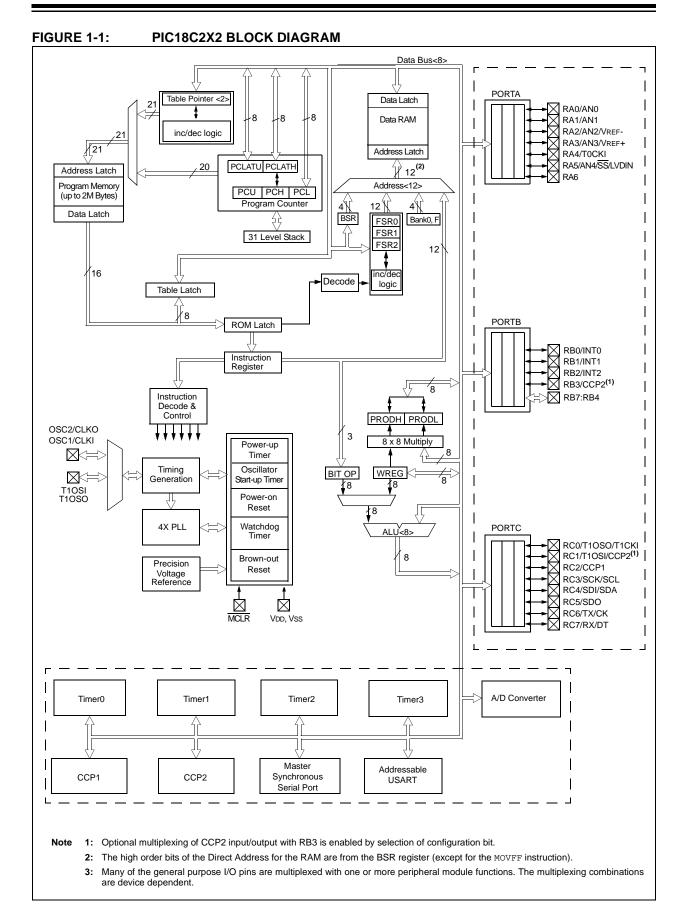


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.


Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	33
Program Memory Size	16KB (8K x 16)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LCC (J-Lead)
Supplier Device Package	44-PLCC (16.59x16.59)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18c442t-e-l

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

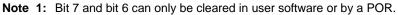
Register	Арр	Applicable Devices		Applicable Devices Power-on Reset, Brown-out Reset RESET Instruction Stack Resets		WDT Reset RESET Instruction	Wake-up via WDT or Interrupt	
TOSU	242	442	252	452	0 0000	0 0000	0 uuuu (3)	
TOSH	242	442	252	452	0000 0000	0000 0000	uuuu uuuu (3)	
TOSL	242	442	252	452	0000 0000	0000 0000	uuuu uuuu (3)	
STKPTR	242	442	252	452	00-0 0000	00-0 0000	uu-u uuuu (3)	
PCLATU	242	442	252	452	0 0000	0 0000	u uuuu	
PCLATH	242	442	252	452	0000 0000	0000 0000	uuuu uuuu	
PCL	242	442	252	452	0000 0000	0000 0000	PC + 2 ⁽²⁾	
TBLPTRU	242	442	252	452	00 0000	00 0000	uu uuuu	
TBLPTRH	242	442	252	452	0000 0000	0000 0000	սսսս սսսս	
TBLPTRL	242	442	252	452	0000 0000	0000 0000	uuuu uuuu	
TABLAT	242	442	252	452	0000 0000	0000 0000	uuuu uuuu	
PRODH	242	442	252	452	xxxx xxxx	uuuu uuuu	uuuu uuuu	
PRODL	242	442	252	452	xxxx xxxx	uuuu uuuu	uuuu uuuu	
INTCON	242	442	252	452	0000 000x	0000 000u	uuuu uuuu (1)	
INTCON2	242	442	252	452	1111 -1-1	1111 -1-1	uuuu -u-u (1)	
INTCON3	242	442	252	452	11-0 0-00	11-0 0-00	uu-u u-uu (1)	
INDF0	242	442	252	452	N/A	N/A	N/A	
POSTINC0	242	442	252	452	N/A	N/A	N/A	
POSTDEC0	242	442	252	452	N/A	N/A	N/A	
PREINC0	242	442	252	452	N/A	N/A	N/A	
PLUSW0	242	442	252	452	N/A	N/A	N/A	
FSR0H	242	442	252	452	0000	0000	uuuu	
FSR0L	242	442	252	452	XXXX XXXX	uuuu uuuu	սսսս սսսս	
WREG	242	442	252	452	XXXX XXXX	uuuu uuuu	սսսս սսսս	
INDF1	242	442	252	452	N/A	N/A	N/A	
POSTINC1	242	442	252	452	N/A	N/A	N/A	
POSTDEC1	242	442	252	452	N/A	N/A	N/A	
PREINC1	242	442	252	452	N/A	N/A	N/A	
PLUSW1	242	442	252	452	N/A	N/A	N/A	

TABLE 3-3: INITIALIZATION CONDITIONS FOR ALL REGISTERS

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition

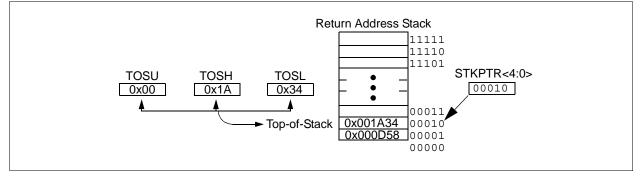
Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).


