (brought high) for one baud rate generator count (T_{BRG}). When the baud rate generator times out, if SDA is sampled high, the SCL pin will be de-asserted (brought high). When SCL is sampled high, the baud rate generator is reloaded with the contents of SSPADD<6:0> and begins counting. SDA and SCL must be sampled high for one TBRG. This action is then followed by assertion of the SDA pin (SDA = 0) for one TBRG, while SCL is high. Following this, the RSEN bit (SSPCON2<1>) will be automatically cleared and the baud rate generator will not be reloaded, leaving the SDA pin held low. As soon as a START condition is detected on the SDA and SCL pins, the S bit (SSPSTAT<3>) will be set. The SSPIF bit will not be set until the baud rate generator has timed out.

- Note 1: If RSEN is programmed while any other event is in progress, it will not take effect.
 - 2: A bus collision during the Repeated START condition occurs if:
 - SDA is sampled low when SCL goes from low to high.
 - SCL goes low before SDA is asserted low. This may indicate that another master is attempting to transmit a data "1".


Immediately following the SSPIF bit getting set, the user may write the SSPBUF with the 7-bit address in 7-bit mode, or the default first address in 10-bit mode. After the first eight bits are transmitted and an ACK is received, the user may then transmit an additional eight bits of address (10-bit mode), or eight bits of data (7-bit mode).

14.4.7.1 WCOL Status Flag

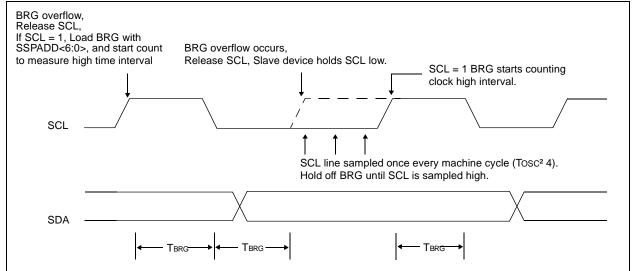

If the user writes the SSPBUF when a Repeated START sequence is in progress, the WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).

Note: Because queueing of events is not allowed, writing of the lower 5 bits of SSPCON2 is disabled until the Repeated START condition is complete.

FIGURE 14-17: REPEAT START CONDITION WAVEFORM

14.4.12 CLOCK ARBITRATION

Clock arbitration occurs when the master, during any receive, transmit, or Repeated START/STOP condition, de-asserts the SCL pin (SCL allowed to float high). When the SCL pin is allowed to float high, the baud rate generator (BRG) is suspended from counting until the SCL pin is actually sampled high. When the SCL pin is sampled high, the baud rate generator is reloaded with the contents of SSPADD<6:0> and begins counting. This ensures that the SCL high time will always be at least one BRG rollover count, in the event that the clock is held low by an external device (Figure 14-22).


14.4.13 SLEEP OPERATION

While in SLEEP mode, the I²C module can receive addresses or data, and when an address match or complete byte transfer occurs, wake the processor from SLEEP (if the MSSP interrupt is enabled).

14.4.14 EFFECT OF A RESET

A RESET disables the MSSP module and terminates the current transfer.

REGISTER 18-3: CONFIGURATION REGISTER 2 HIGH (CONFIG2H: BYTE ADDRESS 300003h)

