

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	33
Program Memory Size	32KB (16K x 16)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LCC (J-Lead)
Supplier Device Package	44-PLCC (16.59x16.59)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18c452-i-l

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NOTES:

NOTES:

7.6 INT0 Interrupt

External interrupts on the RB0/INT0, RB1/INT1 and RB2/INT2 pins are edge triggered: either rising, if the corresponding INTEDGx bit is set in the INTCON2 register, or falling, if the INTEDGx bit is clear. When a valid edge appears on the RBx/INTx pin, the corresponding flag bit INTxF is set. This interrupt can be disabled by clearing the corresponding enable bit INTxE. Flag bit INTxF must be cleared in software in the Interrupt Service Routine before re-enabling the interrupt. All external interrupts (INT0, INT1 and INT2) can wake-up the processor from SLEEP, if bit INTxE was set prior to going into SLEEP. If the global interrupt enable bit GIE set, the processor will branch to the interrupt vector following wake-up.

Interrupt priority for INT1 and INT2 is determined by the value contained in the interrupt priority bits, INT1IP (INTCON3<6>) and INT2IP (INTCON3<7>). There is no priority bit associated with INT0. It is always a high priority interrupt source.

7.7 TMR0 Interrupt

In 8-bit mode (which is the default), an overflow (FFh \rightarrow 00h) in the TMR0 register will set flag bit TMR0IF. In 16-bit mode, an overflow (FFFFh \rightarrow 0000h) in the TMR0H:TMR0L registers will set flag bit TMR0IF. The interrupt can be enabled/disabled by setting/clearing enable bit TOIE (INTCON<5>). Interrupt priority for Timer0 is determined by the value contained in the interrupt priority bit TMR0IP (INTCON2<2>). See Section 8.0 for further details on the Timer0 module.

7.8 PORTB Interrupt-on-Change

An input change on PORTB<7:4> sets flag bit RBIF (INTCON<0>). The interrupt can be enabled/disabled by setting/clearing enable bit, RBIE (INTCON<3>). Interrupt priority for PORTB Interrupt-on-change is determined by the value contained in the interrupt priority bit, RBIP (INTCON2<0>).

7.9 Context Saving During Interrupts

During an interrupt, the return PC value is saved on the stack. Additionally, the WREG, STATUS and BSR registers are saved on the fast return stack. If a fast return from interrupt is not used (see Section 4.3), the user may need to save the WREG, STATUS and BSR registers in software. Depending on the user's application, other registers may also need to be saved. Example 7-1 saves and restores the WREG, STATUS and BSR registers during an Interrupt Service Routine.

MOVWF	W_TEMP	; W_TEMP is in virtual bank
MOVFF	STATUS, STATUS_TEMP	; STATUS_TEMP located anywhere
MOVFF	BSR, BSR_TEMP	; BSR located anywhere
;		
; USER	ISR CODE	
;		
MOVFF	BSR_TEMP, BSR	; Restore BSR
MOVF	W_TEMP, W	; Restore WREG
MOVFF	STATUS TEMP, STATUS	; Restore STATUS
	—	

NOTES:

8.2 PORTB, TRISB and LATB Registers

PORTB is an 8-bit wide, bi-directional port. The corresponding data direction register is TRISB. Setting a TRISB bit (= 1) will make the corresponding PORTB pin an input (i.e., put the corresponding output driver in a Hi-Impedance mode). Clearing a TRISB bit (= 0) will make the corresponding PORTB pin an output (i.e., put the contents of the output latch on the selected pin).

Note:	On a Power-on Reset, these pins are con-
	figured as digital inputs.

The Data Latch register (LATB) is also memory mapped. Read-modify-write operations on the LATB register reads and writes the latched output value for PORTB.

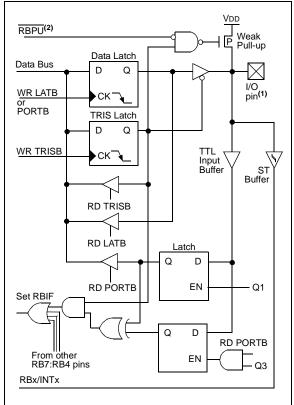
EXAMPLE 8-2: INITIALIZING PORTB

CLRF	PORTB	; Initialize PORTB by ; clearing output
CLRF	LATB	; data latches ; Alternate method
-		; to clear output
MOTTL	007	; data latches
MOVLW	UXCF	; Value used to ; initialize data
		; direction
MOVWF	TRISB	; Set RB<3:0> as inputs
		; RB<5:4> as outputs
		; RB<7:6> as inputs

Each of the PORTB pins has a weak internal pull-up. A single control bit can turn on all the pull-ups. This is performed by clearing bit $\overrightarrow{\text{RBPU}}$ (INTCON2<7>). The weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on a Power-on Reset.

