

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	33
Program Memory Size	32KB (16K x 16)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18c452-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TADLE 1-3. FIL	51004			U DES		JNS (CONTINUED)
Din Nome	Pi	in Numb	ber	Pin	Buffer	Description
	DIP	PLCC	TQFP	Туре	Туре	Description
						PORTB is a bi-directional I/O port. PORTB can be software programmed for internal weak pull-ups on all inputs.
RB0/INT0 RB0 INT0	33	36	8	I/O I	TTL ST	Digital I/O. External Interrupt 0.
RB1/INT1 RB1 INT1	34	37	9	I/O I	TTL ST	External Interrupt 1.
RB2/INT2 RB2 INT2	35	38	10	I/O I	TTL ST	Digital I/O. External Interrupt 2.
RB3/CCP2 RB3 CCP2	36	39	11	I/O I/O	TTL ST	Digital I/O. Capture2 input, Compare2 output, PWM2 output.
RB4	37	41	14	I/O	TTL	Digital I/O. Interrupt-on-change pin.
RB5	38	42	15	I/O	TTL	Digital I/O. Interrupt-on-change pin.
RB6	39	43	16	I/O I	TTL ST	Digital I/O. Interrupt-on-change pin. ICSP programming clock.
RB7	40	44	17	I/O I/O	TTL ST	Digital I/O. Interrupt-on-change pin. ICSP programming data.
Legend: TTL = TTL	compa	atible inp	out	_	CM	OS = CMOS compatible input or output

PIC18C4X2 PINOLIT I/O DESCRIPTIONS (CONTINUED) TARI E 1-3.

ST = Schmitt Trigger input with CMOS levels I = Input

O = Output

P = Power

OD = Open Drain (no P diode to VDD)

5.0 TABLE READS/TABLE WRITES

Enhanced devices have two memory spaces: the program memory space and the data memory space. The program memory space is 16-bits wide, while the data memory space is 8 bits wide. Table Reads and Table Writes have been provided to move data between these two memory spaces through an 8-bit register (TABLAT).

The operations that allow the processor to move data between the data and program memory spaces are:

- Table Read (TBLRD)
- Table Write (TBLWT)

Table Read operations retrieve data from program memory and place it into the data memory space. Figure 5-1 shows the operation of a Table Read with program and data memory.

Table Write operations store data from the data memory space into program memory. Figure 5-2 shows the operation of a Table Write with program and data memory.

Table operations work with byte entities. A table block containing data is not required to be word aligned, so a table block can start and end at any byte address. If a Table Write is being used to write an executable program to program memory, program instructions will need to be word aligned.

FIGURE 5-2: TABLE WRITE OPERATION

DECISTED 7.5.	
REGISTER 7-5.	PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 2 (FIR2)

- n = Value at POR reset '1' = Bit is set

	0-0	0-0	0-0	0-0	R/W-0	R/W-0	R/VV-0	R/W-0				
			—		BCLIF	LVDIF	TMR3IF	CCP2IF				
	bit 7							bit 0				
bit 7-4	Unimplem	ented: Read	as '0'									
bit 3	BCLIF: Bus Collision Interrupt Flag bit											
	1 = A bus collision occurred (must be cleared in software)											
	0 = No bus collision occurred											
bit 2	bit 2 LVDIF: Low Voltage Detect Interrupt Flag bit											
	1 = A low voltage condition occurred (must be cleared in software)											
	0 = The device voltage is above the Low Voltage Detect trip point											
bit 1	TMR3IF: TMR3 Overflow Interrupt Flag bit											
	1 = TMR3 register overflowed (must be cleared in software)											
	0 = IMR3	register did n	ot overflow									
bit 0	CCP2IF: CCPx Interrupt Flag bit											
	Capture m	<u>ode:</u>			leared in ear	(t)						
	$\perp = A \prod M R$ $\cap = N \cap T M$	R1 register ca	anture occure	red	cleared in sc	ntware)						
	Compare r	node:		icu								
	1 = A TMR	1 register co	mpare match	occurred (m	nust be clea	red in softv	ware)					
	0 = No TM	R1 register c	ompare mate	ch occurred								
	PWM mod	<u>e:</u>										
	Unused in this mode											
	Legend:											
	R = Reada	able bit	W = Writ	able bit	U = Unimp	lemented	bit, read as	'0'				

'0' = Bit is cleared

x = Bit is unknown

7.3 PIE Registers

The PIE registers contain the individual enable bits for the peripheral interrupts. Due to the number of peripheral interrupt sources, there are two Peripheral Interrupt Enable Registers (PIE1, PIE2). When IPEN = 0, the PEIE bit must be set to enable any of these peripheral interrupts.