3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.

4: See Table 3-2 for RESET value for specific condition.

- 5: Bit 6 of PORTA, LATA, and TRISA are enabled in ECIO and RCIO oscillator modes only. In all other oscillator modes, they are disabled and read '0'.
- 6: The long write enable is only reset on a POR or MCLR Reset.
- 7: Bit 6 of PORTA, LATA and TRISA are not available on all devices. When unimplemented, they are read as '0'.


REGISTER 4-1: STKPTR REGISTER

	R/C-0	R/C-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	STKFUL	STKUNF	—	SP4	SP3	SP2	SP1	SP0
	bit 7							bit 0
bit 7 ⁽¹⁾	STKFUL: S	Stack Full Fla	ag bit					
	1 = Stack b	ecame full c	or overflowed	d				
	0 = Stack h	as not beco	me full or ov	verflowed				
bit 6 ⁽¹⁾	STKUNF: S	Stack Underf	low Flag bit					
	1 = Stack u	inderflow oc	curred					
	0 = Stack underflow did not occur							
bit 5	Unimplemented: Read as '0'							
bit 4-0	SP4:SP0: S	Stack Pointe	r Location b	its				

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

FIGURE 4-3: RETURN ADDRESS STACK AND ASSOCIATED REGISTERS

4.2.3 PUSH AND POP INSTRUCTIONS

Since the Top-of-Stack (TOS) is readable and writable, the ability to push values onto the stack and pull values off the stack, without disturbing normal program execution, is a desirable option. To push the current PC value onto the stack, a PUSH instruction can be executed. This will increment the stack pointer and load the current PC value onto the stack. TOSU, TOSH and TOSL can then be modified to place a return address on the stack.

The ability to pull the TOS value off of the stack and replace it with the value that was previously pushed onto the stack, without disturbing normal execution, is achieved by using the POP instruction. The POP instruction discards the current TOS by decrementing the stack pointer. The previous value pushed onto the stack then becomes the TOS value.

4.2.4 STACK FULL/UNDERFLOW RESETS

These resets are enabled by programming the STVREN configuration bit. When the STVREN bit is disabled, a full or underflow condition will set the appropriate STKFUL or STKUNF bit, but not cause a device RESET. When the STVREN bit is enabled, a full or underflow will set the appropriate STKFUL or STKUNF bit and then cause a device RESET. The STKFUL or STKUNF bits are only cleared by the user software or a POR Reset.

4.10 Access Bank

The Access Bank is an architectural enhancement, which is very useful for C compiler code optimization. The techniques used by the C compiler may also be useful for programs written in assembly.

This data memory region can be used for:

- Intermediate computational values
- · Local variables of subroutines
- Faster context saving/switching of variables
- Common variables
- Faster evaluation/control of SFRs (no banking)

The Access Bank is comprised of the upper 128 bytes in Bank 15 (SFRs) and the lower 128 bytes in Bank 0. These two sections will be referred to as Access RAM High and Access RAM Low, respectively. Figure 4-6 and Figure 4-7 indicate the Access RAM areas.

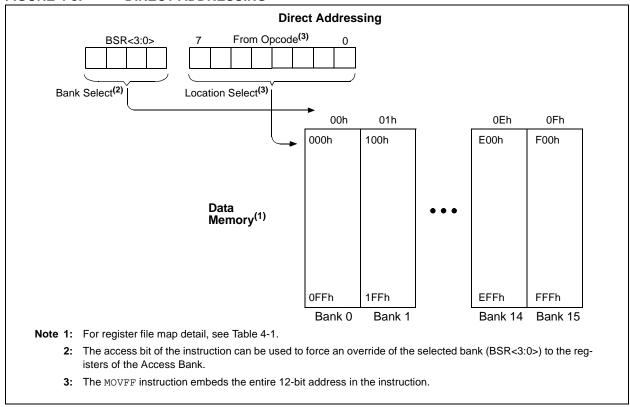
A bit in the instruction word specifies if the operation is to occur in the bank specified by the BSR register or in the Access Bank. This bit is denoted by the 'a' bit (for access bit).

When forced in the Access Bank (a = '0'), the last address in Access RAM Low is followed by the first address in Access RAM High. Access RAM High maps the Special Function registers, so that these registers can be accessed without any software overhead. This is useful for testing status flags and modifying control bits.

4.11 Bank Select Register (BSR)

The need for a large general purpose memory space dictates a RAM banking scheme. The data memory is partitioned into sixteen banks. When using direct addressing, the BSR should be configured for the desired bank.

BSR<3:0> holds the upper 4 bits of the 12-bit RAM address. The BSR<7:4> bits will always read '0's, and writes will have no effect.


A MOVLB instruction has been provided in the instruction set to assist in selecting banks.

