

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	33
Program Memory Size	32KB (16K x 16)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.600", 15.24mm)
Supplier Device Package	40-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18c452-i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Bin Nomo	Pin N	umber	Pin	Buffer	Description		
	DIP	SOIC	Туре	Туре	Description		
					PORTB is a bi-directional I/O port. PORTB can be software		
					programmed for internal weak pull-ups on all inputs.		
RB0/INT0	21	21					
RB0			I/O	TTL	Digital I/O.		
INT0			I	ST	External Interrupt 0.		
RB1/INT1	22	22					
RB1			I/O	TTL			
INT1			I	ST	External Interrupt 1.		
RB2/INT2	23	23					
RB2			I/O	TTL	Digital I/O.		
INT2			I	ST	External Interrupt 2.		
RB3/CCP2	24	24					
RB3			I/O	TTL	Digital I/O.		
CCP2			I/O	ST	Capture2 input, Compare2 output, PWM2 output.		
RB4	25	25	I/O	TTL	Digital I/O.		
					Interrupt-on-change pin.		
RB5	26	26	I/O	TTL	Digital I/O.		
					Interrupt-on-change pin.		
RB6	27	27	I/O	TTL	Digital I/O.		
					Interrupt-on-change pin.		
			I.	ST	ICSP programming clock.		
RB7	28	28	I/O	TTL	Digital I/O.		
					Interrupt-on-change pin.		
			I/O	ST	ICSP programming data.		
Legend: TTL = TTL	compa	tible inp	out		CMOS = CMOS compatible input or output		

PIC18C2X2 PINOUT I/O DESCRIPTIONS (CONTINUED) **TABLE 1-2:**

ST = Schmitt Trigger input with CMOS levels I = Input O = Output

OD = Open Drain (no P diode to VDD)

P = Power

TABLE 1-2: PIC18C2X2 PINOUT I/O DESCRIPTIONS (CONTINUED)