Four of the PORTB pins, RB7:RB4, have an interrupton-change feature. Only pins configured as inputs can cause this interrupt to occur (i.e., any RB7:RB4 pin configured as an output is excluded from the interrupton-change comparison). The input pins (of RB7:RB4) are compared with the old value latched on the last read of PORTB. The "mismatch" outputs of RB7:RB4 are OR'ed together to generate the RB Port Change Interrupt with flag bit RBIF (INTCON<0>).

This interrupt can wake the device from SLEEP. The user, in the Interrupt Service Routine, can clear the interrupt in the following manner:


- a) Any read or write of PORTB (except with the MOVFF instruction). This will end the mismatch condition.
- b) Clear flag bit RBIF.

A mismatch condition will continue to set flag bit RBIF. Reading PORTB will end the mismatch condition and allow flag bit RBIF to be cleared.

The interrupt-on-change feature is recommended for wake-up on key depression operation and operations where PORTB is only used for the interrupt-on-change feature. Polling of PORTB is not recommended while using the interrupt-on-change feature.

RB3 can be configured by the configuration bit CCP2MX as the alternate peripheral pin for the CCP2 module (CCP2MX = (0)).

Note 1: I/O pins have diode protection to VDD and VSS.
2: To enable weak pull-ups, set the appropriate TRIS bit(s) and clear the RBPU bit (INTCON2<7>).

Name	Bit#	Buffer Type	Function
RC0/T1OSO/T1CKI	bit0	ST	Input/output port pin or Timer1 oscillator output/Timer1 clock input.
RC1/T1OSI/CCP2	bit1	ST	Input/output port pin, Timer1 oscillator input, or Capture2 input/ Compare2 output/PWM output when CCP2MX configuration bit is disabled.
RC2/CCP1	bit2	ST	Input/output port pin or Capture1 input/Compare1 output/ PWM1 output.
RC3/SCK/SCL	bit3	ST	RC3 can also be the synchronous serial clock for both SPI and I ² C modes.
RC4/SDI/SDA	bit4	ST	RC4 can also be the SPI Data In (SPI mode) or Data I/O (I^2 C mode).
RC5/SDO	bit5	ST	Input/output port pin or Synchronous Serial Port Data output.
RC6/TX/CK	bit6	ST	Input/output port pin, Addressable USART Asynchronous Transmit, or Addressable USART Synchronous Clock.
RC7/RX/DT	bit7	ST	Input/output port pin, Addressable USART Asynchronous Receive, or Addressable USART Synchronous Data.

TABLE 8-5: PORTC FUNCTIONS

Legend: ST = Schmitt Trigger input

TABLE 8-6: SUMMARY OF REGISTERS ASSOCIATED WITH PORTC

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other RESETS
PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	xxxx xxxx	uuuu uuuu
LATC	LATC LATC Data Output Register								xxxx xxxx	uuuu uuuu
TRISC	PORTC	Data Dire	ection Reg	ister					1111 1111	1111 1111

Legend: x = unknown, u = unchanged

11.0 TIMER2 MODULE

The Timer2 module timer has the following features:

- 8-bit timer (TMR2 register)
- 8-bit period register (PR2)
- Readable and writable (both registers)
- Software programmable prescaler (1:1, 1:4, 1:16)
- Software programmable postscaler (1:1 to 1:16)
- Interrupt on TMR2 match of PR2
- SSP module optional use of TMR2 output to generate clock shift

Timer2 has a control register shown in Register 11-1. Timer2 can be shut-off by clearing control bit TMR2ON (T2CON<2>) to minimize power consumption. Figure 11-1 is a simplified block diagram of the Timer2 module. Register 11-1 shows the Timer2 control register. The prescaler and postscaler selection of Timer2 are controlled by this register.

11.1 Timer2 Operation

Timer2 can be used as the PWM time-base for the PWM mode of the CCP module. The TMR2 register is readable and writable, and is cleared on any device RESET. The input clock (Fosc/4) has a prescale option of 1:1, 1:4, or 1:16, selected by control bits T2CKPS1:T2CKPS0 (T2CON<1:0>). The match output of TMR2 goes through a 4-bit postscaler (which gives a 1:1 to 1:16 scaling inclusive) to generate a TMR2 interrupt (latched in flag bit TMR2IF, (PIR1<1>)).

The prescaler and postscaler counters are cleared when any of the following occurs:

- · a write to the TMR2 register
- a write to the T2CON register
- any device RESET (Power-on Reset, MCLR Reset, Watchdog Timer Reset, or Brown-out Reset)

TMR2 is not cleared when T2CON is written.

