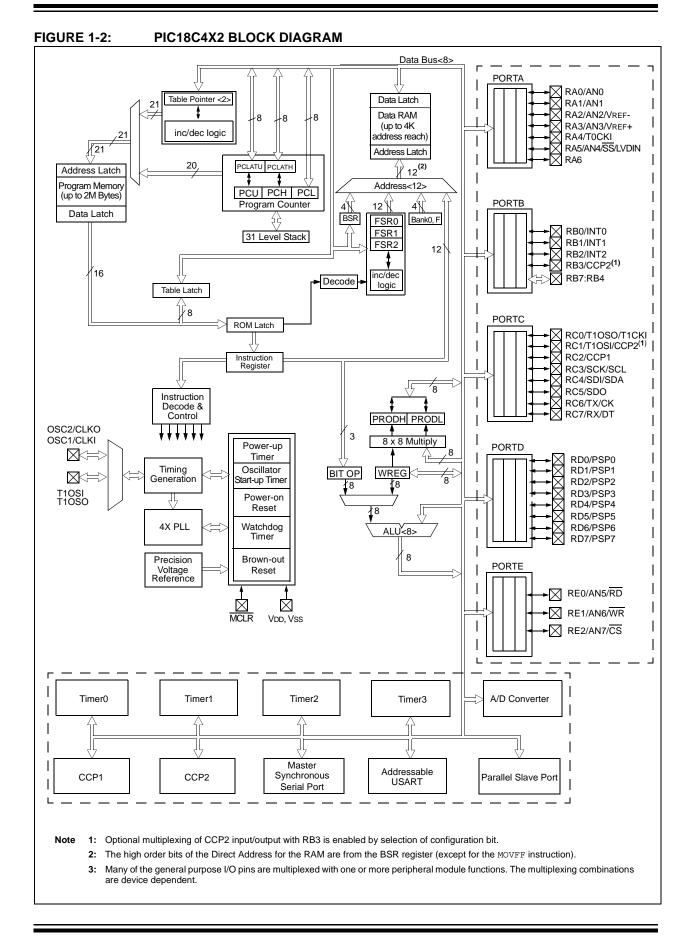


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.


Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	33
Program Memory Size	16KB (8K x 16)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18c442t-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 4-2: REGISTER FILE SUMMARY

File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Details on page:
TOSU	_	_	_	Top-of-Stack	Upper Byte (T	OS<20:16>)			0 0000	37
TOSH	Top-of-Stacl	k High Byte (T	OS<15:8>)						0000 0000	37
TOSL	Top-of-Stac	k Low Byte (TC) S<7:0>)						0000 0000	37
STKPTR	STKFUL	STKUNF	_	Return Stack	Pointer				00-0 0000	38
PCLATU	_	_	_	Holding Regi	ster for PC<20):16>			0 0000	39
PCLATH	Holding Reg	gister for PC<1	5:8>						0000 0000	39
PCL	PC Low Byt	e (PC<7:0>)							0000 0000	39
TBLPTRU	_	_	bit21 ⁽²⁾	Program Mer	nory Table Po	inter Upper By	te (TBLPTR<	20:16>)	0 0000	57
TBLPTRH	Program Me	emory Table Po	pinter High By	te (TBLPTR<1	5:8>)				0000 0000	57
TBLPTRL	Program Me	emory Table Po	pinter Low Byt	te (TBLPTR<7:	0>)				0000 0000	57
TABLAT	Program Me	emory Table La	atch						0000 0000	57
PRODH	Product Reg	gister High Byt	е						XXXX XXXX	61
PRODL	Product Reg	gister Low Byte	9						XXXX XXXX	61
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INTOIE	RBIE	TMR0IF	INT0IF	RBIF	0000 000x	65
INTCON2	RBPU	INTEDG0	INTEDG1	INTEDG2	_	TMR0IP	_	RBIP	1111 -1-1	66
INTCON3	INT2IP	INT1IP	_	INT2IE	INT1IE	_	INT2IF	INT1IF	11-0 0-00	67
INDF0	Uses conter	nts of FSR0 to	address data	memory - valu	e of FSR0 not	changed (not	a physical rec	gister)	N/A	50
POSTINC0	Uses conter	nts of FSR0 to	address data	memory - valu	e of FSR0 pos	t-incremented	(not a physic	al register)	N/A	50
POSTDEC0	Uses conter	nts of FSR0 to	address data	memory - valu	e of FSR0 pos	t-decremented	d (not a physic	cal register)	N/A	50
PREINC0	Uses conter	nts of FSR0 to	address data	memory - valu	e of FSR0 pre-	-incremented	not a physica	I register)	N/A	50
PLUSW0		nts of FSR0 to R0 offset by va		memory - valu	e of FSR0 pre-	-incremented	not a physica	l register) -	N/A	50
FSR0H	_	_	_	_	Indirect Data	Memory Add	ress Pointer () High Byte	0000	50
FSR0L	Indirect Dat	a Memory Add	ress Pointer 0	Low Byte					XXXX XXXX	50
WREG	Working Re	gister							xxxx xxxx	
INDF1	Uses conter	nts of FSR1 to	address data	memory - valu	e of FSR1 not	changed (not	a physical reg	gister)	N/A	50
POSTINC1	Uses conter	nts of FSR1 to	address data	memory - valu	e of FSR1 pos	t-incremented	(not a physic	al register)	N/A	50
POSTDEC1	Uses conter	nts of FSR1 to	address data	memory - valu	e of FSR1 pos	t-decremented	d (not a physic	cal register)	N/A	50
PREINC1	Uses conter	nts of FSR1 to	address data	memory - valu	e of FSR1 pre-	-incremented	not a physica	I register)	N/A	50
PLUSW1		nts of FSR1 to R1 offset by va		memory - valu	e of FSR1 pre	-incremented	not a physica	l register) -	N/A	50
FSR1H	_	_	_	—	Indirect Data	a Memory Add	ress Pointer 1	High Byte	0000	50
FSR1L	Indirect Dat	a Memory Add	ress Pointer 1	Low Byte					xxxx xxxx	50
BSR	_	_	_	—	Bank Select	Register			0000	49
INDF2	Uses conter	nts of FSR2 to	address data	memory - valu	e of FSR2 not	changed (not	a physical reg	gister)	N/A	50
POSTINC2	Uses conter	nts of FSR2 to	address data	memory - valu	e of FSR2 pos	t-incremented	(not a physic	al register)	N/A	50
POSTDEC2	Uses conter	nts of FSR2 to	address data	memory - valu	e of FSR2 pos	t-decremented	d (not a physic	cal register)	N/A	50
PREINC2	Uses conter	nts of FSR2 to	address data	memory - valu	e of FSR2 pre-	-incremented	not a physica	l register)	N/A	50
PLUSW2		nts of FSR2 to R2 offset by va		memory - valu	e of FSR2 pre	-incremented	not a physica	l register) -	N/A	50
FSR2H	_	_	_	_	Indirect Data	Memory Add	ress Pointer 2	2 High Byte	0000	50
FSR2L	Indirect Dat	a Memory Add	ress Pointer 2	2 Low Byte					xxxx xxxx	50
STATUS	_	—	_	Ν	OV	Z	DC	С	x xxxx	52
TMR0H	Timer0 Reg	ister High Byte							0000 0000	95
TMR0L	Timer0 Reg	ister Low Byte							xxxx xxxx	95
T0CON	TMR0ON	T08BIT	TOCS	TOSE	PSA	T0PS2	T0PS1	T0PS0	1111 1111	93
OSCCON	—	—	—	—	—	—	—	SCS	0	20
LVDCON	_	_	IRVST	LVDEN	LVDL3	LVDL2	LVDL1	LVDL0	00 0101	175