If the currently selected bank is not implemented, any read will return all '0's and all writes are ignored. The STATUS register bits will be set/cleared as appropriate for the instruction performed.

Each Bank extends up to FFh (256 bytes). All data memory is implemented as static RAM.

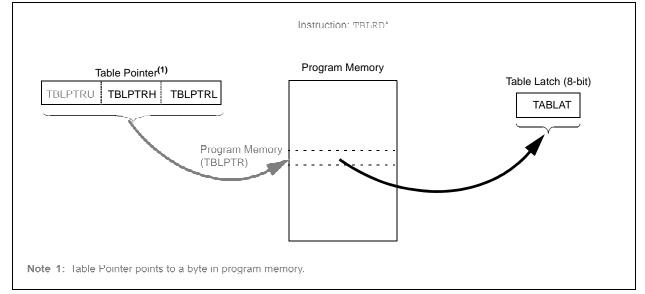
A MOVFF instruction ignores the BSR, since the 12-bit addresses are embedded into the instruction word.

Section 4.12 provides a description of indirect addressing, which allows linear addressing of the entire RAM space.

FIGURE 4-8: DIRECT ADDRESSING

5.0 TABLE READS/TABLE WRITES

Enhanced devices have two memory spaces: the program memory space and the data memory space. The program memory space is 16-bits wide, while the data memory space is 8 bits wide. Table Reads and Table Writes have been provided to move data between these two memory spaces through an 8-bit register (TABLAT).


The operations that allow the processor to move data between the data and program memory spaces are:

- Table Read (TBLRD)
- Table Write (TBLWT)

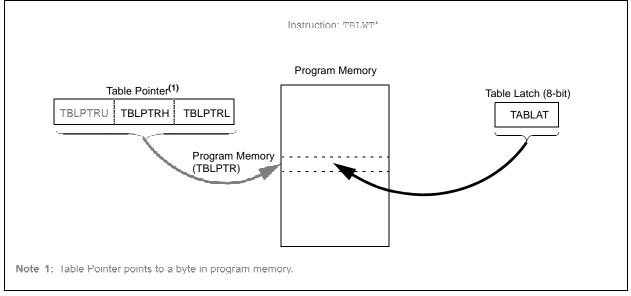

Table Read operations retrieve data from program memory and place it into the data memory space. Figure 5-1 shows the operation of a Table Read with program and data memory.

Table Write operations store data from the data memory space into program memory. Figure 5-2 shows the operation of a Table Write with program and data memory.

Table operations work with byte entities. A table block containing data is not required to be word aligned, so a table block can start and end at any byte address. If a Table Write is being used to write an executable program to program memory, program instructions will need to be word aligned.

FIGURE 5-2: TABLE WRITE OPERATION

FIGURE 5-1: TABLE READ OPERATION

5.1 Control Registers

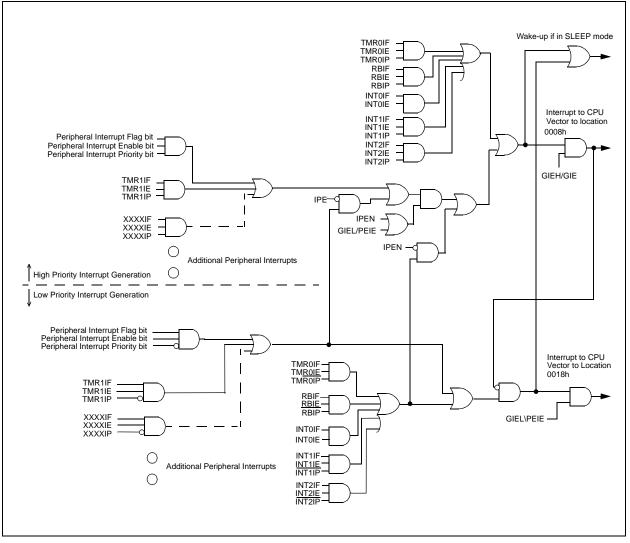
Several control registers are used in conjunction with the ${\tt TBLRD}$ and ${\tt TBLWT}$ instructions. These include the:

- TBLPTR registers
- TABLAT register
- RCON register

5.1.1 RCON REGISTER

The LWRT bit specifies the operation of Table Writes to internal memory when the VPP voltage is applied to the MCLR pin. When the LWRT bit is set, the controller continues to execute user code, but long Table Writes are allowed (for programming internal program memory) from user mode. The LWRT bit can be cleared only by performing either a POR or MCLR Reset.