REGISTER 11-1: T2CON: TIMER2 CONTROL REGISTER

	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	—	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0
	bit 7							bit 0
bit 7	Unimple	emented: Re	ead as '0'					
bit 6-3	TOUTPS	S3:TOUTPS	0 : Timer2 Ou	itput Postsca	le Select bits			
	0000 =	1:1 Postscal	е					
	0001 =	1:2 Postscal	e					
	•							
	•							
	•	1:16 Postsca						
bit 2		N: Timer2 O	n bit					
	1 = Time							
		er2 is off						
bit 1-0			: Timer2 Clo	ck Prescale	Select bits			
		escaler is 1						
		escaler is 4 escaler is 16						
	1X = FIG							
	Levend							
	Legend:							
	R = Rea	dable bit	W =	Writable bit		•	l bit, read as	ʻ0'
	- n = Va	ue at POR r	eset '1' =	Bit is set	'0' = Bit	is cleared	x = Bit is u	unknown

13.5.3 SETUP FOR PWM OPERATION

The following steps should be taken when configuring the CCP module for PWM operation:

- 1. Set the PWM period by writing to the PR2 register.
- 2. Set the PWM duty cycle by writing to the CCPR1L register and CCP1CON<5:4> bits.
- Make the CCP1 pin an output by clearing the TRISC<2> bit.
- 4. Set the TMR2 prescale value and enable Timer2 by writing to T2CON.
- 5. Configure the CCP1 module for PWM operation.

TABLE 13-4: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 40 MHz

PWM Frequency	2.44 kHz	9.77 kHz	39.06 kHz	156.25 kHz	312.50 kHz	416.67 kHz
Timer Prescaler (1, 4, 16)	16	4	1	1	1	1
PR2 Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Maximum Resolution (bits)	14	12	10	8	7	6.58

TABLE 13-5: REGISTERS ASSOCIATED WITH PWM AND TIMER2

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	PC	ie on)R,)R	all o	ie on other SETS
INTCON	GIE/ GIEH	PEIE/ GIEL	TMR0IE	INTOIE	RBIE	TMR0IF	INTOIF	RBIF	0000	000x	0000	000u
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000	0000	0000	0000
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000	0000	0000	0000
IPR1	PSPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	0000	0000	0000	0000
TRISC	PORTC Da	ata Direction	Register						1111	1111	1111	1111
TMR2	Timer2 Mo	dule Registe	er						0000	0000	0000	0000
PR2	Timer2 Mo	dule Period	Register						1111	1111	1111	1111
T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000	0000	-000	0000
CCPR1L	Capture/Co	ompare/PWI	M Register1	(LSB)					xxxx	xxxx	uuuu	uuuu
CCPR1H	Capture/Co	ompare/PWI	M Register1	(MSB)					xxxx	xxxx	uuuu	uuuu
CCP1CON	_	_	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00	0000	00	0000
CCPR2L	Capture/Co	Capture/Compare/PWM Register2 (LSB)							xxxx	xxxx	uuuu	uuuu
CCPR2H	Capture/Co	pture/Compare/PWM Register2 (MSB)							xxxx	xxxx	uuuu	uuuu
CCP2CON			DC2B1	DC2B0	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00	0000	00	0000

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by PWM and Timer2.

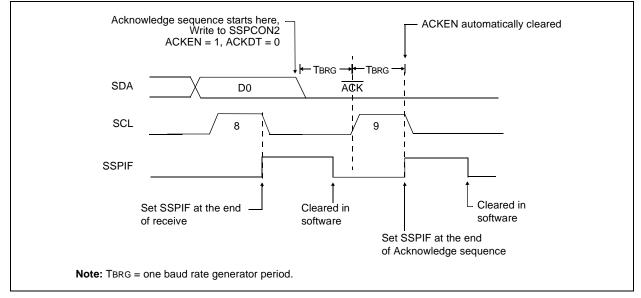
Note 1: The PSPIF, PSPIE and PSPIP bits are reserved on the PIC18C2X2 devices. Always maintain these bits clear.

14.4.10 ACKNOWLEDGE SEQUENCE TIMING

An Acknowledge sequence is enabled by setting the Acknowledge sequence enable bit, ACKEN (SSPCON2<4>). When this bit is set, the SCL pin is pulled low and the contents of the Acknowledge data bit is presented on the SDA pin. If the user wishes to generate an Acknowledge, then the ACKDT bit should be cleared. If not, the user should set the ACKDT bit before starting an Acknowledge sequence. The baud rate generator then counts for one rollover period (TBRG) and the SCL pin is de-asserted (pulled high). When the SCL pin is sampled high (clock arbitration), the baud rate generator counts for TBRG. The SCL pin is then pulled low. Following this, the ACKEN bit is automatically cleared, the baud rate generator is turned off and the MSSP module then goes into IDLE mode (Figure 14-20).

14.4.10.1 WCOL Status Flag

If the user writes the SSPBUF when an Acknowledge sequence is in progress, then WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).