Pin NameDIPSOICTypeTypeDescriptionRC0/T1OSO/T1CKI111111PORTC is a bi-directional I/O port.RC0111111IRC00—Timer1 oscillator output.T1CKIISTDigital I/O.RC1/T1OSI/CCP21212IRC1ISTDigital I/O.T1OSIIICMOSCCP2I/OSTDigital I/O.RC2/CCP11313RC2V/OSTDigital I/O.CCP1I/OSTDigital I/O.RC3/SCK/SCL1414RC3I/OSTDigital I/O.SCKI/OSTDigital I/O.SCKI/OSTDigital I/O.SCKI/OSTSynchronous serial clock input/output for SPI mode.SCLI/OSTSynchronous serial clock input/output for I ² C mode.RC4/SDI/SDA1515ISDAI/OSTDigital I/O.SDAII/OSTSDAII/OSTRC6/TX/CK1717RC6/TX/CK1717RC6/TX/CKII/OSTCKI/OSTUSART Asynchronous Transmit.CKIIIRC7I/OSTDigital I/O.RC5/TX/CK1717IRC6/TX/CKIIIRC7II <td< th=""><th>Din Nome</th><th>Pin N</th><th>umber</th><th>Pin</th><th>Buffer</th><th colspan="2">Description</th></td<>	Din Nome	Pin N	umber	Pin	Buffer	Description			
RC0/T10S0/T1CKI 11 11 11 11 11 RC0 1 11 11 11 11 0 RC0 T10S0 0 - Timer1 oscillator output. T10S0 1 ST Digital I/O. T1CKI 1 ST Digital I/O. RC1/T10SI/CCP2 12 12 I/O RC1 1 ST Digital I/O. T10SI 1 CMOS Timer1 oscillator input. CCP2 1/O ST Digital I/O. RC2/CCP1 13 13 Capture2 input, Compare2 output, PWM2 output. RC3/SCK/SCL 14 14 Digital I/O. RC3 1/O ST Digital I/O. SCL 1/O ST Digital I/O. SCL 1/O ST Synchronous serial clock input/output for SPI mode. SCL 1/O ST SPI Digital I/O. SCA 1/O ST SPI Digital I/O. SCA 1/O ST Spital I/O. SDA 15 15 SPI Digital I/O. RC5/SDO 16 16 I/O ST SD0 0 - SPI Digital I/O.		DIP	SOIC	Туре	Туре	Description			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						PORTC is a bi-directional I/O port.			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	RC0/T1OSO/T1CKI	11	11						
T10S0 T1CKIIO-Timer1 oscillator output. Timer1/Timer3 external clock input.RC1 T10SI CCP21212VOSTDigital I/O. Timer1 oscillator input.RC2 CCP1IICMOS ITimer1 oscillator input. Capture2 input, Compare2 output, PWM2 output.RC2/CCP1 CCP11313 IVOSTDigital I/O. Capture2 input, Compare1 output/PWM1 output.RC3/SCK/SCL SCK1414 I/OSTDigital I/O. STCapture1 input/Compare1 output/PWM1 output.RC3/SCK/SCL SCK1414 I/OVOSTDigital I/O. STSynchronous serial clock input/output for SPI mode. SCLRC4/SDI/SDA SDI SDA1515 ISTDigital I/O. STSPI Data In. ICO.RC5/SDO SDO RC6/TX/CK1616 IISTRC6/TX/CK TX CK1717 IVOSTDigital I/O. STRC6/TX/CK TX1717 IISTDigital I/O. STRC6/TX/CK TX1717 IISTDigital I/O. STRC7/TX/DT RC7/RX/DT1818 IIDigital I/O. STSTRC7/TX/DT1818 IIDigital I/O	RC0			I/O	ST	Digital I/O.			
T1CKIISTTimer1/Timer3 external clock input.RC1/T10SI/CCP21212IRC1IICMOSTimer1 oscillator input.T10SIIICMOSTimer1 oscillator input.CCP2I/OSTCapture2 input, Compare2 output, PWM2 output.RC2/CCP11313IRC2I/OSTDigital I/O.CCP1I/OSTCapture1 input/Compare1 output/PWM1 output.RC3/SCK/SCL1414I/ORC3I/OSTDigital I/O.SCKI/OSTSynchronous serial clock input/output for SPI mode.SCLI/OSTSynchronous serial clock input/output for I²C mode.RC4/SDI/SDA1515IRC4I/OSTDigital I/O.SDAIISTRC5/SDO1616RC6/TX/CK1717RC6I/OSTDigital I/O.RC6/TX/CK1717RC6I/OSTDigital I/O.RC7/RX/DT1818IPC7IIIRC7IIIRC7IIIRC7IIIRC7IIIRC7IIIRC7IIIRC7IIRC7IIRC7IIRC7IIRC7I<	T1OSO			0	—	Timer1 oscillator output.			