REGISTER 5-1: RCON REGISTER (ADDRESS: FD0h)


R/W-0	R/W-0	U-0	R/W-1	R/W-1	R/W-1	R/W-0	R/W-0
IPEN	LWRT	—	RI	TO	PD	POR	BOR
bit 7							bit 0

	bit 7	IPEN:	Interrupt	Prioritv	Enable bit
--	-------	--------------	-----------	----------	------------

- 1 = Enable priority levels on interrupts
- 0 = Disable priority levels on interrupts (16CXXX compatibility mode)
- bit 6 LWRT: Long Write Enable bit
 - 1 = Enable TBLWT to internal program memory
 - 0 = Disable TBLWT to internal program memory.
 - Note:Only cleared on a POR or MCLR Reset.This bit has no effect on TBLWTs to external program memory.
- bit 5 Unimplemented: Read as '0'
- bit 4 RI: RESET Instruction Flag bit
 - 1 = No RESET instruction occurred
 - 0 = A RESET instruction occurred
- bit 3 TO: Time-out bit
 - 1 = After power-up, CLRWDT instruction, or SLEEP instruction
 - 0 = A WDT time-out occurred
- bit 2 **PD:** Power-down bit
 - 1 = After power-up or by the CLRWDT instruction
 - 0 = By execution of the SLEEP instruction
- bit 1 POR: Power-on Reset Status bit
 - 1 = No Power-on Reset occurred
 - 0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)
- bit 0 BOR: Brown-out Reset Status bit
 - 1 = No Brown-out Reset or POR Reset occurred
 - 0 = A Brown-out Reset or POR Reset occurred
 - (must be set in software after a Brown-out Reset occurs)

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR reset	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

TABLE 8-1: PORTA FUNCTIONS

Name	Bit#	Buffer	Function
RA0/AN0	bit0	TTL	Input/output or analog input.
RA1/AN1	bit1	TTL	Input/output or analog input.
RA2/AN2/VREF-	bit2	TTL	Input/output or analog input or VREF
RA3/AN3/VREF+	bit3	TTL	Input/output or analog input or VREF+.
RA4/T0CKI	bit4	ST	Input/output or external clock input for Timer0. Output is open drain type.
RA5/SS/AN4/LVDIN	bit5	TTL	Input/output or slave select input for synchronous serial port or analog input, or low voltage detect input.
OSC2/CLKO/RA6	bit6	TTL	OSC2 or clock output or I/O pin.

Legend: TTL = TTL input, ST = Schmitt Trigger input

TABLE 8-2: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other RESETS
PORTA	—	RA6	RA5	RA4	RA3	RA2	RA1	RA0	0x 0000	0u 0000
LATA		Latch A	_atch A Data Output Registeruu						uu uuuu	
TRISA		PORTA	PORTA Data Direction Register1					11 1111	11 1111	
ADCON1	ADFM	ADCS2	—	—	PCFG3	PCFG2	PCFG1	PCFG0	0- 0000	0- 0000

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTA.

 $\ensuremath{\textcircled{}^\circ}$ 1999-2013 Microchip Technology Inc.

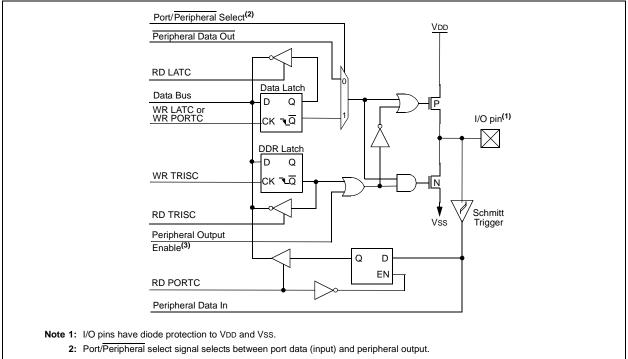
8.3 PORTC, TRISC and LATC Registers

PORTC is an 8-bit wide, bi-directional port. The corresponding Data Direction Register is TRISC. Setting a TRISC bit (= 1) will make the corresponding PORTC pin an input (i.e., put the corresponding output driver in a Hi-Impedance mode). Clearing a TRISC bit (= 0) will make the corresponding PORTC pin an output (i.e., put the contents of the output latch on the selected pin).

Note:	On a Power-on Reset, these pins are con-
	figured as digital inputs.

The Data Latch register (LATC) is also memory mapped. Read-modify-write operations on the LATC register reads and writes the latched output value for PORTC.

PORTC is multiplexed with several peripheral functions (Table 8-5). PORTC pins have Schmitt Trigger input buffers.


When enabling peripheral functions, care should be taken in defining TRIS bits for each PORTC pin. Some peripherals override the TRIS bit to make a pin an output, while other peripherals override the TRIS bit to make a pin an input. The user should refer to the corresponding peripheral section for the correct TRIS bit settings. The pin override value is not loaded into the TRIS register. This allows read-modify-write of the TRIS register, without concern due to peripheral overrides.

RC1 is normally configured by the configuration bit CCP2MX as the default peripheral pin for the CCP2 module (default/erased state, CCP2MX = '1').

