

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	33
Program Memory Size	32KB (16K x 16)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.600", 15.24mm)
Supplier Device Package	40-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18c452-e-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

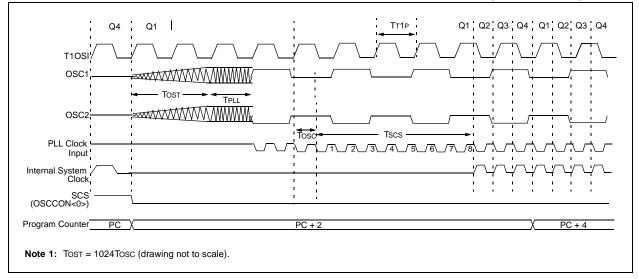
NOTES:

1.0 DEVICE OVERVIEW

This document contains device specific information for the following four devices:

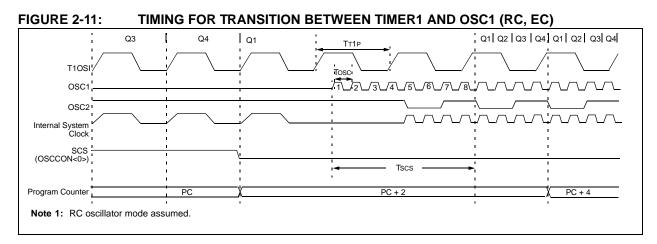
- 1. PIC18C242
- 2. PIC18C252
- 3. PIC18C442
- 4. PIC18C452

These devices come in 28-pin and 40-pin packages. The 28-pin devices do not have a Parallel Slave Port (PSP) implemented and the number of Analog-to-Digital (A/D) converter input channels is reduced to 5. An overview of features is shown in Table 1-1.


The following two figures are device block diagrams sorted by pin count: 28-pin for Figure 1-1 and 40-pin for Figure 1-2. The 28-pin and 40-pin pinouts are listed in Table 1-2 and Table 1-3, respectively.

Features	PIC18C242	PIC18C252	PIC18C442	PIC18C452
Operating Frequency	DC - 40 MHz			
Program Memory (Bytes)	16K	32K	16K	32K
Program Memory (Instructions)	8192	16384	8192	16384
Data Memory (Bytes)	512	1536	512	1536
Interrupt Sources	16	16	17	17
I/O Ports	Ports A, B, C	Ports A, B, C	Ports A, B, C, D, E	Ports A, B, C, D, E
Timers	4	4	4	4
Capture/Compare/PWM Modules	2	2	2	2
Serial Communications	MSSP, Addressable USART	MSSP, Addressable USART	MSSP, Addressable USART	MSSP, Addressable USART
Parallel Communications	—	—	PSP	PSP
10-bit Analog-to-Digital Module	5 input channels	5 input channels	8 input channels	8 input channels
RESETS (and Delays)	POR, BOR, RESET Instruction, Stack Full, Stack Underflow (PWRT, OST)			
Programmable Low Voltage Detect	Yes	Yes	Yes	Yes
Programmable Brown-out Reset	Yes	Yes	Yes	Yes
Instruction Set	75 Instructions	75 Instructions	75 Instructions	75 Instructions
Packages	28-pin DIP 28-pin SOIC 28-pin JW	28-pin DIP 28-pin SOIC 28-pin JW	40-pin DIP 44-pin PLCC 44-pin TQFP 40-pin JW	40-pin DIP 44-pin PLCC 44-pin TQFP 40-pin JW

TABLE 1-1: DEVICE FEATURES


If the main oscillator is configured for HS-PLL mode, an oscillator start-up time (Tost) plus an additional PLL time-out (TPLL) will occur. The PLL time-out is typically 2 ms and allows the PLL to lock to the main oscillator

frequency. A timing diagram, indicating the transition from the Timer1 oscillator to the main oscillator for HS-PLL mode, is shown in Figure 2-10.

If the main oscillator is configured in the RC, RCIO, EC or ECIO modes, there is no oscillator start-up time-out. Operation will resume after eight cycles of the main oscillator have been counted. A timing diagram, indicating the transition from the Timer1 oscillator to the main oscillator for RC, RCIO, EC and ECIO modes, is shown in Figure 2-11.