	U-0	U-0	U-0	U-0	R/P-1	R/P-1	R/P-1	R/P-1
	—	_	—	—	WDTPS2	WDTPS1	WDTPS0	WDTEN
	bit 7							bit 0
4	Unimplen	n ented: Rea	d as '0'					
1			/atchdog Tin	ner Postsca	le Select bits	;		
	111 = 1:1							
	110 = 1:2 101 = 1:4							
	101 = 1.4 100 = 1.8							
	011 = 1:10							
	010 = 1:32	2						
	001 = 1:64	1						
	001 - 1.0	4						
	001 = 1.04 000 = 1.12							
	000 = 1:12 WDTEN: \	28 Watchdog Ti	mer Enable	bit				
	000 = 1:12 WDTEN: V 1 = WDT e	28 Watchdog Ti enabled						
	000 = 1:12 WDTEN: V 1 = WDT e	28 Watchdog Ti			/DTEN bit)			
	000 = 1:12 WDTEN: V 1 = WDT e	28 Watchdog Ti enabled			/DTEN bit)			
	000 = 1:12 WDTEN: V 1 = WDT 0 0 = WDT 0	28 Watchdog Ti enabled disabled (coi	ntrol is place			mplemented	d bit, read a	s '0'
	000 = 1:12 WDTEN: V 1 = WDT (0 = WDT (Legend: R = Reada	28 Watchdog Ti enabled disabled (coi	ntrol is place P = Progr	d on the SW	it U = Uni	•	d bit, read a	
	000 = 1:12 WDTEN: V 1 = WDT (0 = WDT (Legend: R = Reada	28 Watchdog Ti enabled disabled (coi able bit	ntrol is place P = Progr	d on the SW	it U = Uni	•		
ł:	000 = 1:12 WDTEN: V 1 = WDT e 0 = WDT e Legend: R = Reada - n = Value	28 Watchdog Ti enabled disabled (cor able bit e when devic	ntrol is place P = Progr ce is unprogr	d on the SW rammable b ammed	it U = Uni	changed fror	m programm	ned state
ŀ:	000 = 1:12 WDTEN: V 1 = WDT e 0 = WDT e Legend: R = Reada - n = Value	28 Watchdog Ti enabled disabled (cor able bit e when devic	ntrol is place P = Progr ce is unprogr	d on the SW rammable b ammed	it U = Uni u = Unc	changed fror	m programm	ned state
:	000 = 1:12 WDTEN: V 1 = WDT 6 0 = WDT 6 Legend: R = Reada - n = Value CONFIGU	28 Watchdog Ti enabled disabled (cor able bit e when devic JRATION R	P = Progr P = Progr se is unprogr EGISTER 2	d on the SW rammable b ammed 2 LOW (CC	it U = Uni u = Unc DNFIG2L: B	changed from	m programm RESS 3000	ned state 02h)

- bit 7-4 Unimplemented: Read as '0'
- bit 3-2 **BORV1:BORV0:** Brown-out Reset Voltage bits
 - 11 = VBOR set to 2.5V10 = VBOR set to 2.7V
 - 01 = VBOR set to 4.2V
 - 00 = VBOR set to 4.5V
- bit 1 BOREN: Brown-out Reset Enable bit⁽¹⁾
 - 1 = Brown-out Reset enabled
 - 0 = Brown-out Reset disabled
 - **Note:** Enabling Brown-out Reset <u>automatically</u> enables the Power-up Timer (PWRT), regardless of the value of bit PWRTEN. Ensure the Power-up Timer is enabled any time Brown-out Reset is enabled.
- bit 0 **PWRTEN:** Power-up Timer Enable bit⁽¹⁾
 - 1 = PWRT disabled
 - 0 = PWRT enabled
 - **Note:** Enabling Brown-out Reset automatically enables the Power-up Timer (PWRT), regardless of the value of bit PWRTE. Ensure the Power-up Timer is enabled any time Brown-out Reset is enabled.

Legend:		
R = Readable bit	P = Programmable bit	U = Unimplemented bit, read as '0'
- n = Value when device	e is unprogrammed	u = Unchanged from programmed state

REGISTER

18.2 Watchdog Timer (WDT)

The Watchdog Timer is a free running, on-chip RC oscillator, which does not require any external components. This RC oscillator is separate from the RC oscillator of the OSC1/CLKI pin. That means that the WDT will run, even if the clock on the OSC1/CLKI and OSC2/CLKO/RA6 pins of the device has been stopped, for example, by execution of a SLEEP instruction.

During normal operation, a WDT time-out generates a device RESET (Watchdog Timer Reset). If the device is in SLEEP mode, a WDT time-out causes the device to wake-up and continue with normal operation (Watchdog Timer Wake-up). The TO bit in the RCON register will be cleared upon a WDT time-out.

The Watchdog Timer is enabled/disabled by a device configuration bit. If the WDT is enabled, software execution may not disable this function. When the WDTEN configuration bit is cleared, the SWDTEN bit enables/ disables the operation of the WDT. The WDT time-out period values may be found in the Electrical Specifications section under parameter #31. Values for the WDT postscaler may be assigned using the configuration bits.

Note: The CLRWDT and SLEEP instructions clear the WDT and the postscaler, if assigned to the WDT, and prevent it from timing out and generating a device RESET condition.

Note: When a CLRWDT instruction is executed and the postscaler is assigned to the WDT, the postscaler count will be cleared, but the postscaler assignment is not changed.