REGISTER 7-6: PERIPHERAL INTERRUPT ENABLE REGISTER 1 (PIE1)

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
	PSPIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE				
	bit 7							bit 0				
bit 7	PSPIE: Pa	rallel Slave	Port Read/	Vrite Interru	pt Enable bit							
	1 = Enable 0 = Disable	es the PSP re es the PSP r	ead/write in ead/write ir	terrupt nterrupt								
bit 6	ADIE: A/D	Converter In	nterrupt Ena	able bit								
	1 = Enable 0 = Disable	es the A/D in es the A/D in	terrupt nterrupt									
bit 5	RCIE: USA	ART Receive	Interrupt E	nable bit								
	1 = Enables the USART receive interrupt											
	0 = Disable	es the USAF		nterrupt								
bit 4	IXIE: USA		t Interrupt E	nable bit								
	1 = Enable 0 = Disable	es the USAR	T transmit i RT transmit	interrupt								
bit 3	SSPIE: Master Synchronous Serial Port Interrupt Enable bit											
	1 = Enables the MSSP interrupt											
	0 = Disables the MSSP interrupt											
bit 2	CCP1IE: C	CP1 Interru	pt Enable b	it								
	 1 = Enables the CCP1 interrupt 0 = Disables the CCP1 interrupt 											
bit 1	TMR2IE: T	MR2 to PR2	2 Match Inte	errupt Enabl	e bit							
	 1 = Enables the TMR2 to PR2 match interrupt 0 = Disables the TMR2 to PR2 match interrupt 											
bit 0	TMR1IE: T	MR1 Overflo	ow Interrupt	Enable bit								
	 1 = Enables the TMR1 overflow interrupt 0 = Disables the TMR1 overflow interrupt 											
	Legend:											
	R = Reada	ble bit	VV = V	Vritable bit	U = Unimple	emented bi	t, read as '()'				
	- n = Value	at POR	'1' = E	Bit is set	'0' = Bit is c	leared	x = Bit is ur	nknown				

TABLE 8-1: PORTA FUNCTIONS

Name	Bit#	Buffer	Function
RA0/AN0	bit0	TTL	Input/output or analog input.
RA1/AN1	bit1	TTL	Input/output or analog input.
RA2/AN2/VREF-	bit2	TTL	Input/output or analog input or VREF
RA3/AN3/VREF+	bit3	TTL	Input/output or analog input or VREF+.
RA4/T0CKI	bit4	ST	Input/output or external clock input for Timer0. Output is open drain type.
RA5/SS/AN4/LVDIN	bit5	TTL	Input/output or slave select input for synchronous serial port or analog input, or low voltage detect input.
OSC2/CLKO/RA6	bit6	TTL	OSC2 or clock output or I/O pin.

Legend: TTL = TTL input, ST = Schmitt Trigger input

TABLE 8-2: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other RESETS
PORTA	—	RA6	RA5	RA4	RA3	RA2	RA1	RA0	0x 0000	0u 0000
LATA	—	Latch A	Data Out	out Regis	ster			xx xxxx	uu uuuu	
TRISA	—	PORTA	PORTA Data Direction Register						11 1111	11 1111
ADCON1	ADFM	ADCS2		—	PCFG3	PCFG2	PCFG1	PCFG0	0- 0000	0- 0000

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTA.

 $\ensuremath{\textcircled{}^\circ}$ 1999-2013 Microchip Technology Inc.

9.1 Timer0 Operation

Timer0 can operate as a timer or as a counter.

Timer mode is selected by clearing the T0CS bit. In Timer mode, the Timer0 module will increment every instruction cycle (without prescaler). If the TMR0 register is written, the increment is inhibited for the following two instruction cycles. The user can work around this by writing an adjusted value to the TMR0 register.

Counter mode is selected by setting the T0CS bit. In Counter mode, Timer0 will increment either on every rising, or falling edge of pin RA4/T0CKI. The incrementing edge is determined by the Timer0 Source Edge Select bit (T0SE). Clearing the T0SE bit selects the rising edge. Restrictions on the external clock input are discussed below.