Register	Applicable Devices		Power-on Reset, Brown-out Reset	MCLR WDT I RESET In Stack F	Reset struction	Wake-up via WDT or Interrupt			
ADRESH	242	442	252	452	xxxx xxxx	uuuu	uuuu	uuuu	uuuu
ADRESL	242	442	252	452	xxxx xxxx	uuuu	uuuu	uuuu	uuuu
ADCON0	242	442	252	452	0000 0000	0000	0000	uuuu	uuuu
ADCON1	242	442	252	452	0- 0000	0 -	0000	u-	uuuu
CCPR1H	242	442	252	452	xxxx xxxx	uuuu	uuuu	uuuu	uuuu
CCPR1L	242	442	252	452	xxxx xxxx	uuuu	uuuu	uuuu	uuuu
CCP1CON	242	442	252	452	00 0000	0 0	0000	uu	uuuu
CCPR2H	242	442	252	452	xxxx xxxx	uuuu	uuuu	uuuu	uuuu
CCPR2L	242	442	252	452	xxxx xxxx	uuuu	uuuu	uuuu	uuuu
CCP2CON	242	442	252	452	00 0000	0 0	0000	uu	uuuu
TMR3H	242	442	252	452	xxxx xxxx	uuuu	uuuu	uuuu	uuuu
TMR3L	242	442	252	452	xxxx xxxx	uuuu	uuuu	uuuu	uuuu
T3CON	242	442	252	452	0000 0000	uuuu	uuuu	uuuu	uuuu
SPBRG	242	442	252	452	xxxx xxxx	uuuu	uuuu	uuuu	uuuu
RCREG	242	442	252	452	xxxx xxxx	uuuu	uuuu	uuuu	uuuu
TXREG	242	442	252	452	xxxx xxxx	uuuu	uuuu	uuuu	uuuu
TXSTA	242	442	252	452	0000 -01x	0000	-01u	uuuu	-uuu
RCSTA	242	442	252	452	0000 000x	0000	000u	uuuu	uuuu
IPR2	242	442	252	452	1111		1111		uuuu
PIR2	242	442	252	452	0000		0000		սսսս (1)
PIE2	242	442	252	452	0000		0000		uuuu
IPR1	242	442	252	452	1111 1111	1111	1111	uuuu	uuuu
	242	442	252	452	-111 1111	-111	1111		uuuu
PIR1	242	442	252	452	0000 0000	0000	0000	uuuu	սսսս (1)
	242	442	252	452	-000 0000	-000	0000	-uuu	սսսս (1)
PIE1	242	442	252	452	0000 0000	0000	0000	uuuu	uuuu
	242	442	252	452	-000 0000	-000	0000	-uuu	uuuu

TABLE 3-3: INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition

Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).

3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.

- 4: See Table 3-2 for RESET value for specific condition.
- 5: Bit 6 of PORTA, LATA, and TRISA are enabled in ECIO and RCIO oscillator modes only. In all other oscillator modes, they are disabled and read '0'.
- **6:** The long write enable is only reset on a POR or $\overline{\text{MCLR}}$ Reset.
- 7: Bit 6 of PORTA, LATA and TRISA are not available on all devices. When unimplemented, they are read as '0'.

TABLE 4-2:	REGISTER FILE SUMMARY (CONTINUED)
------------	-----------------------------------

File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Details on page:	
WDTCON	-	—	—	—	—	-	_	SWDTE	0	183	
RCON	IPEN	LWRT	—	RI	TO	PD	POR	BOR	0q-1 11qq	53, 56, 74	
TMR1H	Timer1 Reg	ister High Byte		XXXX XXXX	97						
TMR1L	Timer1 Reg	Timer1 Register Low Byte									
T1CON	RD16	_	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	0-00 0000	97	
TMR2	Timer2 Reg	ister							0000 0000	101	
PR2	Timer2 Peri	od Register							1111 1111	102	
T2CON		TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	101	
SSPBUF	SSP Receiv	/e Buffer/Trans	smit Register						xxxx xxxx	121	
SSPADD	SSP Addres	ss Register in I	I ² C Slave Mod	le. SSP Baud F	Rate Reload R	egister in I ² C I	Master Mode.		0000 0000	128	
SSPSTAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	0000 0000	116	
SSPCON1	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	118	
SSPCON2	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	0000 0000	120	
ADRESH	A/D Result	A/D Result Register High Byte									
ADRESL	A/D Result	Register Low E	Byte						xxxx xxxx	171,172	
ADCON0	ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE	_	ADON	0000 00-0	165	
ADCON1	ADFM	ADCS2	_	_	PCFG3	PCFG2	PCFG1	PCFG0	00 0000	166	
CCPR1H	Capture/Co	mpare/PWM R	Register1 High	Byte					xxxx xxxx	111, 113	
CCPR1L	Capture/Co	mpare/PWM R	Register1 Low	Byte					xxxx xxxx	111, 113	
CCP1CON	_	_	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	107	
CCPR2H	Capture/Co	mpare/PWM R	Register2 High	Byte					xxxx xxxx	111, 113	
CCPR2L	Capture/Co	mpare/PWM R	Register2 Low	Byte					xxxx xxxx	111, 113	
CCP2CON	_	_	DC2B1	DC2B0	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00 0000	107	
TMR3H	Timer3 Reg	ister High Byte	9						xxxx xxxx	103	
TMR3L	Timer3 Reg	ister Low Byte							xxxx xxxx	103	
T3CON	RD16	T3CCP2	T3CKPS1	T3CKPS0	T3CCP1	T3SYNC	TMR3CS	TMR3ON	0000 0000	103	
SPBRG	USART1 Ba	aud Rate Gene	erator						0000 0000	151	
RCREG	USART1 Re	eceive Registe	r						0000 0000	158, 161, 163	
TXREG	USART1 Tr	ansmit Registe	er						0000 0000	156, 159, 162	
TXSTA	CSRC	TX9	TXEN	SYNC	—	BRGH	TRMT	TX9D	0000 -010	149	
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	150	