18.2.1 CONTROL REGISTER

Register 18-7 shows the WDTCON register. This is a readable and writable register, which contains a control bit that allows software to override the WDT enable configuration bit, only when the configuration bit has disabled the WDT.

REGISTER 18-7: WDTCON REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
	—	—	—	—	—	_	SWDTEN
bit 7							bit 0

bit 7-1 Unimplemented: Read as '0'

- bit 0 SWDTEN: Software Controlled Watchdog Timer Enable bit
 - 1 = Watchdog Timer is on
 - Watchdog Timer is turned off if the WDTEN configuration bit in the configuration register = '0'

Legend:	
R = Readable bit	W = Writable bit
U = Unimplemented bit, read as '0'	- n = Value at POR Reset

PIC18CXX2

BCF	Bit Clear f					
Syntax:	[<i>label</i>] BCF f,b[,a]					
Operands:	0 ≤ f ≤ 255 0 ≤ b ≤ 7 a ∈ [0,1]					
Operation:	$0 \rightarrow f < b >$					
Status Affected:	None					
Encoding:	1001 bbba ffff ffff					
Description:	Bit 'b' in register 'f' is cleared. If 'a' is 0, the Access Bank will be selected, overriding the BSR value. If 'a' = 1, then the bank will be selected as per the BSR value (default).					
Words:	1					
Cycles:	1					
Q Cycle Activity	:					
Q1	Q2 Q3 Q4					
Decode	Read Process Write register 'f' Data register 'f'					
Example: BCF FLAG_REG, 7, 0 Before Instruction FLAG_REG = 0xC7 After Instruction						
/	After Instruction FLAG_REG = 0x47					

BN	Branch if	Negative				
Syntax:	[<i>label</i>] B	[<i>label</i>] BN n				
Operands:	-128 ≤ n ≤	127				
Operation:	•	if negative bit is '1' (PC) + 2 + 2n \rightarrow PC				
Status Affected	: None					
Encoding:	1110	0110 nn:	nn nnnn			
	The 2's co added to t have incre instruction PC+2+2n.	vill branch. Implement n he PC. Sincemented to fe the new ad This instruction	e the PC w etch the new Idress will b ction is ther			
Words:	1					
Cycles:	1(2)					
Q Cycle Activit If Jump:	ty:					
Q1	Q2	Q3	Q4			
Decode	Read literal 'n'	Process Data	Write to PC			
No	No	No	No			
operation	operation	operation	operation			
If No Jump:						
Q1	Q2	Q3	Q4			
Decode	Read literal 'n'	Process Data	No operation			
L	•					
Example:	HERE	BN Jump				
Before Inst	truction					
DC	-	drees (UFD	-)			

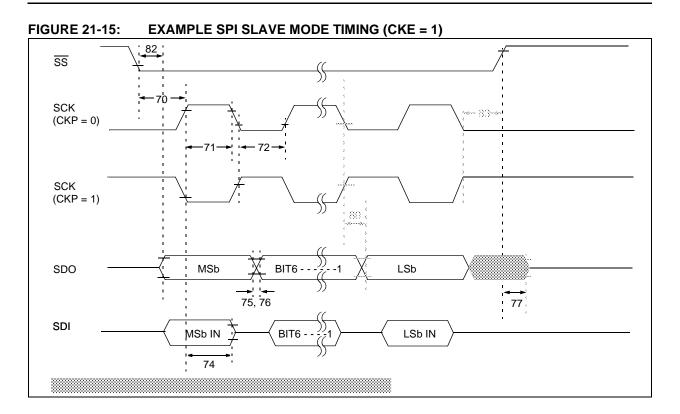
PC		=	address	(HERE)
After In	struction			
If	Negative PC	= =	1; address	(ປາມຫາວ)
If	Negative PC	e = =	0;	(HERE+2)