Legend: x = unknown, u = unchanged, - = unimplemented, g = value depends on condition
Note 1: RA6 and associated bits are configured as port pins in RCIO and ECIO oscillator mode only, and read '0' in all other oscillator modes.
2: Bit 21 of the TBLPTRU allows access to the device configuration bits.

4.10 Access Bank

The Access Bank is an architectural enhancement, which is very useful for C compiler code optimization. The techniques used by the C compiler may also be useful for programs written in assembly.

This data memory region can be used for:

- Intermediate computational values
- · Local variables of subroutines
- Faster context saving/switching of variables
- Common variables
- Faster evaluation/control of SFRs (no banking)

The Access Bank is comprised of the upper 128 bytes in Bank 15 (SFRs) and the lower 128 bytes in Bank 0. These two sections will be referred to as Access RAM High and Access RAM Low, respectively. Figure 4-6 and Figure 4-7 indicate the Access RAM areas.

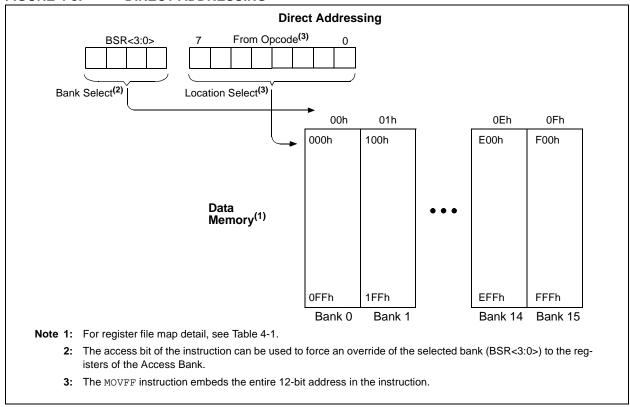
A bit in the instruction word specifies if the operation is to occur in the bank specified by the BSR register or in the Access Bank. This bit is denoted by the 'a' bit (for access bit).

When forced in the Access Bank (a = '0'), the last address in Access RAM Low is followed by the first address in Access RAM High. Access RAM High maps the Special Function registers, so that these registers can be accessed without any software overhead. This is useful for testing status flags and modifying control bits.

4.11 Bank Select Register (BSR)

The need for a large general purpose memory space dictates a RAM banking scheme. The data memory is partitioned into sixteen banks. When using direct addressing, the BSR should be configured for the desired bank.

BSR<3:0> holds the upper 4 bits of the 12-bit RAM address. The BSR<7:4> bits will always read '0's, and writes will have no effect.


A MOVLB instruction has been provided in the instruction set to assist in selecting banks.

If the currently selected bank is not implemented, any read will return all '0's and all writes are ignored. The STATUS register bits will be set/cleared as appropriate for the instruction performed.

Each Bank extends up to FFh (256 bytes). All data memory is implemented as static RAM.

A MOVFF instruction ignores the BSR, since the 12-bit addresses are embedded into the instruction word.

Section 4.12 provides a description of indirect addressing, which allows linear addressing of the entire RAM space.

FIGURE 4-8: DIRECT ADDRESSING

4.12 Indirect Addressing, INDF and FSR Registers

Indirect addressing is a mode of addressing data memory, where the data memory address in the instruction is not fixed. An FSR register is used as a pointer to the data memory location that is to be read or written. Since this pointer is in RAM, the contents can be modified by the program. This can be useful for data tables in the data memory and for software stacks. Figure 4-9 shows the operation of indirect addressing. This shows the moving of the value to the data memory address, specified by the value of the FSR register.