Legend: x = unknown, u = unchanged, - = unimplemented, g = value depends on condition
Note 1: RA6 and associated bits are configured as port pins in RCIO and ECIO oscillator mode only, and read '0' in all other oscillator modes.
2: Bit 21 of the TBLPTRU allows access to the device configuration bits.

REGISTER FILE SUMMARY (CONTINUED) TABLE 4-2:

File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Details on page:
IPR2	_	_	_	—	1111	73				
PIR2	—	—	_	—	0000	69				
PIE2	_	_	_	_	0000	71				
IPR1	PSPIP	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	1111 1111	72
PIR1	PSPIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	68
PIE1	PSPIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	70
TRISE	IBF	IBF OBF IBOV PSPMODE — Data Direction bits for PORTE								
TRISD	Data Directi	Data Direction Control Register for PORTD								
TRISC	Data Direction Control Register for PORTC									83
TRISB	Data Direction Control Register for PORTB									80
TRISA	_	TRISA6 ⁽¹⁾	Data Directi	on Control Reg	ister for PORT	A			-111 1111	77
LATE	-	—	— — Read PORTE Data Latch, Write PORTE Data Latch							87
LATD	Read PORT	D Data Latch,	Write PORTE	Data Latch	•				xxxx xxxx	85
LATC	Read PORT	C Data Latch,	Write PORTO	C Data Latch					xxxx xxxx	83
LATB	Read PORT	B Data Latch,	Write PORTE	B Data Latch					xxxx xxxx	80
LATA	_	LATA6 ⁽¹⁾	Read PORT	A Data Latch, V	Write PORTA	Data Latch ⁽¹⁾			-xxx xxxx	77
PORTE	Read PORT	E pins, Write	PORTE Data	Latch					000	87
PORTD	Read PORT	D pins, Write	PORTD Data	Latch					xxxx xxxx	85
PORTC	Read PORT	C pins, Write	PORTC Data	Latch					xxxx xxxx	83
PORTB	Read PORT	B pins, Write	PORTB Data	Latch					xxxx xxxx	80
PORTA	—	RA6 ⁽¹⁾	Read PORT	A pins, Write P	ORTA Data La	atch ⁽¹⁾			-x0x 0000	77

Legend: x = unknown, u = unchanged, - = unimplemented, g = value depends on condition
Note 1: RA6 and associated bits are configured as port pins in RCIO and ECIO oscillator mode only, and read '0' in all other oscillator modes.
2: Bit 21 of the TBLPTRU allows access to the device configuration bits.

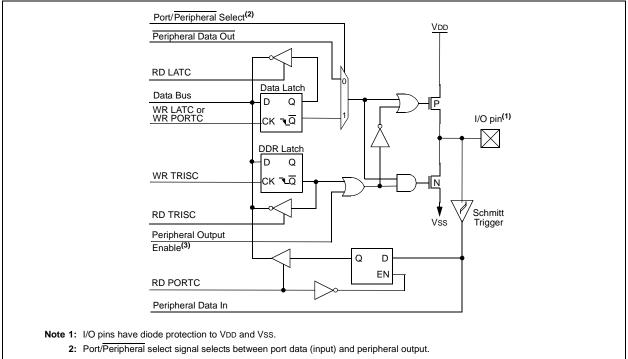
8.3 PORTC, TRISC and LATC Registers

PORTC is an 8-bit wide, bi-directional port. The corresponding Data Direction Register is TRISC. Setting a TRISC bit (= 1) will make the corresponding PORTC pin an input (i.e., put the corresponding output driver in a Hi-Impedance mode). Clearing a TRISC bit (= 0) will make the corresponding PORTC pin an output (i.e., put the contents of the output latch on the selected pin).

Note:	On a Power-on Reset, these pins are con-
	figured as digital inputs.

The Data Latch register (LATC) is also memory mapped. Read-modify-write operations on the LATC register reads and writes the latched output value for PORTC.

PORTC is multiplexed with several peripheral functions (Table 8-5). PORTC pins have Schmitt Trigger input buffers.


When enabling peripheral functions, care should be taken in defining TRIS bits for each PORTC pin. Some peripherals override the TRIS bit to make a pin an output, while other peripherals override the TRIS bit to make a pin an input. The user should refer to the corresponding peripheral section for the correct TRIS bit settings. The pin override value is not loaded into the TRIS register. This allows read-modify-write of the TRIS register, without concern due to peripheral overrides.