When an external clock input is used for Timer0, it must meet certain requirements. The requirements ensure the external clock can be synchronized with the internal phase clock (Tosc). Also, there is a delay in the actual incrementing of Timer0 after synchronization.

9.2 Prescaler

An 8-bit counter is available as a prescaler for the Timer0 module. The prescaler is not readable or writable.

The PSA and T0PS2:T0PS0 bits determine the prescaler assignment and prescale ratio.

Clearing bit PSA will assign the prescaler to the Timer0 module. When the prescaler is assigned to the Timer0 module, prescale values of 1:2, 1:4,..., 1:256 are selectable.

When assigned to the Timer0 module, all instructions writing to the TMR0 register (e.g. CLRF TMR0, MOVWF TMR0, BSF TMR0, x....etc.) will clear the prescaler count.

Note:	Writing to TMR0 when the prescaler is
	assigned to Timer0 will clear the prescaler
	count, but will not change the prescaler
	assignment.

9.2.1 SWITCHING PRESCALER ASSIGNMENT

The prescaler assignment is fully under software control (i.e., it can be changed "on-the-fly" during program execution).

9.3 Timer0 Interrupt

The TMR0 interrupt is generated when the TMR0 register overflows from FFh to 00h in 8-bit mode, or FFFFh to 0000h in 16-bit mode. This overflow sets the TMR0IF bit. The interrupt can be masked by clearing the TMR0IE bit. The TMR0IE bit must be cleared in software by the Timer0 module Interrupt Service Routine before re-enabling this interrupt. The TMR0 interrupt cannot awaken the processor from SLEEP, since the timer is shut-off during SLEEP.

9.4 16-Bit Mode Timer Reads and Writes

TMR0H is not the high byte of the timer/counter in 16-bit mode, but is actually a buffered version of the high byte of Timer0 (refer to Figure 9-2). The high byte of the Timer0 counter/timer is not directly readable nor writable. TMR0H is updated with the contents of the high byte of Timer0 during a read of TMR0L. This provides the ability to read all 16-bits of Timer0 without having to verify that the read of the high and low byte were valid due to a rollover between successive reads of the high and low byte.

A write to the high byte of Timer0 must also take place through the TMR0H buffer register. Timer0 high byte is updated with the contents of TMR0H when a write occurs to TMR0L. This allows all 16-bits of Timer0 to be updated at once.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other RESETS
TMR0L	Timer0 Mode	ule's Low Byte		xxxx xxxx	uuuu uuuu					
TMR0H	Timer0 Mode	ule's High Byte	0000 0000	0000 0000						
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INTOIF	RBIF	x000 0000	0000 000u
T0CON	TMR0ON	T08BIT	TOCS	T0SE	PSA	T0PS2	T0PS1	T0PS0	1111 1111	1111 1111
TRISA	—	—	PORTA D	ata Directi	11 1111	11 1111				

 TABLE 9-1:
 REGISTERS ASSOCIATED WITH TIMER0

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by Timer0.

^{© 1999-2013} Microchip Technology Inc.

NOTES:

14.2 Control Registers

The MSSP module has three associated registers. These include a status register (SSPSTAT) and two control registers (SSPCON1 and SSPCON2).

REGISTER 14-1: SSPSTAT: MSSP STATUS REGISTER

- n = Value at POR

'1' = Bit is set

	R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0						
	SMP	CKE	D/A	Р	S	R/W	UA	BF						
	bit 7							bit 0						
bit 7	SMP: Sam	ple bit												
	SPI Master	r mode:												
	1 = Input d	ata sampled	at end of da	ata output ti	me									
	0 = Input d	ata sampled	at middle o	f data outpu	t time									
	SPI Slave	SMP must be cleared when SPI is used in Slave mode												
	SMP must	Sivie must be cleared when SPI is used in Slave mode												
	In I ² C Master or Slave mode: 1 = Slew rate control disabled for standard speed mode (100 kHz and 1 MHz) 0 = Slew rate control enabled for high speed mode (400 kHz)													
bit 6	CKE: SPI	Clock Edge	Select bit											
	<u>CKP = 0:</u>													
	1 = Data tr	ansmitted or	n rising edge	e of SCK										
	0 = Data transmitted on falling edge of SCK													
	<u>CKP = 1:</u>	<u>CKP = 1:</u>												
	1 = Data tra	1 = Data transmitted on falling edge of SCK												
	0 <u>=</u> Data tr	ansmitted or	n rising edge	e of SCK										
bit 5	D/A: Data/	Address bit ((I ² C mode o	nly)										
	1 = Indicate	es that the la	ast byte rece	eived or tran	smitted was	data								
	0 = Indicates that the last byte received or transmitted was address													
bit 4	P: STOP b (I ² C mode	it only. This bit	t is cleared v	when the MS	SSP module	is disabled,	SSPEN is (cleared.)						
	1 = Indicate 0 = STOP	es that a ST bit was not c	OP bit has b letected last	een detecte	ed last (this b	oit is '0' on R	ESET)							
	Legend													
	P - Poada	hla hit	$\Lambda = \Lambda = \Lambda$	le hit	II – Unimpl	lemented bit	read as '0'							
	r = reada		vv = vvnlap		o = ommp	ienienieu Dil	, ieau as 0							