Indirect addressing is possible by using one of the INDF registers. Any instruction using the INDF register actually accesses the register pointed to by the File Select Register, FSR. Reading the INDF register itself, indirectly (FSR = '0'), will read 00h. Writing to the INDF register indirectly, results in a no operation. The FSR register contains a 12-bit address, which is shown in Figure 4-10.

The INDFn register is not a physical register. Addressing INDFn actually addresses the register whose address is contained in the FSRn register (FSRn is a pointer). This is indirect addressing.

Example 4-4 shows a simple use of indirect addressing to clear the RAM in Bank1 (locations 100h-1FFh) in a minimum number of instructions.

EXAMPLE 4-4: HOW TO CLEAR RAM (BANK1) USING INDIRECT ADDRESSING

FSR0, 0x100 POSTINC0	; ; Clear INDF register ; & inc pointer
FSROH, 1 NEXT	; All done w/ Bank1? ; NO, clear next ; YES, continue

There are three indirect addressing registers. To address the entire data memory space (4096 bytes), these registers are 12-bit wide. To store the 12-bits of addressing information, two 8-bit registers are required. These indirect addressing registers are:

- 1. FSR0: composed of FSR0H:FSR0L
- 2. FSR1: composed of FSR1H:FSR1L
- 3. FSR2: composed of FSR2H:FSR2L

In addition, there are registers INDF0, INDF1 and INDF2, which are not physically implemented. Reading or writing to these registers activates indirect addressing, with the value in the corresponding FSR register being the address of the data.

If an instruction writes a value to INDF0, the value will be written to the address pointed to by FSR0H:FSR0L. A read from INDF1 reads the data from the address pointed to by FSR1H:FSR1L. INDFn can be used in code anywhere an operand can be used. If INDF0, INDF1 or INDF2 are read indirectly via an FSR, all '0's are read (zero bit is set). Similarly, if INDF0, INDF1 or INDF2 are written to indirectly, the operation will be equivalent to a NOP instruction and the STATUS bits are not affected.

4.12.1 INDIRECT ADDRESSING OPERATION

Each FSR register has an INDF register associated with it, plus four additional register addresses. Performing an operation on one of these five registers determines how the FSR will be modified during indirect addressing.

When data access is done to one of the five INDFn locations, the address selected will configure the FSRn register to:

- Do nothing to FSRn after an indirect access (no change) INDFn
- Auto-decrement FSRn after an indirect access (post-decrement) POSTDECn
- Auto-increment FSRn after an indirect access (post-increment) POSTINCn
- Auto-increment FSRn before an indirect access (pre-increment) PREINCn
- Use the value in the WREG register as an offset to FSRn. Do not modify the value of the WREG or the FSRn register after an indirect access (no change) - PLUSWn

When using the auto-increment or auto-decrement features, the effect on the FSR is not reflected in the STATUS register. For example, if the indirect address causes the FSR to equal '0', the Z bit will not be set.

Incrementing or decrementing an FSR affects all 12 bits. That is, when FSRnL overflows from an increment, FSRnH will be incremented automatically.

Adding these features allows the FSRn to be used as a stack pointer, in addition to its uses for table operations in data memory.

Each FSR has an address associated with it that performs an indexed indirect access. When a data access to this INDFn location (PLUSWn) occurs, the FSRn is configured to add the signed value in the WREG register and the value in FSR to form the address before an indirect access. The FSR value is not changed.

If an FSR register contains a value that points to one of the INDFn, an indirect read will read 00h (zero bit is set), while an indirect write will be equivalent to a NOP (STATUS bits are not affected).

4.13 STATUS Register

The STATUS register, shown in Register 4-2, contains the arithmetic status of the ALU. The STATUS register can be the destination for any instruction, as with any other register. If the STATUS register is the destination for an instruction that affects the Z, DC, C, OV or N bits, then the write to these five bits is disabled. These bits are set or cleared according to the device logic. Therefore, the result of an instruction with the STATUS register as destination may be different than intended. For example, CLRF STATUS will clear the upper three bits and set the Z bit. This leaves the STATUS register as 000u uluu (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF, MOVFF and MOVWF instructions are used to alter the STATUS register, because these instructions do not affect the Z, C, DC, OV or N bits from the STATUS register. For other instructions not affecting any status bits, see Table 19-2.

Note:	The C and DC bits operate as a borrow and
	digit borrow bit respectively, in subtraction.

REGISTER 4-2: STATUS REGISTER

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	—	N	OV	Z	DC	С
bit 7							bit 0

bit 7-5 Unimplemented: Read as '0'

bit 4 N: Negative bit

This bit is used for signed arithmetic (2's complement). It indicates whether the result was negative, (ALU MSB = 1).

- 1 = Result was negative
- 0 = Result was positive

bit 3 OV: Overflow bit

This bit is used for signed arithmetic (2's complement). It indicates an overflow of the 7-bit magnitude, which causes the sign bit (bit7) to change state.

- 1 = Overflow occurred for signed arithmetic (in this arithmetic operation)
- 0 = No overflow occurred

bit 2 Z: Zero bit

1 = The result of an arithmetic or logic operation is zero

0 = The result of an arithmetic or logic operation is not zero

bit 1 DC: Digit carry/borrow bit

For ADDWF, ADDLW, SUBLW, and SUBWF instructions

1 = A carry-out from the 4th low order bit of the result occurred

- 0 = No carry-out from the 4th low order bit of the result
- **Note:** For borrow, the polarity is reversed. A subtraction is executed by adding the two's complement of the second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the bit 4 or bit 3 of the source register.

bit 0 **C:** Carry/borrow bit

For ADDWF, ADDLW, SUBLW, and SUBWF instructions

- 1 = A carry-out from the Most Significant bit of the result occurred
- 0 = No carry-out from the Most Significant bit of the result occurred
- **Note:** For borrow, the polarity is reversed. A subtraction is executed by adding the two's complement of the second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high or low order bit of the source register.