RC1 is normally configured by the configuration bit CCP2MX as the default peripheral pin for the CCP2 module (default/erased state, CCP2MX = '1').

EXAMPLE 0-3: INITIALIZING PURIC	XAMPLE 8-3:	INITIALIZING PORTC
---------------------------------	-------------	--------------------

CLRF	PORTC	; Initialize PORTC by
		; clearing output
		; data latches
CLRF	LATC	; Alternate method
		; to clear output
		; data latches
MOVLW	0xCF	; Value used to
		; initialize data
		; direction
MOVWF	TRISC	; Set RC<3:0> as inputs
		; RC<5:4> as outputs
		; RC<7:6> as inputs

FIGURE 8-7: PORTC BLOCK DIAGRAM (PERIPHERAL OUTPUT OVERRIDE)

3: Peripheral Output Enable is only active if peripheral select is active.

13.3 Capture Mode

In Capture mode, CCPR1H:CCPR1L captures the 16-bit value of the TMR1 or TMR3 registers when an event occurs on pin RC2/CCP1. An event is defined as:

- · every falling edge
- every rising edge
- every 4th rising edge
- every 16th rising edge

An event is selected by control bits CCP1M3:CCP1M0 (CCP1CON<3:0>). When a capture is made, the interrupt request flag bit CCP1IF (PIR1<2>) is set. It must be cleared in software. If another capture occurs before the value in register CCPR1 is read, the old captured value will be lost.

13.3.1 CCP PIN CONFIGURATION

In Capture mode, the RC2/CCP1 pin should be configured as an input by setting the TRISC<2> bit.

Note:	If the RC2/CCP1 is configured as an out-
	put, a write to the port can cause a capture condition.
	oonalion.

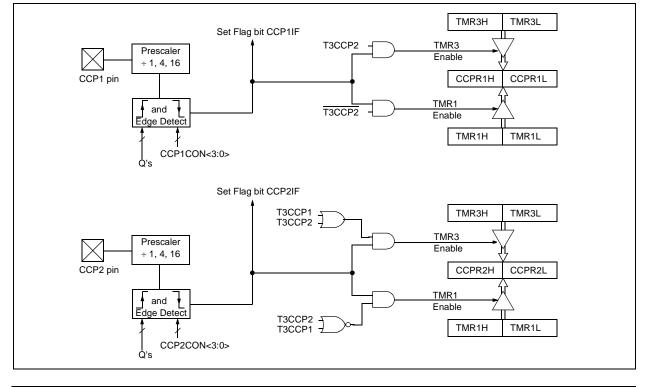
13.3.2 TIMER1/TIMER3 MODE SELECTION

The timers that are to be used with the capture feature (either Timer1 and/or Timer3) must be running in Timer mode or Synchronized Counter mode. In Asynchronous Counter mode, the capture operation may not work. The timer to be used with each CCP module is selected in the T3CON register.

13.3.3 SOFTWARE INTERRUPT

When the Capture mode is changed, a false capture interrupt may be generated. The user should keep bit CCP1IE (PIE1<2>) clear to avoid false interrupts and should clear the flag bit, CCP1IF, following any such change in operating mode.

13.3.4 CCP PRESCALER


There are four prescaler settings, specified by bits CCP1M3:CCP1M0. Whenever the CCP module is turned off, or the CCP module is not in Capture mode, the prescaler counter is cleared. This means that any RESET will clear the prescaler counter.

Switching from one capture prescaler to another may generate an interrupt. Also, the prescaler counter will not be cleared, therefore, the first capture may be from a non-zero prescaler. Example 13-1 shows the recommended method for switching between capture prescalers. This example also clears the prescaler counter and will not generate the "false" interrupt.

EXAMPLE 13-1: CHANGING BETWEEN CAPTURE PRESCALERS

CLRF	CCP1CON, F	;	Turn CCP module off
MOVLW	NEW_CAPT_PS	;	Load WREG with the
		;	new prescaler mode
		;	value and CCP ON
MOVWF	CCP1CON	;	Load CCP1CON with
		;	this value

FIGURE 13-1: CAPTURE MODE OPERATION BLOCK DIAGRAM

NOTES:

14.2 Control Registers

The MSSP module has three associated registers. These include a status register (SSPSTAT) and two control registers (SSPCON1 and SSPCON2).