тзт	TSTFSZ Test f, skip if 0							
Synt	ax:	[label] T	STFSZ f[,	a]				
Ope	rands:		$0 \leq f \leq 255$					
		a ∈ [0,1]	a ∈ [0,1]					
Ope	ration:	skip if f = 0)					
Statu	us Affected:	None	None					
Enco	oding:	0110	011a ff	ff	ffff			
Desc	cription:	fetched du tion execu NOP is exe cycle instr Access Ba riding the then the b	If 'f' = 0, the next instruction, fetched during the current instruc- tion execution, is discarded and a NOP is executed, making this a two- cycle instruction. If 'a' is 0, the Access Bank will be selected, over- riding the BSR value. If 'a' is 1, then the bank will be selected as per the BSR value (default).					
Words: 1								
Cycl	es:		1(2) Note: 3 cycles if skip and followed by a 2-word instruction.					
QC	ycle Activity:							
	Q1	Q2	Q3		Q4			
	Decode	Read	Process		No			
lf sk	rin:	register 'f'	Data	op	peration			
11 51	ωρ. Q1	Q2	Q3		Q4			
1	No	No	No		No			
	operation	operation	operation	op	peration			
lf sk	ip and follow	ed by 2-wor	d instructior	:				
1	Q1	Q2	Q3	1	Q4			
	No	No	No		No			
	operation No	operation No	operation No	ot	beration No			
	operation	operation	operation	op	peration			
Example: HERE TSTFSZ CNT, 1 NZERO : ZERO :								
Before Instruction PC = Address(HERE)								
	After Instruct	ion						
After Instruction If CNT = 0×00 , PC = Address (ZERO) If CNT $\neq 0 \times 00$, PC = Address (NZERO)								

XOR	RLW	Exclusiv	Exclusive OR literal with WREG						
Synt	ax:	[<i>label</i>]]	[label] XORLW k						
Ope	rands:	$0 \le k \le 2$	55						
Ope	ration:	(WREG)	.XOR. k	\rightarrow WRE	G				
Statu	us Affected:	d: N,Z							
Enco	oding:	0000	0000 1010 kkkk kkkk						
Des	cription:	XORed v	The contents of WREG are XORed with the 8-bit literal 'k'. The result is placed in WREG.						
Wor	ds:	1							
Cycl	es:	1	1						
Q Cycle Activity:									
	Q1	Q2	Q3		Q4				
	Decode	Read literal 'k'	Proce: Data		Vrite to VREG				

Example:

XORLW 0xAF


Before Instruction WREG = 0xB5 After Instruction WREG = 0x1A

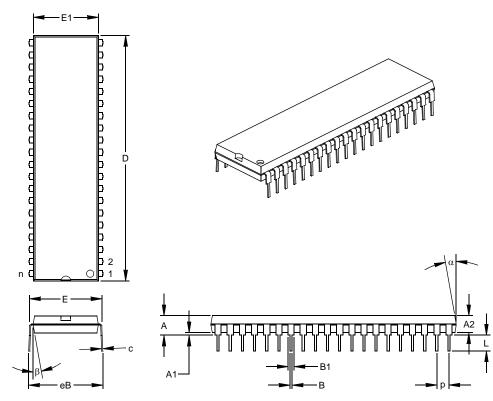
			Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +40^{\circ}C$							
Param. No.	Sym	Sym Characteristic		Characteristic Min Max		Max	Units	s Conditions		
		Internal Program Memory Programming Specs (Note 1)								
D110	Vpp	Voltage on MCLR/VPP pin	12.75	13.25	V	(Note 2)				
D111	Vddp	Supply voltage during programming	4.75	5.25	V					
D112	IPP	Current into MCLR/VPP pin	—	50	mA					
D113	IDDP	Supply current during programming	—	30	mA					
D114	TPROG	Programming pulse width	50	1000	μS	Terminated via internal/external interrupt or a RESET				
D115	TERASE	EPROM erase time								
		Device operation \leq 3V	60	—	min.					
		Device operation $\ge 3V$	30	—	min.					

TABLE 21-2: EPROM PROGRAMMING REQUIREMENTS

Note 1: These specifications are for the programming of the on-chip program memory EPROM through the use of the table write instructions. The complete programming specifications can be found in the PIC18CXXX Programming Specifications (Literature Number DS39028).

2: The MCLR/VPP pin may be kept in this range at times other than programming, but is not recommended.