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR reset	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

7.5 RCON Register

The RCON register contains the bit which is used to enable prioritized interrupts (IPEN).

- n = Value at POR reset

REGISTER 7-10: RCON REGISTER

	R/W-0	R/W-0	U-0	R/W-1	R-1	R-1	R/W-0	R/W-0
	IPEN	LWRT		RI	TO	PD	POR	BOR
	bit 7							bit 0
bit 7	IPEN: Inte	rrupt Priority	Enable bit					
		e priority leve le priority leve			(compatibili	ty mode)		
bit 6	LWRT: Lor	ng Write Enal	ble bit					
	For details	of bit operati	ion, see Regi	ster 4-3				
bit 5	Unimplem	nented: Read	l as '0'					
bit 4	RI: RESET	Instruction F	lag bit					
	For details	of bit operat	ion, see Regi	ster 4-3				
bit 3	TO: Watch	idog Time-ou	t Flag bit					
	For details	of bit operation	ion, see Regi	ster 4-3				
bit 2	PD: Power	r-down Detec	tion Flag bit					
	For details	of bit operat	ion, see Regi	ster 4-3				
bit 1	POR: Pow	er-on Reset	Status bit					
	For details	of bit operat	ion, see Regi	ster 4-3				
bit 0	BOR: Brow	wn-out Reset	Status bit					
	For details	of bit operat	ion, see Regi	ster 4-3				
	Logondi]
	Legend:							01
	R = Reada	adie dit	vv = vvr	itable bit	U = Unimp	plemented	bit, read as '	U

'0' = Bit is cleared

'1' = Bit is set

x = Bit is unknown

TABLE 8-1: PORTA FUNCTIONS

Name	Bit#	Buffer	Function
RA0/AN0	bit0	TTL	Input/output or analog input.
RA1/AN1	bit1	TTL	Input/output or analog input.
RA2/AN2/VREF-	bit2	TTL	Input/output or analog input or VREF
RA3/AN3/VREF+	bit3	TTL	Input/output or analog input or VREF+.
RA4/T0CKI	bit4	ST	Input/output or external clock input for Timer0. Output is open drain type.
RA5/SS/AN4/LVDIN	bit5	TTL	Input/output or slave select input for synchronous serial port or analog input, or low voltage detect input.
OSC2/CLKO/RA6	bit6	TTL	OSC2 or clock output or I/O pin.

Legend: TTL = TTL input, ST = Schmitt Trigger input

TABLE 8-2: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other RESETS
PORTA	—	RA6	RA5	RA4	RA3	RA2	RA1	RA0	0x 0000	0u 0000
LATA		Latch A	Data Outp	out Regis	ster				xx xxxx	uu uuuu
TRISA		PORTA	Data Dire	ction Reg	gister				11 1111	11 1111
ADCON1	ADFM	ADCS2	—	—	PCFG3	PCFG2	PCFG1	PCFG0	0- 0000	0- 0000

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTA.

 $\ensuremath{\textcircled{}^\circ}$ 1999-2013 Microchip Technology Inc.

TABLE 8-7:PORTD FUNCTIONS

Name	Bit#	Buffer Type	Function
RD0/PSP0	bit0	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit0.
RD1/PSP1	bit1	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit1.
RD2/PSP2	bit2	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit2.
RD3/PSP3	bit3	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit3.
RD4/PSP4	bit4	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit4.
RD5/PSP5	bit5	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit5.
RD6/PSP6	bit6	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit6.
RD7/PSP7	bit7	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit7.

Legend: ST = Schmitt Trigger input, TTL = TTL input

Note 1: Input buffers are Schmitt Triggers when in I/O mode and TTL buffers when in Parallel Slave Port mode.

TABLE 8-8: SUMMARY OF REGISTERS ASSOCIATED WITH POR

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other RESETS
PORTD	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	xxxx xxxx	uuuu uuuu
LATD	LATD D	Data Out	put Regis	ster					xxxx xxxx	uuuu uuuu
TRISD	PORTE	PORTD Data Direction Register							1111 1111	1111 1111
TRISE	IBF	OBF	IBOV	PSPMODE — PORTE Data Direction bits					0000 -111	0000 -111

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by PORTD.

9.0 TIMER0 MODULE

The Timer0 module has the following features:

- Software selectable as an 8-bit or 16-bit timer/ counter
- Readable and writable
- Dedicated 8-bit software programmable prescaler
- · Clock source selectable to be external or internal
- Interrupt-on-overflow from FFh to 00h in 8-bit mode and FFFFh to 0000h in 16-bit mode
- Edge select for external clock