REGISTER 14-1: SSPSTAT: MSSP STATUS REGISTER

- n = Value at POR

'1' = Bit is set

	R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0				
	SMP	CKE	D/A	Р	S	R/W	UA	BF				
	bit 7	1	1					bit 0				
bit 7	SMP: Sam	nlo hit										
	SPI Master	•										
			l at end of da	ata outout tii	me							
	-		l at middle o									
		SPI Slave mode:										
	SMP must be cleared when SPI is used in Slave mode											
		In J ² C Master or Slave mode:										
		 Slew rate control disabled for standard speed mode (100 kHz and 1 MHz) 										
	0 = Slew r	ate control e	enabled for h	nigh speed r	node (400 kl	Hz)						
bit 6	CKE: SPI (Clock Edge	Select bit									
	<u>CKP = 0:</u>											
	1 = Data tra	ansmitted or	n rising edge	e of SCK								
	0 = Data tra	ansmitted or	n falling edg	e of SCK								
	<u>CKP = 1:</u>											
			n falling edg									
			n rising edge									
bit 5			(I ² C mode o									
			•		smitted was							
	0 = Indicate	es that the la	ast byte rece	eived or tran	smitted was	address						
bit 4	P: STOP b											
	•	•					SSPEN is c	leared.)				
					ed last (this b	oit is '0' on R	ESET)					
	0 = STOP	bit was not c	letected last									
	Legend:											
	R = Reada	ble bit	W = Writab	le bit	U = Unimpl	emented bit	t, read as '0'					
					2 Simp		,					

'0' = Bit is cleared

x = Bit is unknown

15.0 ADDRESSABLE UNIVERSAL SYNCHRONOUS ASYNCHRONOUS RECEIVER TRANSMITTER (USART)

The Universal Synchronous Asynchronous Receiver Transmitter (USART) module is one of the two serial I/O modules. (USART is also known as a Serial Communications Interface or SCI.) The USART can be configured as a full duplex asynchronous system that can communicate with peripheral devices, such as CRT terminals and personal computers, or it can be configured as a half-duplex synchronous system that can communicate with peripheral devices, such as A/D or D/A integrated circuits, serial EEPROMs, etc. The USART can be configured in the following modes:

- Asynchronous (full duplex)
- Synchronous Master (half duplex)
- Synchronous Slave (half duplex)

In order to configure pins RC6/TX/CK and RC7/RX/DT as the Universal Synchronous Asynchronous Receiver Transmitter:

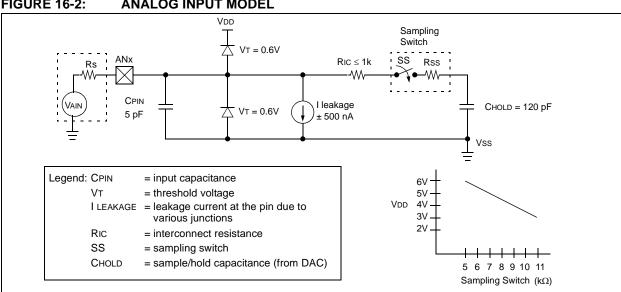
- bit SPEN (RCSTA<7>) must be set (= 1), and
- bits TRISC<7:6> must be cleared (= 0).

Register 15-1 shows the Transmit Status and Control Register (TXSTA) and Register 15-2 shows the Receive Status and Control Register (RCSTA).

REGISTER 15-1: TXSTA: TRANSMIT STATUS AND CONTROL REGISTER

	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R-1	R/W-0
	CSRC	TX9	TXEN	SYNC		BRGH	TRMT	TX9D
	bit 7							bit 0
bit 7	Asynchron Don't care Synchrono 1 = Master		generated in	•	BRG)			
bit 6	1 = Selects	Transmit Enal s 9-bit transmi s 8-bit transmi	ission					
bit 5	1 = Transm	nsmit Enable nit enabled nit disabled	bit					
	Note:	SREN/CREN	l overrides T	XEN in SYN	C mode.			
bit 4	1 = Synchr	ART Mode Se onous mode nronous mode						
bit 3	Unimplem	ented: Read	as '0'					
bit 2	BRGH: Hig Asynchron 1 = High sp 0 = Low sp Synchrono Unused in	beed beed <u>us mode:</u>	Select bit					
bit 1	TRMT : Trai 1 = TSR er 0 = TSR fu		egister Status	s bit				
bit 0	TX9D: 9th	bit of transmit	t data. Can b	e Address/D	ata bit or a	parity bit.		
	Legend:							
	R = Reada	ble bit	W = Wri	table bit	U = Unimp	lemented b	oit, read as '	0'

	- 3				
R = Readable bit		W = Writable bit	U = Unimplemented	bit, read as '0'	
	- n = Value at POR reset	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	


The value that is in the ADRESH/ADRESL registers is not modified for a Power-on Reset. The ADRESH/ ADRESL registers will contain unknown data after a Power-on Reset.