RC1/T10SI/CCP2 12 12 1/0 ST Digital I/O. T10SI I CMOS Timer1 oscillator input. Capture2 input, Compare2 output, PWM2 output. RC2/CCP1 13 13 Capture2 input, Compare2 output, PWM2 output. RC2/CCP1 13 13 Capture1 input/Compare1 output/PWM1 output. RC3/SCK/SCL 14 14 I/O ST RC3/SCK/SCL 14 14 I/O ST SCK I/O ST Digital I/O. Capture1 input/Compare1 output/PWM1 output. RC3/SCK/SCL 14 14 I/O ST Synchronous serial clock input/output for SPI mode. SCL I/O ST Synchronous serial clock input/output for I ² C mode. Synchronous serial clock input/output for I ² C mode. RC4/SDI/SDA 15 15 I ST SPI Data In. SDA I/O ST I/O ST Digital I/O. SPI Data In. SDA I/O ST SPI Data Out. SPI Data Out. RC6/TX/CK 17 17 I/O ST USART Asynchronous Transmit. CK <tdi< td=""><td>T1CKI</td><td></td><td></td><td>I</td><td>ST</td><td>Timer1/Timer3 external clock input.</td></tdi<>	T1CKI			I	ST	Timer1/Timer3 external clock input.			
RC1 T1OSI CCP2II/OST IDigital I/O. Timer1 oscillator input. Capture2 input, Compare2 output, PWM2 output.RC2/CCP11313IRC2 CCP1II/OSTDigital I/O. Capture1 input/Compare1 output/PWM1 output.RC3/SCK/SCL1414I/OSTRC3 SCK SCLI/OSTDigital I/O. STCapture1 input/Compare1 output/PWM1 output.RC3/SCK/SCL1414I/OSTRC3 SCK SCLI/OSTDigital I/O. STSynchronous serial clock input/output for SPI mode. Synchronous serial clock input/output for I²C mode.RC4/SDI/SDA1515IRC4 SDAII/OSTRC5 SDOI6I6RC5 SDOI6I6RC6/TX/CK1717RC6/TX/CK1717RC6/TX/CK1717RC6/TX/CK1717RC7/RX/DT1818PC7I818	RC1/T1OSI/CCP2	12	12						
T1OSI CCP2IICMOS I/OTimer1 oscillator input. Capture2 input, Compare2 output, PWM2 output.RC2/CCP11313ICapture2 input, Compare2 output, PWM2 output.RC2 CCP1I/OSTDigital I/O. Capture1 input/Compare1 output/PWM1 output.RC3/SCK/SCL1414I/ORC3 SCKI/OSTDigital I/O. STRC3/SCK/SCL1414I/ORC3 SCKI/OSTDigital I/O. STRC4 SDLI/OSTSynchronous serial clock input/output for SPI mode. Synchronous serial clock input/output for I²C mode.RC4/SDI/SDA SDA1515IRC5 SDOI6I6IRC5 SDOI6I6IRC6 TXI/OSTDigital I/O. STRC6/TX/CK TX CK1717IRC6 TX CKI/OSTDigital I/O. STRC7/RX/DT1818IRC7/RX/DT1818IRC7I/OSTDigital I/O. STRC7I818IRC7I8I8RC7I8I8RC7I8I8	RC1			I/O	ST	Digital I/O.			
CCP2I/OSTCapture2 input, Compare2 output, PWM2 output.RC2/CCP11313I/OSTDigital I/O.RC3I/OSTI/OSTCapture1 input/Compare1 output/PWM1 output.RC3/SCK/SCL1414I/OSTDigital I/O.RC3/SCK/SCL1414I/OSTDigital I/O.RC3/SCK/SCL1414I/OSTDigital I/O.SCKI/OSTSynchronous serial clock input/output for SPI mode.SCLI/OSTSynchronous serial clock input/output for I ² C mode.RC4/SDI/SDA1515IRC4I/OSTDigital I/O.SDIISTSPI Data In.SDAI/OSTIgital I/O.RC5/SDO1616IRC6/TX/CK1717I/ORC6/TX/CK1717I/ORC6/TX/CK1717I/ORC7/RX/DT1818I/ORC7/RX/DT1818I/ORC7I/OSTDigital I/O.RC7II/OSTRC7II/ORC7II/ORC7II/ORC7II/ORC7IIRC7IIRC7IIRC7IIRC7IIRC7IIRC7IIRC7II	T1OSI			I	CMOS	Timer1 oscillator input.			
RC2/CCP1 13 13 I/O ST Digital I/O. RC2 CCP1 I/O ST Digital I/O. Capture1 input/Compare1 output/PWM1 output. RC3/SCK/SCL 14 14 I/O ST Digital I/O. RC3/SCK/SCL 14 14 I/O ST Digital I/O. SCK I/O ST Jigital I/O. Synchronous serial clock input/output for SPI mode. SCL I/O ST Synchronous serial clock input/output for I ² C mode. RC4/SDI/SDA 15 15 ST RC4 I/O ST Digital I/O. SDI I ST SPI Data In. SDA I/O ST Digital I/O. SDA I/O ST Digital I/O. RC5/SDO 16 16 ST SDO O O ST Digital I/O. RC6/TX/CK 17 17 I/O ST RC6/TX/CK 17 17 USART Asynchronous Transmit. CK I/O ST USART Synchronous Clock (see related RX/DT).	CCP2			I/O	ST	Capture2 input, Compare2 output, PWM2 output.			