REGISTER 9-1:	T0CON: TIMER0 CONTROL REGISTER

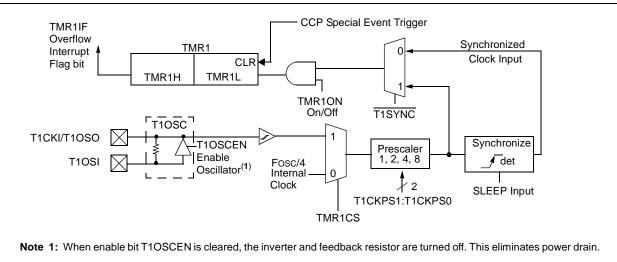
R 9-1:	: T0CON: TIMER0 CONTROL REGISTER										
	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1			
	TMR0ON	T08BIT	TOCS	TOSE	PSA	T0PS2	T0PS1	T0PS0			
	bit 7			· · · · · · · · · · · · · · · · · · ·				bit 0			
bit 7	TMR0ON: ⁻ 1 = Enables 0 = Stops T		Control bit								
bit 6	T08BIT : Timer0 8-bit/16-bit Control bit 1 = Timer0 is configured as an 8-bit timer/counter 0 = Timer0 is configured as a 16-bit timer/counter										
bit 5	1 = Transiti	TOCS : Timer0 Clock Source Select bit 1 = Transition on T0CKI pin 0 = Internal instruction cycle clock (CLKOUT)									
bit 4	1 = Increme	er0 Source Ed ent on high-to- ent on low-to-l	-low transitic	n on TOCKI p							
bit 3	1 = TImer0	0 Prescaler A prescaler is N prescaler is a	IOT assigne	d. Timer0 clo							
bit 2:0	111 = 1:256 110 = 1:128 101 = 1:64 100 = 1:32 011 = 1:16 010 = 1:8 001 = 1:4	PSO : Timer0 P 6 prescale valu 8 prescale valu prescale valu prescale valu prescale valu prescale valu prescale valu prescale valu	ue ue e e e e e	ect bits							
	Legend: R = Readal	ble bit	W = Wri	table bit	U = Unima	lemented	bit, read as	ʻ0'			
		at POR reset	'1' = Bit	is set	'0' = Bit is		x = Bit is u				

Figure 9-1 shows a simplified block diagram of the Timer0 module in 8-bit mode and Figure 9-2 shows a simplified block diagram of the Timer0 module in 16-bit mode.

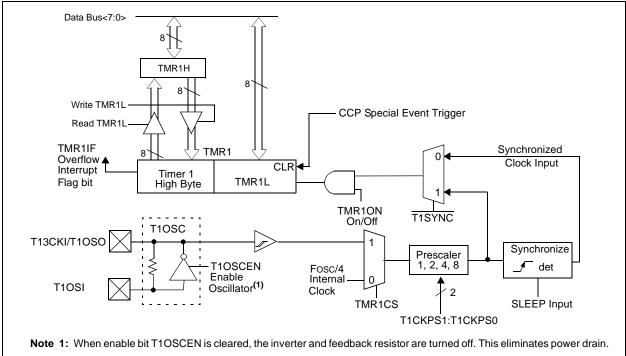
The T0CON register (Register 9-1) is a readable and writable register that controls all the aspects of Timer0, including the prescale selection.

10.1 Timer1 Operation

Timer1 can operate in one of these modes:


- As a timer
- As a synchronous counter
- As an asynchronous counter

The operating mode is determined by the clock select bit, TMR1CS (T1CON<1>).


When TMR1CS = 0, Timer1 increments every instruction cycle. When TMR1CS = 1, Timer1 increments on every rising edge of the external clock input or the Timer1 oscillator, if enabled.

When the Timer1 oscillator is enabled (T1OSCEN is set), the RC1/T1OSI and RC0/T1OSO/T1CKI pins become inputs. That is, the TRISC<1:0> value is ignored.

Timer1 also has an internal "RESET input". This RESET can be generated by the CCP module (Section 13.0).

FIGURE 10-2: TIMER1 BLOCK DIAGRAM: 16-BIT READ/WRITE MODE

FIGURE 10-1: TIMER1 BLOCK DIAGRAM

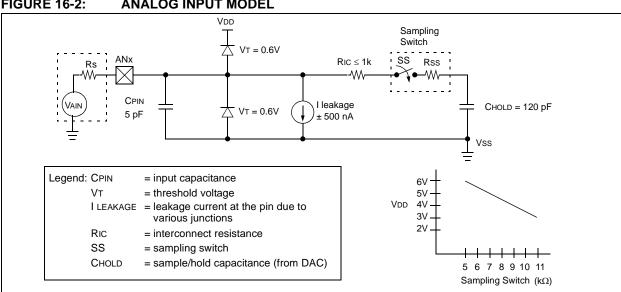
NOTES:

TABLE 15-5:	BAUD RATES FOR ASYNCHRONOUS MODE (B	3RGH = 1)
-------------	-------------------------------------	-----------

BAUD RATE (K)	Fosc = 40 MHz			F	DSC = 20	MHz	F	osc = 16	MHz	F	SC = 10 MHz % SPBRG value (decimal) +0.16 64 -1.36 32 +1.7 15	
	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)		
9.6	9.77	-1.70	255	9.615	+0.16	129	9.615	+0.16	103	9.615	+0.16	64
19.2	19.23	-0.16	129	19.230	+0.16	64	19.230	+0.16	51	18.939	-1.36	32
38.4	38.46	-0.16	64	37.878	-1.36	32	38.461	+0.16	25	39.062	+1.7	15
57.6	58.14	-0.93	42	56.818	-1.36	21	58.823	+2.12	16	56.818	-1.36	10
115.2	113.64	+1.38	21	113.63	-1.36	10	111.11	-3.55	8	125	+8.51	4
250	250.00	0	9	250	0	4	250	0	3	NA	_	_
625	625.00	0	3	625	0	1	NA	_	_	625	0	0
1250	1250.00	0	1	1250	0	0	NA	_	_	NA	_	_