EXAMPLE 0-3: INITIALIZING PURIC	XAMPLE 8-3:	INITIALIZING PORTC
---------------------------------	-------------	--------------------

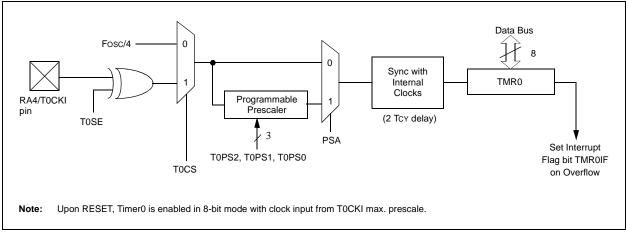
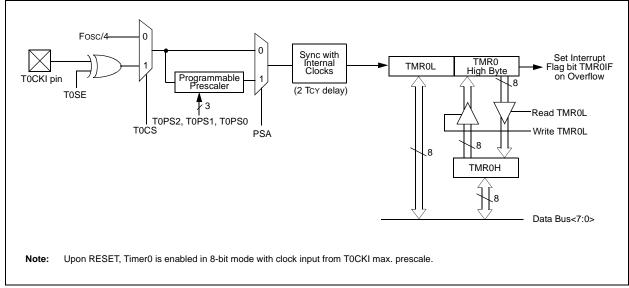

CLRF	PORTC	; Initialize PORTC by
		; clearing output
		; data latches
CLRF	LATC	; Alternate method
		; to clear output
		; data latches
MOVLW	0xCF	; Value used to
		; initialize data
		; direction
MOVWF	TRISC	; Set RC<3:0> as inputs
		; RC<5:4> as outputs
		; RC<7:6> as inputs

FIGURE 8-7: PORTC BLOCK DIAGRAM (PERIPHERAL OUTPUT OVERRIDE)



3: Peripheral Output Enable is only active if peripheral select is active.

FIGURE 9-1: TIMER0 BLOCK DIAGRAM IN 8-BIT MODE

NOTES:

REGISTER 18-5: CONFIGURATION REGISTER 3 HIGH (CONFIG3H: BYTE ADDRESS 300005h)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/P-1
—	—		—	—	—		CCP2MX
bit 7							bit 0

bit 7-1 Unimplemented: Read as '0'

bit 0 CCP2MX: CCP2 Mux bit

- 1 = CCP2 input/output is multiplexed with RC1
- 0 = CCP2 input/output is multiplexed with RB3

Legend:		
R = Readable bit	P = Programmable bit	U = Unimplemented bit, read as '0'
- n = Value when devi	ce is unprogrammed	u = Unchanged from programmed state

REGISTER 18-6: CONFIGURATION REGISTER 4 LOW (CONFIG4L: BYTE ADDRESS 300006h)

U-0	U-0	U-0	U-0	U-0	U-0	R/P-1	R/P-1
	_	_		_		Reserved	STVREN
bit 7							bit 0

- bit 7-2 Unimplemented: Read as '0'
- bit 1 Reserved: Maintain this bit set
- bit 0 STVREN: Stack Full/Underflow Reset Enable bit
 - 1 = Stack Full/Underflow will cause RESET
 - 0 = Stack Full/Underflow will not cause RESET

Legend:		
R = Readable bit	P = Programmable bit	U = Unimplemented bit, read as '0'
- n = Value when dev	ice is unprogrammed	u = Unchanged from programmed state

MOVFF	Move f to	o f		
Syntax:	[label]	MOVFF	f_s, f_d	
Operands:	$\begin{array}{l} 0 \leq f_s \leq 4 \\ 0 \leq f_d \leq 4 \end{array}$			
Operation:	$(f_{S}) \to f_{d}$			
Status Affected:	None			
Encoding: 1st word (source) 2nd word (destin.)	1100 1111	ffff ffff	ffff ffff	ffff _s ffff _d
Description:	The contents of source register ${}^{'}f_{s}{}^{'}$ are moved to destination register ${}^{'}f_{d}{}^{'}$. Location of source ${}^{'}f_{s}{}^{'}$ can be anywhere in the 4096 byte data space (000h to FFFh), and location of destination ${}^{'}f_{d}{}^{'}$ can also be any-			

where from 000h to FFFh. Either source or destination can be WREG (a useful special situation). MOVFF is particularly useful for transferring a data memory location to a peripheral register (such as the transmit buffer or an I/O port).

The MOVFF instruction cannot use the PCL, TOSU, TOSH or TOSL as the destination register.

Words:

Cycles:

Q Cycle Activity:

Q1

Q1	Q2	Q3	Q4
Decode	Read register 'f' (src)	Process Data	No operation
Decode	No operation No dummy read	No operation	Write register 'f' (dest)

Example:

MOVFF REG1, REG2

Before Instruction

REG1 REG2	= =	0x33 0x11
After Instruction		
REG1	=	0x33,
REG2	=	0x33

2

2 (3)

MO\	/LB	Move lite	ral to lo	w nibble	e in BSR		
Synt	ax:	[label]	MOVLB	k			
Ope	rands:	$0 \le k \le 25$	55				
Ope	ration:	$k \to BSR$					
Statu	us Affected:	None					
Enco	oding:	0000	0001	kkkk	kkkk		
Desc	cription:		The 8-bit literal 'k' is loaded into the Bank Select Register (BSR).				
Wor	ds:	1					
Cycl	es:	1					
QC	ycle Activity						
	Q1	Q2	Q3		Q4		
Decode F		Read literal 'k'	Proce Data		Write eral 'k' to BSR		
<u>Exar</u>	Example: MOVLB 5						