14.4.11 STOP CONDITION TIMING

A STOP bit is asserted on the SDA pin at the end of a receive/transmit by setting the STOP sequence enable bit, PEN (SSPCON2<2>). At the end of a receive/transmit, the SCL line is held low after the falling edge of the ninth clock. When the PEN bit is set, the master will assert the SDA line low. When the SDA line is sampled low, the baud rate generator is reloaded and counts down to 0. When the baud rate generator times out, the SCL pin will be brought high, and one TBRG (baud rate generator rollover count) later, the SDA pin will be de-asserted. When the SDA pin is sampled high while SCL is high, the P bit (SSPSTAT<4>) is set. A TBRG later, the PEN bit is cleared and the SSPIF bit is set (Figure 14-21).

14.4.11.1 WCOL Status Flag

If the user writes the SSPBUF when a STOP sequence is in progress, then the WCOL bit is set and the contents of the buffer are unchanged (the write doesn't occur).

FIGURE 14-20: ACKNOWLEDGE SEQUENCE WAVEFORM

BCF	Bit Clear f						
Syntax:	[<i>label</i>] BCF f,b[,a]						
Operands:	0 ≤ f ≤ 255 0 ≤ b ≤ 7 a ∈ [0,1]						
Operation:	$0 \rightarrow f < b >$						
Status Affected:	None						
Encoding:	1001 bbba ffff ffff						
Description:	Bit 'b' in register 'f' is cleared. If 'a' is 0, the Access Bank will be selected, overriding the BSR value. If 'a' = 1, then the bank will be selected as per the BSR value (default).						
Words:	1						
Cycles:	1						
Q Cycle Activity	:						
Q1	Q2 Q3 Q4						
Decode	Read Process Write register 'f' Data register 'f'						
Example: BCF FLAG_REG, 7, 0 Before Instruction FLAG_REG = 0xC7 After Instruction							
/	EG = 0x47						

BN	Branch if	Negative						
Syntax:	[<i>label</i>] B	[<i>label</i>] BN n						
Operands:	-128 ≤ n ≤	127						
Operation:	•	if negative bit is '1' (PC) + 2 + 2n \rightarrow PC						
Status Affected:	None							
Encoding:	1110	0110 nn	nn nnnn					
	The 2's co added to the have incre- instruction PC+2+2n.	vill branch. Implement n he PC. Since mented to fe the new ad This instruction	e the PC wi etch the new dress will b ction is ther					
Words:	1							
Cycles:	1(2)							
Q Cycle Activity If Jump:	<u>/:</u>							
Q1	Q2	Q3	Q4					
Decode	Read literal 'n'	Process Data	Write to PC					
No	No	No	No					
operation	operation	operation	operation					
If No Jump:			•					
Q1	Q2	Q3	Q4					
Decode	Read literal 'n'	Process Data	No operation					
L		2414	- speration					
Example:	HERE	BN Jump						
Before Instr	uction							
PC	- ad	dress (HER	F)					

PC	=	address	(HERE)
After In	struction		
	Negative = PC = Negative = PC =	address 0;	(Jump) (HERE+2)

IORLW Inclusive OR literal with WREG								
Syntax:		[label]	IORLW	k				
Operands:		$0 \le k \le 2\xi$	$0 \le k \le 255$					
Operation:		(WREG)	.OR. k –	→ WR	EG			
Status Affecte	ed:	N,Z						
Encoding:		0000	1001	kkk	k	kkkk		
Description:		with the e	The contents of WREG are OR'ed with the eight-bit literal 'k'. The result is placed in WREG.					
Words:		1						
Cycles:		1						
Q Cycle Acti	vity:							
Q1		Q2	Q3	3		Q4		
Decode	е	Read literal 'k'	Proce Data		Write to WREG			
Example: Before Instruc			0x35					
After Ins		011911						

WREG = 0xBF

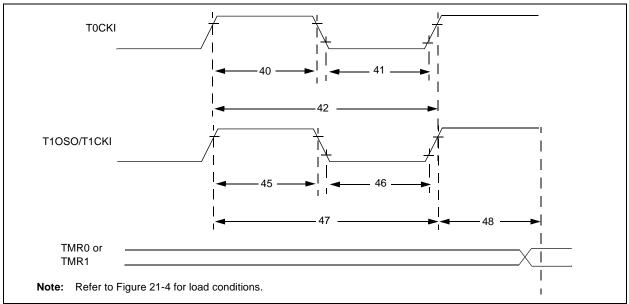
IORWF	Inclusive OR WREG with f					
Syntax:	[label]	IORWF	f [,c	d [,a]		
Operands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$	5				
Operation:	(WREG) .	OR. (f) -	\rightarrow des	t		
Status Affected:	N,Z					
Encoding:	0001	00da	fff	f fff:		
	WREG. If placed bac If 'a' is 0, t selected, c	ck in reg he Acce overridir	gister ' ess Ba	f' (default ink will be		
	lf 'a' = 1, t selected a (default).					
Words:	selected a					
Words: Cycles:	selected a (default).					
	selected a (default). 1					
Cycles:	selected a (default). 1		e BSF			
Cycles: Q Cycle Activity:	selected a (default). 1 1	is per th	e BSF	R value		
Cycles: Q Cycle Activity: Q1	selected a (default). 1 1 Q2 Read register 'f'	Q3 Proce	e BSF	₹ value Q4 Write to		