BAUD	Fosc = 7.16MHz			Fos	SC = 5.06	8 MHz	F	osc = 4 I	MHz	Fosc	= 3.5795	645 MHz
RATE (K)	Actual Rate (K)	% Error	SPBRG value (decimal)									
9.6	9.520	-0.83	46	9.6	0	32	NA	_	_	9.727	+1.32	22
19.2	19.454	+1.32	22	18.645	-2.94	16	1.202	+0.17	207	18.643	-2.90	11
38.4	37.286	-2.90	11	39.6	+3.12	7	2.403	+0.13	103	37.286	-2.90	5
57.6	55.930	-2.90	7	52.8	-8.33	5	9.615	+0.16	25	55.930	-2.90	3
115.2	111.860	-2.90	3	105.6	-8.33	2	19.231	+0.16	12	111.86	-2.90	1
250	NA	_	_	NA	_	_	NA	_	_	223.72	-10.51	0
625	NA	_	_									
1250	NA	—	—									

BAUD	F	osc = 1	MHz	Fosc = 32.768 kHz			
RATE (K)	Actual % Rate % (K) Error		SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	
9.6	8.928	-6.99	6	NA	_	_	
19.2	20.833	+8.51	2	NA	—	—	
38.4	31.25	-18.61	1	NA	—	—	
57.6	62.5	+8.51	0	NA	—	_	
115.2	NA	—	_	NA	—	_	
250	NA	—	_	NA	—	_	
625	NA	—	—	NA	—	—	
1250	NA	—		NA	—	—	


The value that is in the ADRESH/ADRESL registers is not modified for a Power-on Reset. The ADRESH/ ADRESL registers will contain unknown data after a Power-on Reset.

After the A/D module has been configured as desired, the selected channel must be acquired before the conversion is started. The analog input channels must have their corresponding TRIS bits selected as an input. To determine acquisition time, see Section 16.1. After this acquisition time has elapsed, the A/D conversion can be started. The following steps should be followed for doing an A/D conversion:

- 1. Configure the A/D module:
 - · Configure analog pins, voltage reference and digital I/O (ADCON1)
 - Select A/D input channel (ADCON0)
 - Select A/D conversion clock (ADCON0)
 - Turn on A/D module (ADCON0)
- 2. Configure A/D interrupt (if desired):
 - · Clear ADIF bit
 - Set ADIE bit
 - · Set GIE bit
- 3. Wait the required acquisition time.
- 4. Start conversion:
 - Set GO/DONE bit (ADCON0)
- 5. Wait for A/D conversion to complete, by either:
 - Polling for the GO/DONE bit to be cleared

OR

- Waiting for the A/D interrupt
- 6. Read A/D Result registers (ADRESH/ADRESL); clear bit ADIF if required.
- 7. For next conversion, go to step 1 or step 2, as required. The A/D conversion time per bit is defined as TAD. A minimum wait of 2TAD is required before next acquisition starts.

FIGURE 16-2: ANALOG INPUT MODEL

16.1 A/D Acquisition Requirements

For the A/D converter to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The analog input model is shown in Figure 16-2. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD). The source impedance affects the offset voltage at the analog input (due to pin leakage current). The maximum recommended impedance for analog sources is 2.5 k Ω . After the analog input channel is selected (changed), this acquisition must be done before the conversion can be started.

When the conversion is started, the hold-Note: ing capacitor is disconnected from the input pin.

ADDWFC	ADDWFC ADD WREG and Carry bit to f									
Syntax:	[label] Al	DWFC	f [,d [,a	a]						
Operands:	0 ≤ f ≤ 255 d ∈ [0,1] a ∈ [0,1]	5								
Operation: $(WREG) + (f) + (C) \rightarrow dest$										
Status Affected:	N,OV, C, [DC, Z								
Encoding:	0010	00da	ffff	ffff						
Words:	Description: Add WREG, the Carry Flag and data memory location 'f'. If 'd' is 0, the result is placed in WREG. If 'd' is 1, the result is placed in data memory location 'f'. If 'a' is 0, the Access Bank will be selected. If 'a' is 1, the BSR will not be overridden.									
	1									
Cycles: Q Cycle Activity Q1		Q3		Q4						
Decode	Read register 'f'	Process Data		ite to ination						
Example: ADDWFC REG, 0, 1 Before Instruction										

ANDLW	AND liter	AND literal with WREG					
Syntax:	[label] A	NDLW	k				
Operands:	$0 \le k \le 25$	5					
Operation:	(WREG).	AND. k -	\rightarrow WREC	3			
Status Affected:	N,Z						
Encoding:	0000	1011	kkkk	kkkk			
Description:	The conte with the 8 placed in	-bit litera					
Words:	1						
Cycles:	1	1					
Q Cycle Activit	y:						
Q1	Q2	Q3		Q4			
Decode	Read literal 'k'	Proce: Data		/rite to VREG			
Example:	ANDLW	0x5F					

Carry	bit=	1
REG	=	0x02
WREG	=	0x4D
or Inetru	otion	

After Instruction

Carry	bit=	0
REG	=	0x02
WREG	=	0x50

Before Instruction WREG = 0xA3

After Instruction

WREG = 0×03

address (HERE)

address (Jump)

0; address (HERE+2)