'0' = Bit is cleared

x = Bit is unknown

14.4.5 BAUD RATE GENERATOR

In I²C Master mode, the reload value for the BRG is located in the lower 7 bits of the SSPADD register (Figure 14-14). When the BRG is loaded with this value, the BRG counts down to 0 and stops until another reload has taken place. The BRG count is dec-

remented twice per instruction cycle (Tcr) on the Q2 and Q4 clocks. In I^2C Master mode, the BRG is reloaded automatically. If Clock Arbitration is taking place, for instance, the BRG will be reloaded when the SCL pin is sampled high (Figure 14-15).

NOTES:

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other RESETS
INTCON	GIE/ GIEH	PEIE/ GIEL	TMR0IE	INTOIE	RBIE	TMR0IF	INT0IF	RBIF	0000 000x	0000 000u
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
IPR1	PSPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	0000 0000	0000 0000
PIR2	_	—	—	_	BCLIF	LVDIF	TMR3IF	CCP2IF	0000	0000
PIE2	_	—	—	_	BCLIE	LVDIE	TMR3IE	CCP2IE	0000	0000
IPR2	_	—	—	_	BCLIP	LVDIP	TMR3IP	CCP2IP	0000	0000
ADRESH	A/D Result	t Register							xxxx xxxx	uuuu uuuu
ADRESL	A/D Result	t Register							xxxx xxxx	uuuu uuuu
ADCON0	ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/ DONE	—	ADON	0000 00-0	0000 00-0
ADCON1	ADFM	ADCS2	—	_	PCFG3	PCFG2	PCFG1	PCFG0	000	000
PORTA	_	RA6	RA5	RA4	RA3	RA2	RA1	RA0	0x 0000	0u 0000
TRISA	_	PORTA D	ata Directio	on Register					11 1111	11 1111
PORTE	_	—	—	_	—	RE2	RE1	RE0	000	000
LATE	_	—	_	_	_	LATE2	LATE1	LATE0	xxx	uuu
TRISE	IBF	OBF	IBOV	PSPMODE	_	PORTE Da	ata Direction	n bits	0000 -111	0000 -111

TABLE 16-3: SUMMARY OF A/D REGISTERS

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used for A/D conversion.

Note 1: The PSPIF, PSPIE and PSPIP bits are reserved on the PIC18C2X2 devices. Always maintain these bits clear.

BRA		Unconditi	onal Branci	า	BSF		Bit Set f	Bit Set f				
Syntax:		[label] Bl	RA n		Synt	ax:	[<i>label</i>] B	SF f,b[,a]				
Operan	ids:	-1024 ≤ n :	≤ 1023		Ope	rands:	$0 \le f \le 255$	5				
Operati	ion:	(PC) + 2 +	$2n \rightarrow PC$				$0 \le b \le 7$					
Status A	Affected:	None			000	ration:	a e [0,1]					
Encodir	ng:	1101	0nnn nnr	nn nnnn	Ope		$I \rightarrow I < D >$					
Descrip	otion:	Add the 2's '2n' to the have incre instruction PC+2+2n. cycle instru	nt number he PC will etch the next dress will be tion is a two-	Enco	oding: cription:	Bit 'b' in re Access Ba riding the	1000 bbba ffff ffff Bit 'b' in register 'f' is set. If 'a' is 0 Access Bank will be selected, over- riding the BSR value. If 'a' = 1, then the bank will be selected as per the					
Words:		1	1					BSR value.				
Cycles:		2	2		Wor	ds:	1					
Q Cycl	le Activity:				Cycl	es:	1					
	Q1	Q2	Q3	Q4	QC	Cycle Activity	<i>r</i> :					
[Decode	Read literal 'n'	Process Data	Write to PC		Q1 Decode	Q2 Read	Q3 Process	Q4 Write			
0	No peration	No operation	No operation	No operation			register 't'	Data	register 't'			
					Exa	<u>mple</u> :	BSF F	LAG_REG,	7, 1			
Exampl Be Afte	l <u>e</u> : fore Instru ^{PC} er Instruct	HERE Iction = add ion = add	BRA Jump dress (HER) dress (Jum)	E)		Before Instr FLAG_R After Instruc FLAG_R	uction EG= 0x ction EG= 0x	0A 8A				