TABLE 21-14: EXAMPLE SPI SLAVE MODE REQUIREMENTS (CKE = 1)


Param. No.	Symbol	Characteristic	Min	Max	Units	Conditions	
70	TssL2scH, TssL2scL	\overline{SS} to SCK or SCK input		Тсү	_	ns	
71	TscH	SCK input high time	Continuous	1.25Tcy + 30	_	ns	
71A		(Slave mode)	Single Byte	40		ns	(Note 1)
72	TscL	SCK input low time	Continuous	1.25Tcy + 30		ns	
72A		(Slave mode)	Single Byte	40	_	ns	(Note 1)
73A	Тв2в	Last clock edge of Byte1 to the first	clock edge of Byte2	1.5Tcy + 40		ns	(Note 2)
74	TscH2diL, TscL2diL	Hold time of SDI data input to SCK edge		100	—	ns	
75	TdoR	SDO data output rise time	PIC18CXXX	_	25	ns	
			PIC18LCXXX		45	ns	
76	TdoF	SDO data output fall time		_	25	ns	
77	TssH2doZ	SS↑ to SDO output hi-impedance		10	50	ns	
78	TscR	SCK output rise time	PIC18CXXX	_	25	ns	
		(Master mode)	PIC18LCXXX	_	45	ns	
79	TscF	SCK output fall time (Master mod	e)	_	25	ns	
80	TscH2doV,	SDO data output valid after SCK	PIC18CXXX	_	50	ns	
	TscL2doV	edge	PIC18LCXXX	_	100	ns	
82	TssL2doV	SDO data output valid after $\overline{SS}\downarrow$	PIC18CXXX		50	ns	
		edge	PIC18LCXXX		100	ns	
83	TscH2ssH, TscL2ssH	SS ↑ after SCK edge		1.5Tcy + 40	—	ns	

Note 1: Requires the use of Parameter # 73A.

2: Only if Parameter # 71A and # 72A are used.

40-Lead Plastic Dual In-line (P) - 600 mil (PDIP)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		INCHES*			MILLIMETERS		
Dimensio	on Limits	MIN	NOM	MAX	MIN	NOM	MAX	
Number of Pins	n		40			40		
Pitch	р		.100			2.54		
Top to Seating Plane	Α	.160	.175	.190	4.06	4.45	4.83	
Molded Package Thickness	A2	.140	.150	.160	3.56	3.81	4.06	
Base to Seating Plane	A1	.015			0.38			
Shoulder to Shoulder Width	E	.595	.600	.625	15.11	15.24	15.88	
Molded Package Width	E1	.530	.545	.560	13.46	13.84	14.22	
Overall Length	D	2.045	2.058	2.065	51.94	52.26	52.45	
Tip to Seating Plane	L	.120	.130	.135	3.05	3.30	3.43	
Lead Thickness	С	.008	.012	.015	0.20	0.29	0.38	
Upper Lead Width	B1	.030	.050	.070	0.76	1.27	1.78	
Lower Lead Width	В	.014	.018	.022	0.36	0.46	0.56	
Overall Row Spacing §	eB	.620	.650	.680	15.75	16.51	17.27	
Mold Draft Angle Top	α	5	10	15	5	10	15	
Mold Draft Angle Bottom	β	5	10	15	5	10	15	

* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side.

JEDEC Equivalent: MO-011

Drawing No. C04-016

INDEX

Α

A/D	
A/D Converter Flag (ADIF Bit)	
A/D Converter Interrupt, Configuring	
ADCON0 Register	
ADCON1 Register	165, 166
ADRES Register	
Analog Port Pins	
Analog Port Pins, Configuring	
Associated Registers	
Block Diagram	
Block Diagram, Analog Input Model	
Configuring the Module	
Conversion Clock (TAD)	
Conversion Status (GO/DONE Bit)	
Conversions	171
Converter Characteristics	
Equations	
Sampling Requirements	
Sampling Time	
Special Event Trigger (CCP)	
Timing Diagram	
Absolute Maximum Ratings	235
ACKSTAT	
ADCON0 Register	
GO/DONE Bit	
ADCON1 Register	165, 166
ADDLW	
ADDWF	
ADDWFC	
ADRES Register	165, 167
Analog-to-Digital Converter. See A/D	
ANDLW	
ANDWF	
Assembler	
MPASM Assembler	

В

Baud Rate Generator	
BC	
BCF	
BF	
Block Diagrams	
•	
A/D Converter	
Analog Input Model	168
Baud Rate Generator	136
Capture Mode Operation	109
Compare Mode Operation	
Low Voltage Detect	
External Reference Source	174
Internal Reference Source	174
MSSP	
I ² C Mode	128
SPI Mode	
On-Chip Reset Circuit	
Parallel Slave Port (PORTD and PORTE)	
PORTA	
	77
RA3:RA0 and RA5 Port Pins	
RA4/T0CKI Pin	78
RA6 Pin	78