BTG		Bit Toggl	e f		ВС	v	Branch if	Branch if Overflow			
Synt	ax:	[label] B	STG f,b[,a]		Sy	ntax:	[<i>label</i>] B	[<i>label</i>] BOV n			
Oper	rands:	0 ≤ f ≤ 25	5		Ор	Operands: $-128 \le n \le 127$					
		0 ≤ b < 7 a ∈ [0,1]			Ор	eration:		if overflow bit is '1' (PC) + 2 + 2n \rightarrow PC			
Oper	ration:	$(\overline{f} < b >) \rightarrow 1$	f 		Sta	atus Affected:	None	None			
Statu	us Affected:	None	None			coding:	1110	0100 nn	nn nnnn		
Enco	oding:	0111	bbba f	fff ffff		scription:	If the Ove	rflow bit is '1	, then the		
Desc	cription:	Bit 'b' in data memory location 'f' is inverted. If 'a' is 0, the Access Bank will be selected, overriding the BSR value. If 'a' = 1, then the bank will be selected as per the BSR value (default).					program will branch. The 2's complement number '2n' i added to the PC. Since the PC wi have incremented to fetch the nex instruction, the new address will be PC+2+2n. This instruction is then				
Word	ds:	1					a two-cycl	e instruction			
Cycl	es:	1	1			ords:	1				
QC	vcle Activity				Су	cles:	1(2)				
	Q1	Q2	Q3	Q4		Cycle Activity	<i>r</i> :				
	Decode	Read register 'f'	Process Data	Write register 'f'	lf -	Jump: Q1	Q2	Q3	Q4		
Exar	nole:		PORTC, 4,			Decode	Read literal 'n'	Process Data	Write to PC		
	Before Instru			•		No	No	No	No		
	PORTC		0101 [0x75]		14	operation	operation	operation	operation		
	After Instruc	tion:			If	No Jump:	00	00	04		
	PORTC = 0110 0101 [0x65]				Q1 Decode	Q2 Read literal	Q3 Process	Q4 No			
						Decode	'n'	Data	operation		
					<u>Ex</u>	ample:	HERE	BOV Jump			

Before Instruction PC

After Instruction If Overflow=

=

PC =

If Overflow= PC =

1;

GOT	GOTO Unconditional Branch					
Synt	ax:	[label]	GOTO	k		
Ope	rands:	$0 \le k \le 10$)48575			
Ope	ration:	$k \rightarrow PC < 2$	20:1>			
Statu	us Affected:	None				
1st v	oding: vord (k<7:0>) word(k<19:8>	.) 1110	1111 k ₁₉ kkk	k ₇ ki kkk		kkkk ₀ kkkk ₈
Deso	cription:	GOTO allo branch ar 2 Mbyte r value 'k' i GOTO is a instruction	nywhere nemory s loaded Ilways a	within range I into	n en . Th PC<	tire ne 20-bit <20:1>.
Wore	ds:	2				
Cycl	es:	2				
QC	ycle Activity:					
	Q1	Q2	Q	3		Q4
	Decode	Read literal 'k'<7:0>,	No operat			ad literal <19:8>,

Decode	Read literal 'k'<7:0>,	No operation	Read literal 'k'<19:8>, Write to PC
No	No	No	No
operation	operation	operation	operation

Example: GOTO THERE

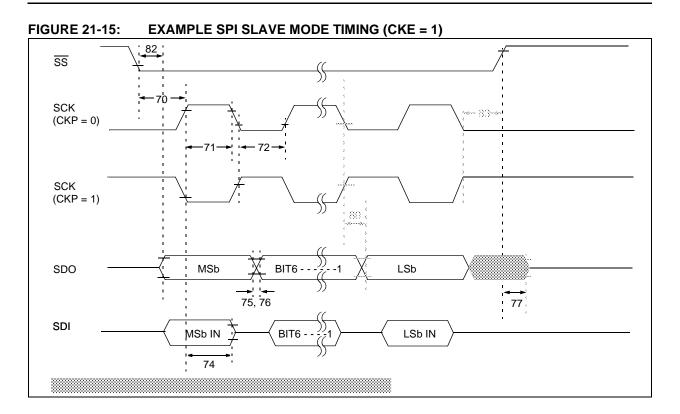
After Instruction

PC = Address (THERE)

INCF	Incremen	t f			
Syntax:	[label]	INCF	f [,d [,a	a]	
Operands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$	5			
Operation:	(f) + 1 \rightarrow 0	dest			
Status Affected:	C,DC,N,C	DV,Z			
Encoding:	0010	10da	fff	f	ffff
	incremented. If 'd' is 0, the result placed in WREG. If 'd' is 1, the result is placed back in register 'f' (default). If 'a' is 0, the Access Bank will be selected, overriding the BSR value. If 'a' = 1, then the bank will be selected as per the BSR value (default).				the ister 'f' ess riding en the
Words:	1				
Cycles:	1				
Q Cycle Activity:					
Q1	Q2	Q	3		Q4
Decode	Read register 'f'	Proce Dat			rite to tination
Example:	INCF	CNT,	1, 0		
Before Instru CNT Z	= 0xFF = 0				

After Instruction							
CNT	=	0x00					
Z	=	1					
C	=	1					
DC	=	1					

SUB	WFB	Subtr	Subtract WREG from f with Borrow				
Synt	ax:	[labe	e/] :	SUBWFE	3 f	[,d [,	a]
Ope	rands:	$0 \le f$	≤ 25	5			
		d ∈ [0					
~		a ∈ [0	-				
-	ration:	., .		EG) – (<mark>C</mark>)→	dest	
	us Affected:	N,OV	, C,	DC, Z			
Enco	oding:	010	1	10da	ff	ff	ffff
Description: Subtract WREG and the carry flag (borrow) from register 'f' (2's comple ment method). If 'd' is 0, the result is stored in WREG. If 'd' is 1, the resu is stored back in register 'f' (default) If 'a' is 0, the Access Bank will be selected, overriding the BSR value. 'a' is 1, then the bank will be selecte as per the BSR value (default).						comple- result is ne result default). <i>v</i> ill be value. If selected	
Word	ds:	1					
Cycl	es:	1					
QC	ycle Activity:						
i	Q1	Q2		Q3			Q4
	Decode	Read register	'f'	Proces Data	S		ite to ination
Exar	<u>mple 1</u> :	SUBWI	FB	REG, 1,	0		
	Before Instru	iction					
	REG		0x19 (0001 1001)				
	WREG C	$= 0 \times 0$ = 1	םנ	(0000	110	1)	
	After Instruct	tion					
	REG WREG	$= 0 \times 0$		(0000 1011) (0000 1101)			
	C	= 0x0					
	Z N	= 0 = 0		; result	t is	s pos	sitive
<u>Exar</u>	<u>mple 2</u> :	SUBWI	FВ	REG, 0,	0	-	
	Before Instru	iction					
	REG WREG		0x1B (0001 1011) 0x1A (0001 1010)				
	C	= 0x1 = 0		(0001	IU.	10)	
	After Instruct						
	REG WREG	= 0x1 = 0x0		(0001	101	.1)	
	C	= 1	0				
	Z N	= 1 = 0		; resul	t i	s ze:	ro
Exar	<u>mple 3:</u>	SUBWI	FΒ	REG, 1,	0		
	Before Instru	iction					
	REG	= 0x0		(0000			
	WREG C	$= 0 \times 0$ = 1)E	(0000	110)1)	
	After Instruct						
	REG	= 0xB	'5	(1111			
	WREG	= 0x0)E	; [2's (
	C	= 0	-	(0000		-,	
	Z N	= 0 = 1		; resul	t i	s neg	gative