After the A/D module has been configured as desired, the selected channel must be acquired before the conversion is started. The analog input channels must have their corresponding TRIS bits selected as an input. To determine acquisition time, see Section 16.1. After this acquisition time has elapsed, the A/D conversion can be started. The following steps should be followed for doing an A/D conversion:

- 1. Configure the A/D module:
 - · Configure analog pins, voltage reference and digital I/O (ADCON1)
 - Select A/D input channel (ADCON0)
 - Select A/D conversion clock (ADCON0)
 - Turn on A/D module (ADCON0)
- 2. Configure A/D interrupt (if desired):
 - · Clear ADIF bit
 - Set ADIE bit
 - · Set GIE bit
- 3. Wait the required acquisition time.
- 4. Start conversion:
 - Set GO/DONE bit (ADCON0)
- 5. Wait for A/D conversion to complete, by either:
 - Polling for the GO/DONE bit to be cleared

OR

- Waiting for the A/D interrupt
- 6. Read A/D Result registers (ADRESH/ADRESL); clear bit ADIF if required.
- 7. For next conversion, go to step 1 or step 2, as required. The A/D conversion time per bit is defined as TAD. A minimum wait of 2TAD is required before next acquisition starts.

FIGURE 16-2: ANALOG INPUT MODEL

16.1 A/D Acquisition Requirements

For the A/D converter to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The analog input model is shown in Figure 16-2. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD). The source impedance affects the offset voltage at the analog input (due to pin leakage current). The maximum recommended impedance for analog sources is 2.5 k Ω . After the analog input channel is selected (changed), this acquisition must be done before the conversion can be started.

When the conversion is started, the hold-Note: ing capacitor is disconnected from the input pin.

17.2.1 REFERENCE VOLTAGE SET POINT

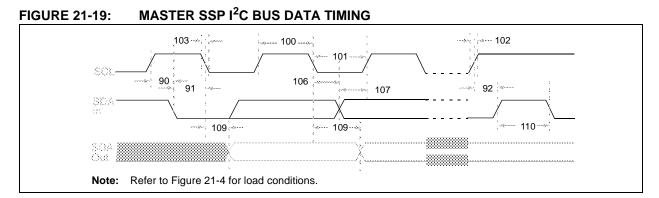
The Internal Reference Voltage of the LVD module may be used by other internal circuitry (the Programmable Brown-out Reset). If these circuits are disabled (lower current consumption), the reference voltage circuit requires a time to become stable before a low voltage condition can be reliably detected. This time is invariant of system clock speed. This start-up time is specified in electrical specification parameter #36. The low voltage interrupt flag will not be enabled until a stable reference voltage is reached. Refer to the waveform in Figure 17-4.

17.2.2 CURRENT CONSUMPTION

When the module is enabled, the LVD comparator and voltage divider are enabled and will consume static current. The voltage divider can be tapped from multiple places in the resistor array. Total current consumption, when enabled, is specified in electrical specification parameter #D022B.

17.3 Operation During SLEEP

When enabled, the LVD circuitry continues to operate during SLEEP. If the device voltage crosses the trip point, the LVDIF bit will be set and the device will wakeup from SLEEP. Device execution will continue from the interrupt vector address, if interrupts have been globally enabled.


17.4 Effects of a RESET

A device RESET forces all registers to their RESET state. This forces the LVD module to be turned off.

BRA	A Contraction of the second seco	Unconditi	ional Branc	h	BSF		Bit Set f				
Synt	tax:	[<i>label</i>] BRA n		Syntax	x:	[<i>label</i>] B	[label] BSF f,b[,a]				
Operands:		-1024 ≤ n	$-1024 \le n \le 1023$			Operands:		$0 \le f \le 255$			
Ope	ration:	$(PC) + 2 + 2n \to PC$					$0 \le b \le 7$				
State	us Affected:	None			Onoro	tion		a ∈ [0,1]			
Enco	oding:	1101 Onnn nnnn nnnn			-	Operation: Status Affected:		$1 \rightarrow f < b >$			
Des	cription:	Add the 2'	s compleme	nt number				None			
		'2n' to the PC. Since the PC will			Encoding:		1000	bbba ffi			
		instruction	, the new ad This instruc	etch the next dress will be ction is a two-		Description:		Bit 'b' in register 'f' is set. If 'a' is 0 Access Bank will be selected, over- riding the BSR value. If 'a' = 1, then the bank will be selected as per the			
Wor	ds:	1					BSR value) .			
Cycl	es:	2			Words	5:	1				
QC	Cycle Activity	:			Cycles	S:	1				
	Q1	Q2	Q3	Q4	Q Cy	cle Activity	:				
	Decode	Read literal	Process	Write to PC	_	Q1	Q2	Q3	Q4		
	No	'n' No	Data No	No		Decode	Read register 'f'	Process Data	Write register 'f'		
	operation	operation	operation	operation							
					Exam	<u>ole</u> :	BSF F	LAG_REG, 7	, 1		
<u>Exa</u>	mple:	HERE	BRA Jump		В			0.7			
Before Instruction			Α	FLAG_REG= 0x0A After Instruction							
	PC = address (HERE)					FLAG RI		8A			
	After Instruc		dress (Jum	(a		_					
	10	- 44	a. 666 (0 am	r /							