MOVFF	Move f to f					
Syntax:	[label] N	MOVFF	f_s, f_d			
Operands:	$\begin{array}{l} 0 \leq f_{S} \leq 4095 \\ 0 \leq f_{d} \leq 4095 \end{array}$					
Operation:	$(f_s) \rightarrow f_d$					
Status Affected:	None					
Encoding: 1st word (source) 2nd word (destin.)	1100 1111	ffff ffff	ffff ffff	ffff _s ffff _d		
Description:	The contents of source register ' f_s ' are moved to destination register ' f_d '. Location of source ' f_s ' can be anywhere in the 4096 byte data space (000h to FFFh), and location of destination ' f_d ' can also be any-					

where from 000h to FFFh. Either source or destination can be WREG (a useful special situation). MOVFF is particularly useful for transferring a data memory location to a peripheral register (such as the transmit buffer or an I/O port).

The MOVFF instruction cannot use the PCL, TOSU, TOSH or TOSL as the destination register.

Words:

Cycles:

Q Cycle Activity:

Q1

Q1	Q2	Q2 Q3	
Decode	Read register 'f' (src)	Process Data	No operation
Decode	Decode No operation No dummy read		Write register 'f' (dest)

Example:

MOVFF REG1, REG2

Before Instruction

REG1 REG2	= =	0x33 0x11
After Instruction		
REG1	=	0x33,
REG2	=	0x33

2

2 (3)

MO۱	/LB	Move literal to low nibble in BSR						
Synt	ax:	[label]	MOVLB	k				
Ope	rands:	$0 \le k \le 25$	$0 \le k \le 255$					
Ope	ration:	$k \to BSR$						
Status Affected: None								
Enco	oding:	0000	0001	kkkl	k kkkk			
Des	cription:	The 8-bit the Bank	The 8-bit literal 'k' is loaded into the Bank Select Register (BSR).					
Wor	ds:	1						
Cycl	es:	1	1					
QC	ycle Activity:	:						
	Q1	Q2	Q3		Q4			
	Decode	Read literal 'k'	Proce Data	SS I	Write literal 'k' to BSR			
Exar	mple:	MOVLB	5					

Before Instruction					
BSR	register	=	0x02		
After Instruction					
BSR	register	=	0x05		

RCALL	Relative Call							
Syntax:	[<i>label</i>] R	[<i>label</i>] RCALL n						
Operands:	-1024 ≤ n	$-1024 \le n \le 1023$						
Operation:	(PC) + 2 - (PC) + 2 +	$(PC) + 2 \rightarrow TOS,$ (PC) + 2 + 2n \rightarrow PC						
Status Affected:	None							
Encoding:	1101	1nnn	nnn	n r	ınnn			
Words:	1K from th return add onto the s compleme Since the to fetch th new addre This instru- instruction	Subroutine call with a jump up to 1K from the current location. First, return address (PC+2) is pushed onto the stack. Then, add the 2's complement number '2n' to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC+2+2n. This instruction is a two-cycle instruction.						
Cycles:	2							
Q Cycle Activity	:							
Q1	Q2	Q3	5	Q	4			
Decode	Read literal 'n'	Proce Data	SS A	Write t	o PC			
	Push PC to stack							
No	No	No	Τ	No	D			
operation	operation	operat	ion	opera	ation			

Example:	HERE	rcall Jump
----------	------	------------

Before Instruction

PC = Address(HERE)

After Instruction

PC = Address(Jump) TOS = Address(HERE+2)