Before Instruction						
RESULT	=	0x13				
WREG	=	0x91				
After Instruction						
After Instruct	ion					
After Instruct RESULT	ion =	0x13				

RRNCF	Rotate Right f (no carry)	SETF
Syntax:	[label] RRNCF f [,d [,a]	Syntax:
Operands:	$0 \le f \le 255$ $d \in [0,1]$	Operands:
	a ∈ [0,1]	Operation:
Operation:	$(f < n >) \rightarrow dest < n - 1 >,$ $(f < 0 >) \rightarrow dest < 7 >$	Status Affected Encoding:
Status Affecte	ed: N,Z	-
Encoding:	0100 00da ffff ffff	Description:
Description:	The contents of register 'f' are rotated one bit to the right. If 'd' is 0, the result is placed in WREG. If 'd' is 1, the result is placed back in register 'f' (default). If 'a' is 0, the Access Bank will be selected, over- riding the BSR value. If 'a' is 1, then	Words: Cycles:
	the bank will be selected as per the	Q Cycle Activit
	BSR value (default).	Q1
	register f	Decode
Words:	1	
Cycles:	1	Example:
Q Cycle Activ	vity:	Before Inst
Q1	Q2 Q3 Q4	REG
Decode	e Read Process Write to register 'f' Data destination	After Instru REG
Example 1: Before In	RRNCF REG, 1, 0	
REG	= 1101 0111	
After Inst		
REG	= 1110 1011	
Example 2:	RRNCF REG, 0, 0	
Before In	struction	
	; = ? = 1101 0111	
After Inst		
WREG		

Synta	ix:	[<i>label</i>] SE	TFf[,	a]				
pera	ands:	0 ≤ f ≤ 255 a ∈ [0,1]	$\begin{array}{l} 0 \leq f \leq 255 \\ a \in [0,1] \end{array}$					
pera	ation:	$FFh\tof$						
status	s Affected:	None						
nco	ding:	0110	100a	ffff	ffff			
)esci	ription:	The conte ter are se Access Ba riding the the bank v BSR value	t to FFh ank will BSR val will be se	. If 'a' is 0 be select ue. If 'a' i elected as), the ed, over- s 1, then			
Vord	s:	1						
ycle	s:	1						
Q Cy	cle Activity:							
	Q1	Q2	Q	3	Q4			
	Decode	Read register 'f'	Proce Data		Write gister 'f'			
xam	<u>iple</u> :	SETF	RE	G,1				
E	Before Instruction REG = 0x5A							
A	After Instruct	ion						

0xFF


=

Set f

© 1999-2013 Microchip Technology Inc.

SUBLW	Subtract WREG from literal	SUBWF	Subtract WREG from f
Syntax:	[<i>label</i>] SUBLW k	Syntax:	[<i>label</i>] SUBWF f[,d[,a]
Operands:	$0 \le k \le 255$	Operands:	$0 \le f \le 255$
Operation:	$k - (WREG) \rightarrow WREG$		d ∈ [0,1]
Status Affected:	N,OV, C, DC, Z		a ∈ [0,1]
Encoding:	0000 1000 kkkk kkkk	Operation:	(f) – (WREG) \rightarrow dest
Description:	WREG is subtracted from the	Status Affected:	N,OV, C, DC, Z
	eight-bit literal 'k'. The result is	Encoding:	0101 11da ffff ffff
	placed in WREG.	Description:	Subtract WREG from register 'f' (2's complement method). If 'd' is
Words:	1		0, the result is stored in WREG. If
Cycles:	1		'd' is 1, the result is stored back in register 'f' (default). If 'a' is 0, the
Q Cycle Activity: Q1	Q2 Q3 Q4		Access Bank will be selected,
Decode	Read Process Write to		overriding the BSR value. If 'a' is 1, then the bank will be selected
	literal 'k' Data WREG		as per the BSR value (default).
Example 1:	SUBLW 0x02	Words:	1
Before Instruc	ction	Cycles:	1
	= 1	Q Cycle Activity:	
د After Instructi	= ?	Q1	Q2 Q3 Q4
	= 1	Decode	Read Process Write to
С	= 1 ; result is positive		register 'f' Data destination
	= 0 = 0	Example 1:	SUBWF REG, 1, 0
European la Or		Before Instru	
Example 2:	SUBLW 0x02	REG WREG	= 3 = 2
Before Instruc		C	= ?
	= 2 = ?	After Instruct	ion = 1
After Instruction	on	WREG	= 2
	= 0	C Z	= 1 ; result is positive = 0
Z	= 1 ; result is zero = 1	N	= 0
	= 0	Example 2:	SUBWF REG, 0, 0
Example 3:	SUBLW 0x02	Before Instru	
Before Instruc		REG WREG	= 2 = 2
	= 3 = ?	C	= ?
After Instruction	on	After Instruct	
	= FF ; (2's complement)	REG WREG	= 2 = 0
-	= 0 ; result is negative = 0	C	= 1 ; result is zero
Ν	= 1	Z N	= 1 = 0
		Example 3:	SUBWF REG, 1, 0
		Before Instru	ction
		REG	= 1
		WREG C	= 2 = ?
		After Instruct	ion
		REG	= FFh ;(2's complement)
		WREG C	= 2 = 0 ; result is negative
		Z N	= 0 = 1