RC2 I/O ST Digital I/O. CCP1 I/O ST Capture1 input/Compare1 output/PWM1 output. RC3/SCK/SCL 14 14 I/O ST Digital I/O. RC3/SCK/SCL 14 14 I/O ST Digital I/O. SCK I/O ST Synchronous serial clock input/output for SPI mode. SCL I/O ST Synchronous serial clock input/output for I ² C mode. RC4/SDI/SDA 15 15 I/O ST RC4 I/O ST Digital I/O. Spital I/O. SDI I ST SPI Data In. I/O SDA I/O ST Igital I/O. SPI Data In. SDO I6 16 I/O ST RC5/SDO 16 16 I/O ST RC6/TX/CK 17 17 ST Digital I/O. RC6/TX/CK 17 17 I/O ST Digital I/O. TX O O USART Asynchronous Transmit. I/O CK I/O ST USART Synchr	RC2/CCP1	13	13						
CCP1I/OSTCapture1 input/Compare1 output/PWM1 output.RC3/SCK/SCL1414I/OSTDigital I/O.SCKI/OSTJogital I/O.STSynchronous serial clock input/output for SPI mode.SCLI/OSTSynchronous serial clock input/output for I ² C mode.RC4/SDI/SDA1515I/OSTRC4I/OSTDigital I/O.SDIISTSPI Data In.SDAI/OSTI ² C Data I/O.RC5/SDO1616I/ORC6/TX/CK1717I/ORC6I/OSTDigital I/O.RC6/TX/CK1717I/OCKI/OSTDigital I/O.RC7/RX/DT1818I/OPC7II/OSTPC7II/O	RC2			I/O	ST	Digital I/O.			
RC3/SCK/SCL 14 14 14 I/O ST Digital I/O. SCK I/O ST Synchronous serial clock input/output for SPI mode. SCL I/O ST Synchronous serial clock input/output for I ² C mode. RC4/SDI/SDA 15 15 I/O ST Digital I/O. SDI I ST SPI Data In. SPI Data In. I/O. SDA I/O ST I/O ST Digital I/O. RC5/SDO 16 16 I/O ST Digital I/O. RC5/SDO 16 16 I/O ST Digital I/O. RC6/TX/CK 17 17 SPI Data Out. RC6 I/O ST Digital I/O. TX O - USART Asynchronous Transmit. CK I/O ST USART Synchronous Clock (see related RX/DT). RC7/RX/DT 18 18 VO ST Digital I/O.	CCP1			I/O	ST	Capture1 input/Compare1 output/PWM1 output.			
RC3 SCK SCLI/OST I/ODigital I/O. ST Synchronous serial clock input/output for SPI mode.RC4/SDI/SDA1515I/OST Synchronous serial clock input/output for I²C mode.RC4/SDI/SDA1515I/OSTRC4I/OSTDigital I/O.SDIISTSPI Data In.SDAI/OSTI²C Data I/O.RC5/SDO1616I/ORC5I/OSTDigital I/O.SDO0-SPI Data Out.RC6I/OSTDigital I/O.TXO-USART Asynchronous Transmit.CKI/OSTUSART Synchronous Clock (see related RX/DT).RC7/RX/DT1818I/O	RC3/SCK/SCL	14	14						
SCK I/O ST Synchronous serial clock input/output for SPI mode. SCL I/O ST Synchronous serial clock input/output for I ² C mode. RC4/SDI/SDA 15 15 I/O ST Digital I/O. RC4 I/O ST Digital I/O. SPI Data In. SDA I ST SPI Data In. SDA I/O ST I ² C Data I/O. RC5/SDO 16 16 I/O ST SDO 0 - SPI Data Out. RC6/TX/CK 17 17 I/O ST RC6 I/O ST Digital I/O. TX O - USART Asynchronous Transmit. CK I/O ST USART Synchronous Clock (see related RX/DT). RC7/RX/DT 18 18 I/O	RC3			I/O	ST	Digital I/O.			
SCL I/O ST Synchronous serial clock input/output for I ² C mode. RC4/SDI/SDA 15 I5 I RC4 I/O ST Digital I/O. SDI I ST SPI Data In. SDA I/O ST I²C Data I/O. RC5/SDO 16 16 RC5 I/O ST Digital I/O. SDO 0 - SPI Data Out. RC6/TX/CK 17 17 - RC6 I/O ST Digital I/O. TX O - USART Asynchronous Transmit. CK I/O ST USART Synchronous Clock (see related RX/DT). RC7/RX/DT 18 18 -	SCK			I/O	ST	Synchronous serial clock input/output for SPI mode.			
RC4/SDI/SDA 15 15 I/O ST Digital I/O. RC4 I ST SPI Data In. SPI Data In. SDA I/O ST I²C Data I/O. RC5/SDO 16 16 I/O ST RC5 I/O ST Digital I/O. ST SDO 0 - SPI Data Out. RC6/TX/CK 17 17 I/O ST RC6 I/O ST Digital I/O. TX O - USART Asynchronous Transmit. CK I/O ST USART Synchronous Clock (see related RX/DT). RC7/RX/DT 18 18 I/O ST	SCL			I/O	ST	Synchronous serial clock input/output for I ² C mode.			
RC4 I/O ST Digital I/O. SDI I ST SPI Data In. SDA I/O ST I ² C Data I/O. RC5/SDO 16 16 I/O ST RC5 I/O ST Digital I/O. SDO 0 - SPI Data Out. RC6/TX/CK 17 17 I/O RC6 I/O ST Digital I/O. TX O - USART Asynchronous Transmit. CK I/O ST USART Synchronous Clock (see related RX/DT). RC7/RX/DT 18 18 I/O	RC4/SDI/SDA	15	15						