RES	ET	Reset					
Synt	ax:	[label]	RESET				
Ope	rands:	None					
Ope	ration:	Reset all registers and flags that are affected by a MCLR reset.					
Status Affected: All							
Enco	oding:	0000	0000	1111	1111		
Des	cription:	This instruet	uction pr	ovides a Reset in :	way to software.		
Wor	ds:	1					
Cycl	es:	1					
QC	cycle Activity:						
	Q1	Q2	Q3		Q4		
	Decode	Start	No		No		
		reset	operati	ion op	peration		

Example: RESET

After Instruction			
Registers	=	Reset	Value
Flags*	=	Reset	Value

TBL	RD	Table Read	d					
Synt	ax:	[label]	TBLRD (*; *+; *-; +	-*)			
Ope	rands:	None						
Ope	ration:	if TBLRD *, (Prog M TBLPTF if TBLRD *- (Prog M (TBLPT if TBLRD *- (Prog M (TBLPT) if TBLRD + (TBLPT) (Prog M	if TBLRD *, (Prog Mem (TBLPTR)) \rightarrow TABLAT; TBLPTR - No Change; if TBLRD *+, (Prog Mem (TBLPTR)) \rightarrow TABLAT; (TBLPTR) +1 \rightarrow TBLPTR; if TBLRD *-, (Prog Mem (TBLPTR)) \rightarrow TABLAT; (TBLPTR) -1 \rightarrow TBLPTR; if TBLRD +*, (TBLPTR) +1 \rightarrow TBLPTR; (Prog Mem (TBLPTR)) \rightarrow TABLAT;					
Statu	us Affected	: None			[
Enco	oding:	0000	0000	0000	10nn nn=0 * =1 *+ =2 *- =3 +*			
		contents of Program Memory (P.M.). To address the program memory, a pointer called Table Pointer (TBLPTR) is used. The TBLPTR (a 21-bit pointer) points to each byte in the program memory. TBLPTR has a 2 Mbyte address range.						
		Byte o	t Program	n Memory	VVord			
		Byte o	f Progran	n Memory	Word			
		The TBLRD instruction can modify the value of TBLPTR as follows: • no change • post-increment • post-decrement						
Wor	ds:	1						
Cycl	es:	2						
QC	ycle Activit	iy:						
	Q1	Q2	Q3	Q	4			
	Decode	No	No	N	Dation			
	No	No	No	No No				

TBLRD		Table Read (cont'd)				
Example	<u>1</u> :	TBLRD	*+	;		
Befo	re Instruc	tion				
, , I	TABLAT TBLPTR MEMORY(0	x00A356)	= = =	0x55 0x00A356 0x34	
After	Instructio	n				
r	TABLAT TBLPTR			= =	0x34 0x00A357	
Example	<u>2</u> :	TBLRD	+*	;		
Befo	re Instruc	tion				
, I I	TABLAT TBLPTR MEMORY(0 MEMORY(0	x01A357 x01A358)	= = =	0xAA 0x01A357 0x12 0x34	
After	Instructic TABLAT TBLPTR	n		=	0x34 0x01A358	

operation (Read Program Memory)

operation

operation

operation (Write TABLAT)

TABLE 21-21: A/D CONVERTER CHARACTERISTICS: PIC18CXX2 (INDUSTRIAL, EXTENDED) PIC18LCXX2 (INDUSTRIAL)

Param No.	Symbol	Charac	teristic	Min	Тур	Max	Units	Conditions
A01	NR	Resolution		—	—	10	bit	$VREF=VDD\geq 3.0V$
				—	—	10	bit	VREF = VDD < 3.0V
A03	EIL	Integral linearity	/ error	—	-	<±1	LSb	$VREF=VDD\geq 3.0V$
				—	—	<±2	LSb	VREF = VDD < 3.0V
A04	Edl	Differential linea	arity error	—	_	<±1	LSb	$VREF=VDD\geq 3.0V$
				—	—	< <u>+2</u>	LSb	VREF = VDD < 3.0V
A05	Efs	Full scale error		—	_	<±1	LSb	$VREF=VDD\geq 3.0V$
				—	—	<±1	LSb	VREF = VDD < 3.0V
A06	EOFF	Offset error		—	—	<±1	LSb	$VREF=VDD\geq 3.0V$
				—	—	<±1	LSb	VREF = VDD < 3.0V
A10	—	Monotonicity		g	guaranteed ⁽³⁾		_	$VSS \leq VAIN \leq VREF$
A20	Vref	Reference voltage		0V	—	—	V	
A20A		(Vrefh - Vrefl)		3V	—	—	V	For 10-bit resolution
A21	Vrefh	Reference voltage High		AVss	—	AVDD + 0.3V	V	
A22	Vrefl	Reference voltage Low		AVss - 0.3V	_	AVDD	V	
A25	VAIN	Analog input vo	ltage	AVss - 0.3V	—	VREF + 0.3V	V	
A30	ZAIN	Recommended analog voltage	impedance of source	—	—	10.0	kΩ	
A40	IAD	A/D conversion	PIC18 C XXX	—	180	—	μΑ	Average current
		current (VDD)	PIC18LCXXX	—	90	—	μΑ	consumption when A/D is on (Note 1) .
A50	A50 IREF VREF input curren		ent (Note 2)	10		1000	μΑ	During VAIN acquisition. Based on differential of VHOLD to VAIN. To charge CHOLD, see Section 16.0.
					—	10	μA	During A/D conversion cycle.