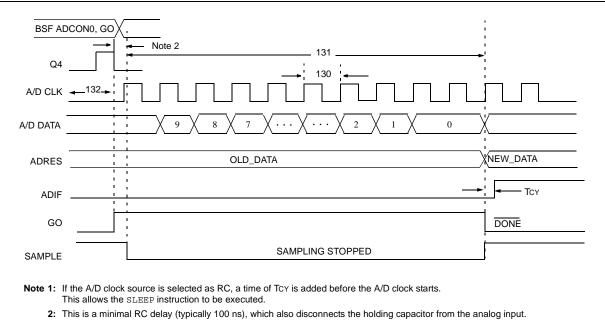

FIGURE 21-9: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS

TABLE 21-8:	TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS
-------------	---

Param No.	Symbol		Characteris	tic	Min	Max	Units	Conditions
40 Tt0H		T0CKI H	ligh Pulse Width	No Prescaler	0.5Tcy + 20		ns	
				With Prescaler	10	_	ns	
41	Tt0L	T0CKI L	ow Pulse Width	No Prescaler	0.5Tcy + 20	_	ns	
				With Prescaler	10		ns	
42	Tt0P	T0CKI P	Period	No Prescaler	Tcy + 10		ns	
				With Prescaler	Greater of: 20 ns or <u>TcY + 40</u> N		ns	N = prescale value (1, 2, 4,, 256)
45	Tt1H	T1CKI	Synchronous, no	o prescaler	0.5Tcy + 20	_	ns	
		High	Synchronous,	PIC18CXXX	10	_	ns	
		Time	with prescaler	PIC18LCXXX	25	_	ns	
			Asynchronous	PIC18CXXX	30	_	ns	
				PIC18LCXXX	40	_	ns	
46	Tt1L	T1CKI	Synchronous, no	prescaler	0.5Tcy + 20	_	ns	
		Low	Synchronous,	PIC18CXXX	15	_	ns	
		Time	with prescaler	PIC18LCXXX	30	_	ns	
			Asynchronous	PIC18CXXX	30	_	ns	
				PIC18LCXXX	40	_	ns	
47	Tt1P	T1CKI input period	Synchronous		Greater of: 20 ns or <u>Tcy + 40</u> N		ns	N = prescale value (1, 2, 4, 8)
			Asynchronous	Asynchronous			ns	
	Ft1	T1CKI o	scillator input free	luency range	DC	50	kHz	
48	Tcke2tmrl	Delay fro	om external T1CK crement	I clock edge to	2Tosc	7Tosc		

TABLE 21-22: A/D CONVERSION REQUIREMENTS

Param No.	Symbol	Characteristic		Min	Max	Units	Conditions
130	TAD	A/D clock period	PIC18CXXX	1.6	20 ⁽⁵⁾	μS	Tosc based, VREF $\geq 3.0V$
			PIC18LCXXX	3.0	20 ⁽⁵⁾	μS	Tosc based, VREF full range
			PIC18CXXX	2.0	6.0	μS	A/D RC mode
			PIC18LCXXX	3.0	9.0	μS	A/D RC mode
131	TCNV	Conversion time (not including acquisiti	11	12	TAD		
132	TACQ	Acquisition time (Note	15 10		μs μs	$\begin{array}{l} -40^{\circ}C \leq Temp \leq 125^{\circ}C \\ 0^{\circ}C \leq Temp \leq 125^{\circ}C \end{array}$	
135	Tswc	Switching Time from c	onvert \rightarrow sample	—	(Note 4)		
136	Тамр	Amplifier settling time	(Note 2)	1	_	μs	This may be used if the "new" input voltage has not changed by more than 1 LSb (i.e., 5 mV @ 5.12V) from the last sampled voltage (as stated on CHOLD).

Note 1: ADRES register may be read on the following TCY cycle.

2: See Section 16.0 for minimum conditions, when input voltage has changed more than 1 LSb.

3: The time for the holding capacitor to acquire the "New" input voltage, when the voltage changes full scale after the conversion (AVDD to AVSS, or AVSS to AVDD). The source impedance (*Rs*) on the input channels is 50Ω .

4: On the next Q4 cycle of the device clock.

5: The time of the A/D clock period is dependent on the device frequency and the TAD clock divider.