LFS	R	Load FSF	R		MOVF	Move f				
Syn	tax:	[label]	LFSR f,k		Syntax:	[label]	[<i>label</i>] MOVF f[,d[,a]			
Operands:		$\begin{array}{l} 0 \leq f \leq 2 \\ 0 \leq k \leq 40 \end{array}$	95		Operands:	d ∈ [0,1]				
Ope	ration:	$k \rightarrow FSRf$					a ∈ [0,1]			
Stat	us Affected:	None			Operation:	$f \rightarrow dest$				
Encoding:		1110 1110 00ff k ₁₁ kkk 1111 0000 k ₇ kkk kkkk			Status Affected: Encoding:	N,Z				
Description:		The 12-bit literal 'k' is loaded into the file select register pointed to by 'f'.			Description:	moved to	The contents of register 'f' are moved to a destination dependent upon the status of 'd'. If 'd' is 0, the			
Wor	ds:	2	2 result is				sult is placed in WREG. If 'd' is 1,			
Cyc	les:	2				the result is placed back in register 'f' (default). Location 'f' can be any- where in the 256 byte bank. If 'a' is				
QC	Cycle Activity									
	Q1	Q2	Q3	Q4		0, the Access Bank will be selected, overriding the BSR value. If 'a' = 1, then the bank will be selected as per the BSR value (default).				
	Decode	Read literal 'k' MSB	Process Data	Write literal 'k' MSB to FSRfH						
	Decode	Read literal	Process	Write literal	Words:	1				
		'k' LSB	Data	'k' to FSRfL	Cycles:	1				
Exa	mple:	LFSR 2,	0x3AB		Q Cycle Activity	:				
	After Instruc				Q1	Q2	Q3	Q4		
	FSR2H FSR2L	= 0x	:03 :AB		Decode	Read register 'f'	Process Data	Write WREG		
					Example:	MOVF R	EG, 0, 0			
					Before Instru REG	= 0x	22			
					WREG After Instruc		FF			

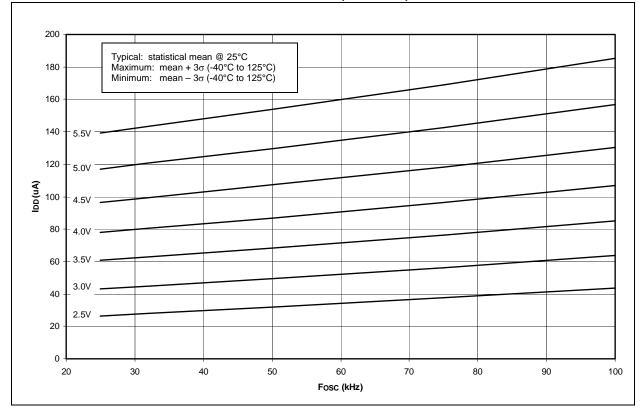
 $\begin{array}{rcl} \text{REG} &=& 0 \text{x22} \\ \text{WREG} &=& 0 \text{x22} \end{array}$

TABLE 21-18: MASTER SSP I²C BUS DATA REQUIREMENTS

Param. No.	Symbol	Charac	teristic	Min	Max	Units	Conditions
100	Thigh	Clock high time	100 kHz mode	2(Tosc)(BRG + 1)	—	ms	
			400 kHz mode	2(Tosc)(BRG + 1)	_	ms	
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	—	ms	
101	TLOW	Clock low time	100 kHz mode	2(Tosc)(BRG + 1)	—	ms	
			400 kHz mode	2(Tosc)(BRG + 1)	—	ms	
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_	ms	
102	Tr	SDA and SCL	100 kHz mode	—	1000	ns	CB is specified to be
		rise time	400 kHz mode	20 + 0.1Св	300	ns	from 10 to 400 pF
			1 MHz mode ⁽¹⁾	_	300	ns	
103	TF	SDA and SCL	100 kHz mode		300	ns	CB is specified to be
		fall time	400 kHz mode	20 + 0.1Св	300	ns	from 10 to 400 pF
			1 MHz mode ⁽¹⁾	—	100	ns	
90	TSU:STA	START condition	100 kHz mode	2(Tosc)(BRG + 1)		ms	Only relevant for
		setup time	400 kHz mode	2(Tosc)(BRG + 1)	—	ms	Repeated START
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_	ms	condition
91	THD:STA	START condition	100 kHz mode	2(Tosc)(BRG + 1)		ms	After this period the
		hold time	400 kHz mode	2(Tosc)(BRG + 1)		ms	first clock pulse is
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_	ms	generated
106	THD:DAT	Data input	100 kHz mode	0	_	ns	
		hold time	400 kHz mode	0	0.9	ms	
			1 MHz mode ⁽¹⁾	TBD	_	ns	
107	TSU:DAT	Data input	100 kHz mode	250	_	ns	(Note 2)
		setup time	400 kHz mode	100	—	ns	
			1 MHz mode ⁽¹⁾	TBD	_	ns	
92	TSU:STO	STOP condition	100 kHz mode	2(Tosc)(BRG + 1)	—	ms	
		setup time	400 kHz mode	2(Tosc)(BRG + 1)		ms	
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_	ms	
109	ΤΑΑ	Output valid from	100 kHz mode	—	3500	ns	
		clock	400 kHz mode	—	1000	ns	
			1 MHz mode ⁽¹⁾			ns	
110	TBUF	Bus free time	100 kHz mode	4.7		ms	Time the bus must be
			400 kHz mode	1.3	—	ms	free before a new
			1 MHz mode ⁽¹⁾	TBD		ms	transmission can start
D102	Св	Bus capacitive loa		—	400	pF	