Note 1: When A/D is off, it will not consume any current other than minor leakage current. The power-down current spec includes any such leakage from the A/D module. VREF current is from RA2/AN2/VREF- and RA3/AN3/VREF+ pins or AVDD and AVss pins, whichever is selected as reference input.

2: VSS \leq VAIN \leq VREF

3: The A/D conversion result never decreases with an increase in the Input Voltage, and has no missing codes.

TABLE 21-22: A/D CONVERSION REQUIREMENTS

Param No.	Symbol	Characte	Min	Мах	Units	Conditions	
130	TAD	A/D clock period	PIC18CXXX	1.6	20 ⁽⁵⁾	μs	Tosc based, VREF \geq 3.0V
			PIC18LCXXX	3.0	20 ⁽⁵⁾	μs	Tosc based, VREF full range
			PIC18CXXX	2.0	6.0	μS	A/D RC mode
			PIC18LCXXX	3.0	9.0	μS	A/D RC mode
131	TCNV	Conversion time (not including acquisition	11	12	Tad		
132	TACQ	Acquisition time (Note	15 10		μs μs	-40°C ≤ Temp ≤ 125°C 0°C ≤ Temp ≤ 125°C	
135	Tswc	Switching Time from co		(Note 4)			
136	Тамр	Amplifier settling time	(Note 2)	1	_	μS	This may be used if the "new" input voltage has not changed by more than 1 LSb (i.e., 5 mV @ 5.12V) from the last sampled voltage (as stated on CHOLD).

Note 1: ADRES register may be read on the following TCY cycle.

2: See Section 16.0 for minimum conditions, when input voltage has changed more than 1 LSb.

3: The time for the holding capacitor to acquire the "New" input voltage, when the voltage changes full scale after the conversion (AVDD to AVSS, or AVSS to AVDD). The source impedance (*Rs*) on the input channels is 50Ω .

4: On the next Q4 cycle of the device clock.

5: The time of the A/D clock period is dependent on the device frequency and the TAD clock divider.

23.2 **Package Details**

The following sections give the technical details of the packages.

28-Lead Skinny Plastic Dual In-line (SP) – 300 mil (PDIP)

		INCHES*		MILLIMETERS			
Dimension L	MIN	NOM	MAX	MIN	NOM	MAX	
Number of Pins	n		28			28	
Pitch	р		.100			2.54	
Top to Seating Plane	Α	.140	.150	.160	3.56	3.81	4.06
Molded Package Thickness	A2	.125	.130	.135	3.18	3.30	3.43
Base to Seating Plane	A1	.015			0.38		
Shoulder to Shoulder Width	Е	.300	.310	.325	7.62	7.87	8.26
Molded Package Width	E1	.275	.285	.295	6.99	7.24	7.49
Overall Length	D	1.345	1.365	1.385	34.16	34.67	35.18
Tip to Seating Plane	L	.125	.130	.135	3.18	3.30	3.43
Lead Thickness	С	.008	.012	.015	0.20	0.29	0.38
Upper Lead Width	B1	.040	.053	.065	1.02	1.33	1.65
Lower Lead Width	В	.016	.019	.022	0.41	0.48	0.56
Overall Row Spacing §	eВ	.320	.350	.430	8.13	8.89	10.92
Mold Draft Angle Top	α	5	10	15	5	10	15
Mold Draft Angle Bottom	β	5	10	15	5	10	15

* Controlling Parameter § Significant Characteristic

Notes:

Dimension D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MO-095 Drawing No. C04-070