22.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES

The graphs and tables provided in this section are for design guidance and are not tested.

The data presented in this section is a **statistical summary** of data collected on units from different lots over a period of time and matrix samples. 'Typical' represents the mean of the distribution at 25°C. 'Max' or 'min' represents (mean + 3σ) or (mean - 3σ) respectively, where σ is standard deviation, over the whole temperature range.

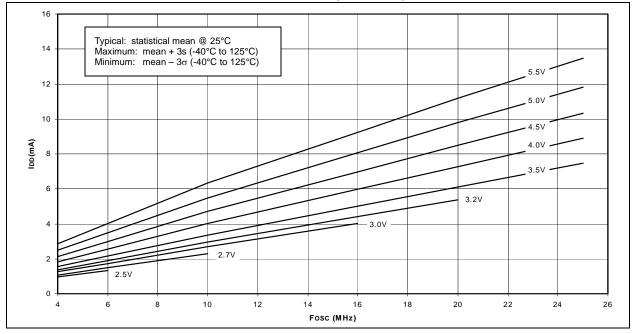
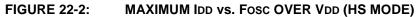
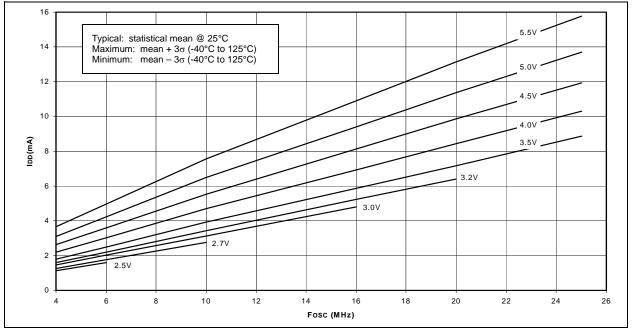
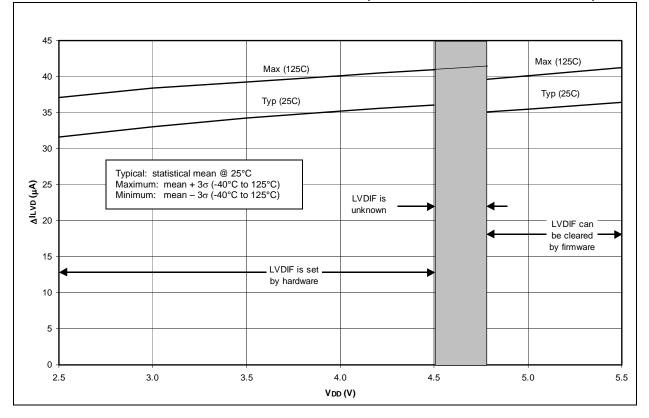
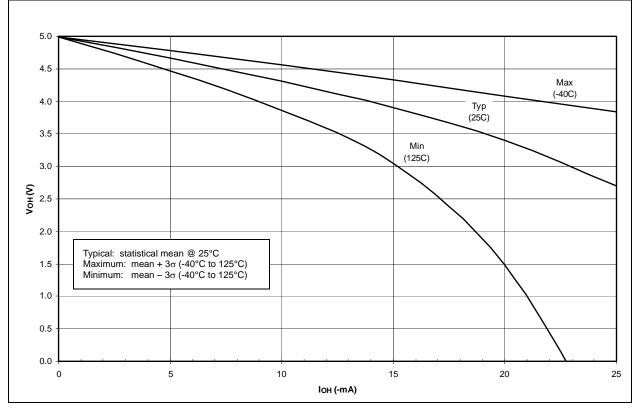





FIGURE 22-1: TYPICAL IDD vs. Fosc OVER VDD (HS MODE)



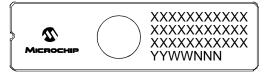
© 1999-2013 Microchip Technology Inc.


FIGURE 22-19: △ILVD vs. VDD OVER TEMPERATURE (LVD ENABLED, VLVD = 4.5V - 4.78V)

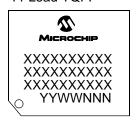
Package Marking Information (Cont'd)

40-Lead PDIP

Example



PIC18C452

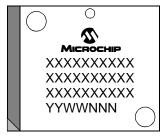

-I/JW

0115017

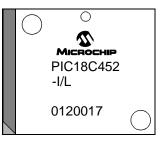
28- and 40-Lead JW (CERDIP)