SWAPF	Swap f						
Syntax:	[label] S	SWAPF	f [,d [,a]			
Operands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$						
Operation:	(f<3:0>) → (f<7:4>) →						
Status Affected:	None						
Encoding:	0011	10da	ffff	ffff			
Description: The upper and lower nibbles of re- ister 'f' are exchanged. If 'd' is 0, th result is placed in WREG. If 'd' is 1 the result is placed in register 'f' (default). If 'a' is 0, the Access Bank will be selected, overriding the BSR value. If 'a' is 1, then the bank will be selected as per the BSR value (default).							
Words:	1	,	,				
Cycles:	1						
Q Cycle Activity:							
Q1	Q2	Q3		Q4			
Decode	Read register 'f'	Proces Data	-	Vrite to stination			
Example: SWAPF REG, 1, 0 Before Instruction REG = 0x53 After Instruction REG = 0x35							

21.3 AC (Timing) Characteristics

21.3.1 TIMING PARAMETER SYMBOLOGY

The timing parameter symbols have been created following one of the following formats:

1. TppS2ppS		3. Tcc:st	(I ² C specifications only)
2. TppS		4. Ts	(I ² C specifications only)
Т			
F	Frequency	Т	Time
Lowercase le	etters (pp) and their meanings:		
рр			
сс	CCP1	osc	OSC1
ck	CLKOUT	rd	RD
CS	CS	rw	RD or WR
di	SDI	sc	SCK
do	SDO	SS	SS
dt	Data in	tO	TOCKI
io	I/O port	t1	T1CKI
mc	MCLR	wr	WR
Uppercase le	etters and their meanings:		
S			
F	Fall	Р	Period
н	High	R	Rise
I	Invalid (Hi-impedance)	V	Valid
L	Low	Z	Hi-impedance
I ² C only			
AA	output access	High	High
BUF	Bus free	Low	Low
TCC:ST (I ² C s	specifications only)		
CC			
HD	Hold	SU	Setup
ST			
DAT	DATA input hold	STO	STOP condition
STA	START condition		

TABLE 21-14: EXAMPLE SPI SLAVE MODE REQUIREMENTS (CKE = 1)

Param. No.	Symbol	Characteristic	Min	Max	Units	Conditions	
70	TssL2scH, TssL2scL	$\overline{SS}\downarrow$ to SCK \downarrow or SCK \uparrow input	o SCK↓ or SCK↑ input		_	ns	
71	TscH	SCK input high time	Continuous	1.25Tcy + 30	_	ns	
71A		(Slave mode)	Single Byte	40		ns	(Note 1)
72	TscL	SCK input low time	Continuous	1.25Tcy + 30		ns	
72A		(Slave mode)	Single Byte	40	_	ns	(Note 1)
73A	Тв2в	Last clock edge of Byte1 to the first	clock edge of Byte2	1.5Tcy + 40		ns	(Note 2)
74	TscH2diL, TscL2diL	Hold time of SDI data input to SC	lold time of SDI data input to SCK edge		—	ns	
75 TdoR		SDO data output rise time	PIC18CXXX	_	25	ns	
	PIC18LCXX			45	ns		
76	TdoF	SDO data output fall time		_	25	ns	
77	TssH2doZ	SS↑ to SDO output hi-impedance	SS↑ to SDO output hi-impedance		50	ns	
78	TscR	SCK output rise time	PIC18CXXX	_	25	ns	
		(Master mode)	PIC18LCXXX	_	45	ns	
79	TscF	SCK output fall time (Master mod	e)	_	25	ns	
80	TscH2doV,	SDO data output valid after SCK	PIC18CXXX	_	50	ns	
	TscL2doV	dedge	PIC18LCXXX	_	100	ns	
82	TssL2doV	SDO data output valid after $\overline{SS}\downarrow$	PIC18CXXX		50	ns	
		edge	PIC18LCXXX		100	ns	
83	TscH2ssH, TscL2ssH	SS ↑ after SCK edge		1.5Tcy + 40	—	ns	

Note 1: Requires the use of Parameter # 73A.

2: Only if Parameter # 71A and # 72A are used.

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MTP, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

Analog-for-the-Digital Age, Application Maestro, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, SQI, Serial Quad I/O, Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA and Z-Scale are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

GestIC and ULPP are registered trademarks of Microchip Technology Germany II GmbH & Co. & KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 1999-2013, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

ISBN: 9781620769676

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEEL0Q® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and mulfacture of development systems is ISO 9001:2000 certified.