Before Instruction		
BSR register	=	0x02
After Instruction		
BSR register	=	0x05

RRNCF	Rotate Right f (no carry)	SETF
Syntax:	[label] RRNCF f [,d [,a]	Syntax:
Operands:	$0 \le f \le 255$ $d \in [0,1]$	Operands:
	a ∈ [0,1]	Operation:
Operation:	$(f < n >) \rightarrow dest < n - 1 >,$ $(f < 0 >) \rightarrow dest < 7 >$	Status Affected Encoding:
Status Affecte	ed: N,Z	-
Encoding:	0100 00da ffff ffff	Description:
Description:	The contents of register 'f' are rotated one bit to the right. If 'd' is 0, the result is placed in WREG. If 'd' is 1, the result is placed back in register 'f' (default). If 'a' is 0, the Access Bank will be selected, over- riding the BSR value. If 'a' is 1, then	Words: Cycles:
	the bank will be selected as per the	Q Cycle Activit
	BSR value (default).	Q1
	register f	Decode
Words:	1	
Cycles:	1	Example:
Q Cycle Activ	vity:	Before Inst
Q1	Q2 Q3 Q4	REG
Decode	e Read Process Write to register 'f' Data destination	After Instru REG
Example 1: Before In	RRNCF REG, 1, 0	
REG	= 1101 0111	
After Inst		
REG	= 1110 1011	
Example 2:	RRNCF REG, 0, 0	
Before In	struction	
	; = ? = 1101 0111	
After Inst		
WREG		

yntax: [label] SETF f [,a]							
pera	ands:	0 ≤ f ≤ 255 a ∈ [0,1]	$\begin{array}{l} 0 \leq f \leq 255 \\ a \in [0,1] \end{array}$				
pera	ation:	$FFh\tof$					
status	s Affected:	None					
nco	ding:	0110	100a	ffff	ffff		
)esci	ription:	The conte ter are se Access Ba riding the the bank v BSR value	t to FFh ank will BSR val will be se	. If 'a' is 0 be select ue. If 'a' i elected as), the ed, over- s 1, then		
Vord	s:	1	1				
ycle	s:	1					
Q Cy	cle Activity:						
	Q1	Q2	Q	3	Q4		
	Decode	Read register 'f'	Proce Data		Write gister 'f'		
xam	<u>iple</u> :	SETF	RE	G,1			
E	Before Instruction REG = 0x5A						
A	After Instruction						

0xFF

=

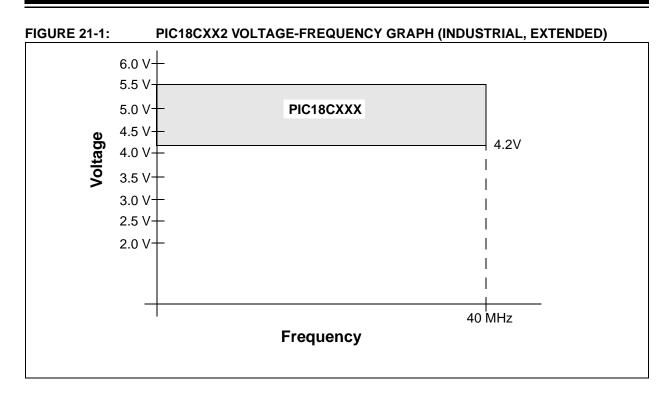
Set f

© 1999-2013 Microchip Technology Inc.

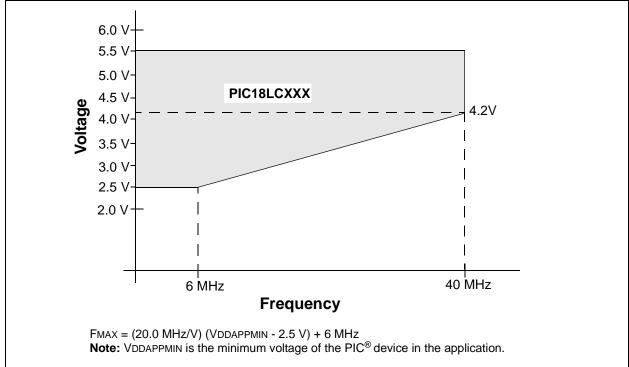
SUB	SUBWFB Subtract WREG from f with Borrow					
Synt	ax:	[label]	SUBWFB f	[,d [,a]		
Ope	rands:	$0 \leq f \leq 2$	$0 \le f \le 255$			
		d ∈ [0,1]				
~		a ∈ [0,1]				
	ration:	., .	$(\overline{C}) \rightarrow (\overline{C}) \rightarrow$	dest		
	us Affected:	N,OV, C				
Enco	oding:	0101	10da ff	ff ffff		
Des	cription:	(borrow) ment me stored in is stored If 'a' is 0, selected 'a' is 1, th	WREG and the from register of thod). If 'd' is (WREG. If 'd' is back in register the Access B overriding the nen the bank we BSR value (f' (2's comple-), the result is s 1, the result er 'f' (default). ank will be BSR value. If vill be selected		
Wor	ds:	1				
Cycl	es:	1				
QC	cycle Activity:					
	Q1	Q2	Q3	Q4		
	Decode	Read register 'f'	Process Data	Write to destination		
Exar	<u>mple 1</u> :	SUBWFB	REG, 1, 0			
	Before Instru	iction				
	REG	= 0x19				
	WREG C	$= 0 \times 0 D$ = 1	0x0D (0000 1101) 1			
	After Instruct					
	REG WREG	$= 0 \times 0 C$ $= 0 \times 0 D$	(0000 101 (0000 110			
	С	= 1	(0000 110	1)		
	Z N	= 0 = 0	; result i	s positive		
<u>Exar</u>	<u>mple 2</u> :	SUBWFB	REG, 0, 0	-		
	Before Instru	iction				
	REG WREG	= 0x1B = 0x1A	(0001 10 (0001 10			
	C	$=$ 0 \times 1 A	(0001 10	107		
	After Instruct					
	REG WREG	= 0x1B $= 0x00$	(0001 101	11)		
	C	= 1				
	Z N	= 1 = 0	; result i	s zero		
<u>Exar</u>	<u>mple 3:</u>	SUBWFB	REG, 1, 0			
	Before Instru	iction				
	REG	= 0x03	(0000 001			
	WREG C	= 0x0E = 1	(0000 110) _)		
	After Instruct	tion				
	REG	= 0xF5	(1111 010 ; [2's com]			
	WREG	= 0x0E	(0000 110			
	C Z	= 0 = 0				
	N	= 1	; result i	s negative		