44-Lead TQFP

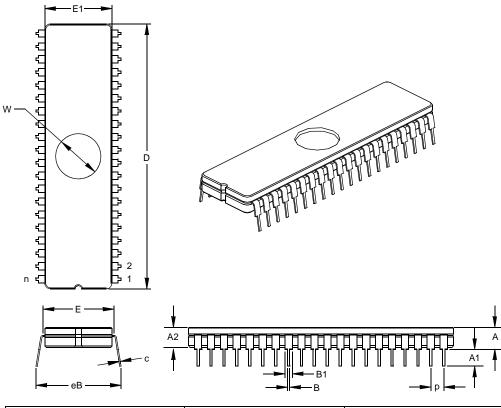
Example


Example

 \mathbf{v}


MICROCHIP

44-Lead PLCC


Example

DS39026D-page 278

40-Lead Ceramic Dual In-line with Window (JW) - 600 mil (CERDIP)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	INCHES*			MILLIMETERS			
Dimension	MIN	NOM	MAX	MIN	NOM	MAX		
Number of Pins	n		40			40		
Pitch	р		.100			2.54		
Top to Seating Plane	Α	.185	.205	.225	4.70	5.21	5.72	
Ceramic Package Height	A2	.155	.160	.165	3.94	4.06	4.19	
Standoff	A1	.030	.045	.060	0.76	1.14	1.52	
Shoulder to Shoulder Width	E	.595	.600	.625	15.11	15.24	15.88	
Ceramic Pkg. Width	E1	.514	.520	.526	13.06	13.21	13.36	
Overall Length	D	2.040	2.050	2.060	51.82	52.07	52.32	
Tip to Seating Plane	L	.135	.140	.145	3.43	3.56	3.68	
Lead Thickness	С	.008	.011	.014	0.20	0.28	0.36	
Upper Lead Width	B1	.050	.053	.055	1.27	1.33	1.40	
Lower Lead Width	В	.016	.020	.023	0.41	0.51	0.58	
Overall Row Spacing §	eB	.610	.660	.710	15.49	16.76	18.03	
Window Diameter	W	.340	.350	.360	8.64	8.89	9.14	

Significant Characteristic JEDEC Equivalent: MO-103 Drawing No. C04-014

Code Examples	
16 x 16 Signed Multiply Routine	62
16 x 16 Unsigned Multiply Routine	62
8 x 8 Signed Multiply Routine	
8 x 8 Unsigned Multiply Routine	61
Changing Between Capture Prescalers	109
Fast Register Stack	
Initializing PORTA	77
Initializing PORTB	
Initializing PORTC	
Initializing PORTD	
Initializing PORTE	
Loading the SSPBUF Register	122
Saving STATUS, WREG and BSR Registers	
in RAM	75
Code Protection	179, 186
COMF	204
Compare (CCP Module)	110
Associated Registers	111
Block Diagram	110
CCP Pin Configuration	110
CCPR1H:CCPR1L Registers	110
Software Interrupt	110
Special Event Trigger	110, 171
Timer1 Mode Selection	110
Configuration Bits	179
Context Saving During Interrupts	75
Example Code	75
Conversion Considerations	288
CPFSEQ	204
CPFSGT	205
CPFSLT	205

D

Data Memory	
General Purpose Registers	
Special Function Registers	
DAW	
DC Characteristics	237, 240
DECF	
DECFSNZ	207
DECFSZ	
Device Differences	
Direct Addressing	51

Е

Electrical Characteristics	235
Errata	5
F	
Firmware Instructions	187

G

General Call Address Sequence	
General Call Address Support	
GOTO	

T

I/O Ports
I ² C (SSP Module) 128
ACK Pulse 128, 129
Addressing 129
Block Diagram 128
Read/Write Bit Information (R/W Bit) 129
Reception129
Serial Clock (RC3/SCK/SCL) 129
Slave Mode 128
Timing Diagram, Data 257
Timing Diagram, START/STOP Bits
Transmission 129
I ² C Master Mode Reception
I ² C Master Mode Repeated START Condition
I ² C Module
Acknowledge Sequence Timing142
Baud Rate Generator
Block Diagram
Baud Rate Generator 136
BRG Reset Due to SDA Collision 146
BRG Timing 136
Bus Collision
Acknowledge144
Repeated START Condition 147
Repeated START Condition Timing
(Case 1) 147
Repeated START Condition Timing
(Case 2) 147
START Condition145
START Condition Timing 145, 146
STOP Condition148
STOP Condition Timing (Case 1) 148
STOP Condition Timing (Case 2) 148
Transmit Timing144
Bus Collision Timing 144
Clock Arbitration
Clock Arbitration Timing (Master Transmit)
General Call Address Support
Master Mode 7-bit Reception Timing 141
Master Mode Operation
Master Mode START Condition 137
Master Mode Transmission 139
Master Mode Transmit Sequence 135
Multi-Master Mode 144
Repeat START Condition Timing 138
STOP Condition Receive or Transmit Timing 143
STOP Condition Timing142
Waveforms for 7-bit Reception
Waveforms for 7-bit Transmission
ICEPIC In-Circuit Emulator
ID Locations 179, 186
INCF
INCFSZ
In-Circuit Serial Programming (ICSP) 179, 186
Indirect Addressing
FSR Register
INFSNZ
Instruction Cycle
Instruction Flow/Pipelining
Instruction Format
100