PORTB	
RB3 Pin	81
RB3:RB0 Port Pins	81
RB7:RB4 Port Pins	
PORTC (Peripheral Output Override)	
PORTD (I/O Mode)	
PORTE (I/O Mode)	87
PWM Operation (Simplified)	112
SSP (SPI Mode)	
Timer1	
Timer1 (16-bit R/W Mode)	
Timer2	102
Timer3	104
Timer3 (16-bit R/W Mode)	104
USART	
Asynchronous Receive	157
Asynchronous Transmit	155
Watchdog Timer	184
BN	196
BNC	197
BNOV	198
BNZ	198
BOR. See Brown-out Reset	
BOV	201
BRA	199
BRG. See Baud Rate Generator	
Brown-out Reset (BOR)	. 26, 179
Timing Diagram	
BSF	199
BTFSC	200
BTFSS	200
BTG	201
Bus Collision During a Repeated START Condition	147
Bus Collision During a START Condition	
Bus Collision During a STOP Condition	148
BZ	202

С

CALL	202	
Capture (CCP Module)	-	
Associated Registers		
Block Diagram		
CCP Pin Configuration		
CCPR1H:CCPR1L Registers		
Software Interrupt		
Timer1 Mode Selection		
Capture/Compare/PWM (CCP)	. 107	
Capture Mode. See Capture		
CCP1	. 108	
CCPR1H Register	. 108	
CCPR1L Register		
CCP1CON and CCP2CON Registers		
CCP2	. 108	
CCPR2H Register		
CCPR2L Register		
Compare Mode. See Compare		
Interaction of Two CCP Modules	. 108	
PWM Mode. See PWM		
Timer Resources	. 108	
Timing Diagram	. 250	
Clocking Scheme		
CLRF		
CLRWDT		
	00	

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

TO: RE:	Technical Publications Manager Reader Response	Total Pages Sent			
From	: Name				
1 1011	Company				
	Address				
	City / State / ZIP / Country				
	Telephone: ()	FAX: ()			
Application (optional):					
Would you like a reply?YN					
Devid	ce:	Literature Number: DS39026D			
Ques	tions:				
1. What are the best features of this document?					
—					
 2. ⊦	low does this document meet your hardware and softwar	e development needs?			
_					
_					
3. C	B. Do you find the organization of this document easy to follow? If not, why?				
_					
4. V	4. What additions to the document do you think would enhance the structure and subject?				
—					
5. V	. What deletions from the document could be made without affecting the overall usefulness?				
_					
_					
6. ls	5. Is there any incorrect or misleading information (what and where)?				
_					
7. H	low would you improve this document?				
_					
-					

DS39026D-page 300

PIC18CXX2 PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO. Device	− X /XX XXX Temperature Package Pattern Range	 Examples: a) PIC18LC452 - I/P 301 = Industrial temp., PDIP package, 4 MHz, Extended VDD limits, QTP pattern #301. b) PIC18LC242 - I/SO = Industrial temp.,
Device	PIC18CXX2 ⁽¹⁾ , PIC18CXX2T ⁽²⁾ ; VDD range 4.2V to 5.5V PIC18LCXX2 ⁽¹⁾ , PIC18LCXX2T ⁽²⁾ ; VDD range 2.5V to 5.5V	 b) FIGIOLO242 - I/SO = Industrial temp., SOIC package, Extended VDD limits. c) PIC18C442 - E/P = Extended temp., PDIP package, 40MHz, normal VDD limits.
Temperature Range	$I = -40^{\circ}C \text{ to } +85^{\circ}C (Industrial)$ $E = -40^{\circ}C \text{ to } +125^{\circ}C (Extended)$	
Package	JW = Windowed CERDIP ⁽³⁾ PT = TQFP (Thin Quad Flatpack) SO = SOIC SP = Skinny plastic dip P = PDIP L = PLCC	 Note 1: C = Standard Voltage range LC = Wide Voltage Range 2: T = in tape and reel - SOIC, PLCC, and TQFP packages only. 3: JW Devices are UV erasable and can be programmed to any device configu-
Pattern	QTP, SQTP, Code or Special Requirements (blank otherwise)	ration. JW Devices meet the electrical requirement of each oscillator type (including LC devices).

Sales and Support

Data Sheets

Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

- 1. Your local Microchip sales office
- 2. The Microchip Worldwide Site (www.microchip.com)