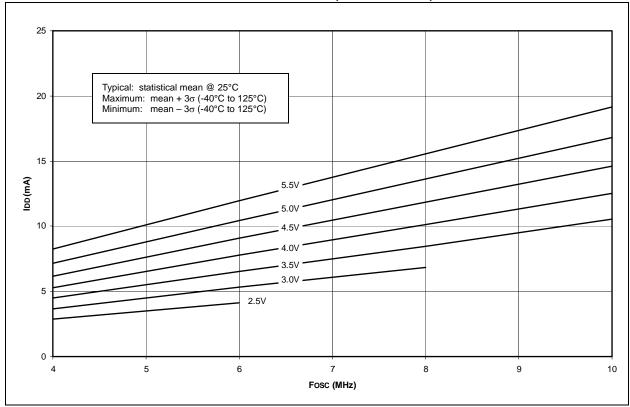
SWAPF	Swap f					
Syntax:	[label] SWAPF f[,d[,a]					
Operands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$					
Operation:	· · ·	$(f<3:0>) \rightarrow dest<7:4>,$ $(f<7:4>) \rightarrow dest<3:0>$				
Status Affected:	None					
Encoding:	0011	0011 10da ffff ffff				
Description:	ister 'f' are result is pl the result (default). I Bank will t the BSR v bank will b	The upper and lower nibbles of reg- ister 'f' are exchanged. If 'd' is 0, the result is placed in WREG. If 'd' is 1, the result is placed in register 'f' (default). If 'a' is 0, the Access Bank will be selected, overriding the BSR value. If 'a' is 1, then the bank will be selected as per the BSR value (default).				
Words:	1	,	,			
Cycles:	1					
Q Cycle Activity:						
Q1	Q2	Q3		Q4		
Decode	Read register 'f'	Proces Data	-	Vrite to stination		
Example: SWAPF REG, 1, 0 Before Instruction REG = 0x53 After Instruction REG = 0x35						

TBL	RD	Table Read	d				
Synt	ax:	[label]	TBLRD (*; *+; *-; +	-*)		
Ope	rands:	None					
Ope	ration:	if TBLRD *,	,				
				$PTR)) \rightarrow $	TABLAT;		
		if TBLRD *-	R - No Ch +	iange;			
				$PTR)) \rightarrow $	TABLAT;		
				TBLPTR;			
		if TBLRD *- (Prog M		$PTR)) \rightarrow $	TABI AT'		
				TBLPTR;	17 (BE) (1,		
		if TBLRD +					
				TBLPTR; PTR)) \rightarrow	TABI AT'		
Stati	us Affected			, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	17 (BE) (1,		
	oding:		0000	0000	10nn		
LIIC	Julig.	0000	0000	0000	nn=0 *		
					=1 *+ =2 *-		
					=3 +*		
Dese	cription:		This instruction is used to read the				
		contents of	-	-			
			address the program memory, a pointer called Table Pointer (TBLPTR)				
		is used.	is used.				
			The TBLPTR (a 21-bit pointer) points to each byte in the program memory.				
		TBLPTR ha					
		TBLPT	[R[0] = 0	Least Sig	gnificant		
	Byte of Program Memory Word						
				Most Sig			
	Byte of Program Memory Word						
		The TBLRD instruction can modify the value of TBLPTR as follows:					
	no change						
	 post-increment 						
		post-decrement					
			pre-increment				
Wor		1					
Cycl		2					
Q Cycle Activity:							
	Q1 Decode	Q2 No	Q3 No		0		
	Decode	operation	operation				
	No	No	No	N	0 ation		

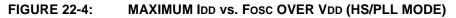

TBLRD	Table Read	d (co	ont'd)				
Example 1:	TBLRD *+	;					
Before Instruction							
TABLAT TBLPTR MEMORY (0x00A356)	= = =	0x55 0x00A356 0x34				
After Instruction							
TABLAT TBLPTR		= =	0x34 0x00A357				
Example 2:	TBLRD +*	;					
Before Instruction							
	0x01A357) 0x01A358)	= = =	0xAA 0x01A357 0x12 0x34				
After Instruction							
TABLAT TBLPTR		=	0x34 0x01A358				

operation (Read Program Memory)


operation


operation

operation (Write TABLAT)