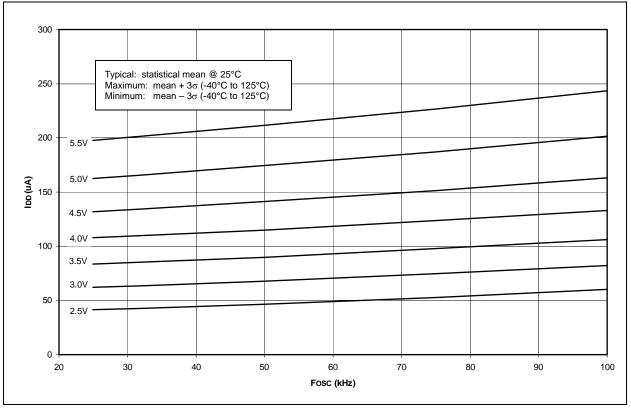
Note 1: Maximum pin capacitance = 10 pF for all I^2C pins.

2: A fast mode I²C bus device can be used in a standard mode I²C bus system, but parameter #107 ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line, parameter #102 + parameter #107 = 1000 + 250 = 1250 ns (for 100 kHz mode) before the SCL line is released.


TABLE 21-21: A/D CONVERTER CHARACTERISTICS: PIC18CXX2 (INDUSTRIAL, EXTENDED) PIC18LCXX2 (INDUSTRIAL)

Param No.	Symbol	Charac	teristic	Min	Тур	Max	Units	Conditions
A01	NR	Resolution		_	_	10 10	bit bit	$\label{eq:VREF} \begin{array}{l} VREF = VDD \geq 3.0V \\ VREF = VDD < 3.0V \end{array}$
A03	EIL	Integral linearity error		_	_	<±1 <±2	LSb LSb	$\label{eq:VREF} \begin{array}{l} VREF = VDD \geq 3.0V \\ VREF = VDD < 3.0V \end{array}$
A04	Edl	Differential lines	arity error	_	_	<±1 <±2	LSb LSb	$\label{eq:VREF} \begin{array}{l} VREF = VDD \geq 3.0V \\ VREF = VDD < 3.0V \end{array}$
A05	Efs	Full scale error	_	_	<±1 <±1	LSb LSb	$\label{eq:VREF} \begin{array}{l} VREF = VDD \geq 3.0V \\ VREF = VDD < 3.0V \end{array}$	
A06	EOFF	Offset error		_	_	<±1 <±1	LSb LSb	$\label{eq:VREF} \begin{array}{l} VREF = VDD \geq 3.0V \\ VREF = VDD < 3.0V \end{array}$
A10	_	Monotonicity	g	uarantee	ed ⁽³⁾	—	$VSS \leq VAIN \leq VREF$	
A20	Vref	Reference voltage		0V		—	V	
A20A		(Vrefh - Vrefl)		3V		_	V	For 10-bit resolution
A21	Vrefh	Reference voltage High		AVss	—	AVDD + 0.3V	V	
A22	Vrefl	Reference voltage Low		AVss - 0.3V	—	AVdd	V	
A25	VAIN	Analog input voltage		AVss - 0.3V	—	VREF + 0.3V	V	
A30	ZAIN	Recommended analog voltage		—	—	10.0	kΩ	
A40	IAD	A/D conversion	PIC18 C XXX		180	—	μΑ	Average current
		current (VDD)	PIC18LCXXX	—	90	—	μA	consumption when A/D is on (Note 1) .
A50	IREF	VREF input curr	ent (Note 2)	10		1000	μΑ	During VAIN acquisition. Based on differential of VHOLD to VAIN. To charge CHOLD, see Section 16.0.
				—	—	10	μΑ	During A/D conversion cycle.

Note 1: When A/D is off, it will not consume any current other than minor leakage current. The power-down current spec includes any such leakage from the A/D module. VREF current is from RA2/AN2/VREF- and RA3/AN3/VREF+ pins or AVDD and AVss pins, whichever is selected as reference input.


2: VSS \leq VAIN \leq VREF

3: The A/D conversion result never decreases with an increase in the Input Voltage, and has no missing codes.

FIGURE 22-7: TYPICAL IDD vs. Fosc OVER VDD (LP MODE)

NOTES:

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support