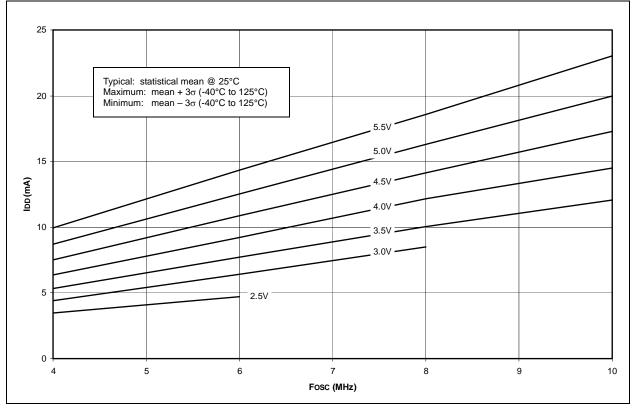


FIGURE 22-3: TYPICAL IDD vs. Fosc OVER VDD (HS/PLL MODE)

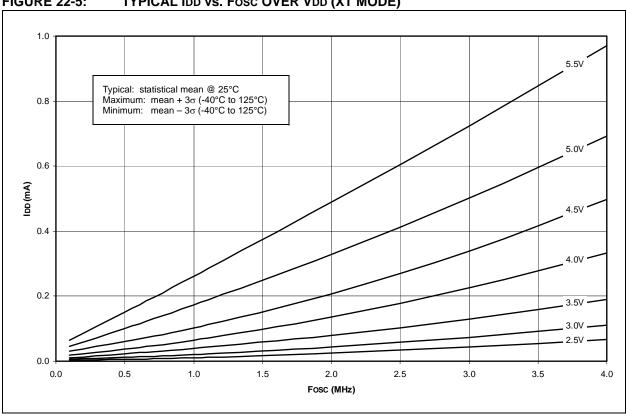
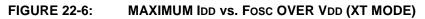
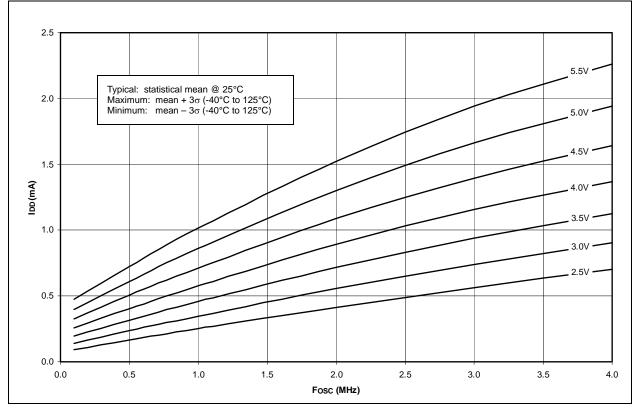
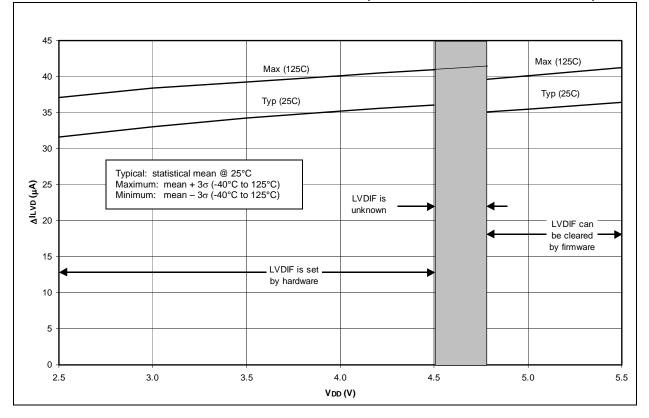
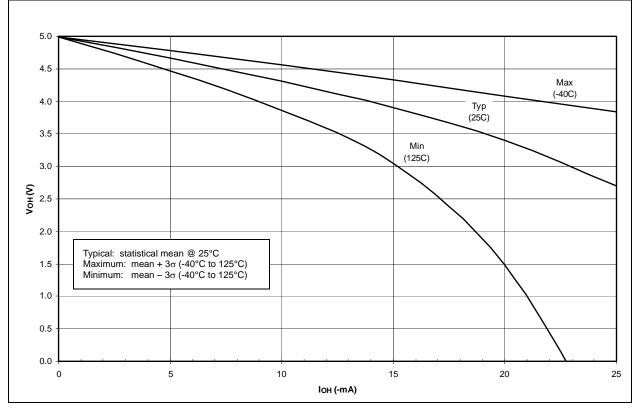





FIGURE 22-5: TYPICAL IDD vs. Fosc OVER VDD (XT MODE)



© 1999-2013 Microchip Technology Inc.

FIGURE 22-19: △ILVD vs. VDD OVER TEMPERATURE (LVD ENABLED, VLVD = 4.5V - 4.78V)