SDI I ST SPI Data In. SDA I/O ST I ² C Data I/O. RC5/SDO 16 16 I/O RC5 I/O ST Digital I/O. SDO 0 — SPI Data Out. RC6/TX/CK 17 17 I/O RC6 I/O ST Digital I/O. TX 0 — USART Asynchronous Transmit. CK I/O ST USART Synchronous Clock (see related RX/DT). RC7/RX/DT 18 18 I/O	RC4			I/O	ST	Digital I/O.			
SDA I/O ST I/C Data I/O. RC5/SDO 16 16 I/O ST Digital I/O. SDO 0 - SPI Data Out. SPI Data Out. RC6/TX/CK 17 17 I/O ST Digital I/O. RC6 I/O ST O jejital I/O. Digital I/O. TX O - USART Asynchronous Transmit. CK I/O ST USART Synchronous Clock (see related RX/DT). RC7/RX/DT 18 18 I/O ST	SDI			I	ST	SPI Data In.			
RC5/SDO 16 16 I/O ST Digital I/O. SDO 0 - SPI Data Out. RC6/TX/CK 17 17 I/O ST Digital I/O. RC6 I/O ST Digital I/O. ST SPI Data Out. RC6 I/O ST Digital I/O. ST ST CK I/O ST USART Asynchronous Transmit. USART Synchronous Clock (see related RX/DT). RC7/RX/DT 18 18 I/O ST Digital I/O.	SDA			I/O	ST	I ² C Data I/O.			
RC5 I/O ST Digital I/O. SD0 O — SPI Data Out. RC6/TX/CK 17 17 I/O ST Digital I/O. RC6 I/O ST Digital I/O. USART Asynchronous Transmit. CK I/O ST USART Synchronous Clock (see related RX/DT). RC7/RX/DT 18 18 I/O	RC5/SDO	16	16						
SDO O — SPI Data Out. RC6/TX/CK 17 17 I/O ST Digital I/O. RC6 I/O ST Digital I/O. USART Asynchronous Transmit. TX O — USART Synchronous Clock (see related RX/DT). RC7/RX/DT 18 18 I/O	RC5			I/O	ST	Digital I/O.			
RC6/TX/CK 17 17 17 RC6 I/O ST Digital I/O. TX O — USART Asynchronous Transmit. CK I/O ST USART Synchronous Clock (see related RX/DT). RC7/RX/DT 18 18 I/O	SDO			0	—	SPI Data Out.			
RC6 I/O ST Digital I/O. TX O — USART Asynchronous Transmit. CK I/O ST USART Synchronous Clock (see related RX/DT). RC7/RX/DT 18 18 I/O	RC6/TX/CK	17	17						
TX O — USART Asynchronous Transmit. CK I/O ST USART Synchronous Clock (see related RX/DT). RC7/RX/DT 18 18	RC6			I/O	ST	Digital I/O.			
CK I/O ST USART Synchronous Clock (see related RX/DT). RC7/RX/DT 18 18 PC7 18 18	TX			0	-	USART Asynchronous Transmit.			
RC7/RX/DT 18 18	СК			1/0	SI	USART Synchronous Clock (see related RX/DT).			
	RC7/RX/DT	18	18						
	RC7			I/O	ST	Digital I/O.			
RX I ST USART Asynchronous Receive.	RX			I	ST	USART Asynchronous Receive.			
DI I/O SI USARI Synchronous Data (see related 1X/CK).	וט			I/O	SI	USART Synchronous Data (see related TX/CK).			
VSS 8, 19 8, 19 P — Ground reference for logic and I/O pins.	Vss	8, 19	8, 19	Р	—	Ground reference for logic and I/O pins.			
VDD 20 20 P — Positive supply for logic and I/O pins.	Vdd	20	20	Р	—	Positive supply for logic and I/O pins.			

TTL = TTL compatible input CMOS = ST = Schmitt Trigger input with CMOS levels I = Input egend:

CMOS compatible input or output

P = Power

O = Output OD = Open Drain (no P diode to VDD)

3.0 RESET

The PIC18CXX2 differentiates between various kinds of RESET:

- a) Power-on Reset (POR)
- b) MCLR Reset during normal operation
- c) MCLR Reset during SLEEP
- d) Watchdog Timer (WDT) Reset (during normal operation)
- e) Programmable Brown-out Reset (BOR)
- f) RESET Instruction
- g) Stack Full Reset
- h) Stack Underflow Reset

Most registers are unaffected by a RESET. Their status is unknown on POR and unchanged by all other RESETS. The other registers are forced to a "RESET state" on Power-on Reset, MCLR, WDT Reset, Brownout Reset, MCLR Reset during SLEEP, and by the RESET instruction. Most registers are not affected by a WDT wake-up, since this is viewed as the resumption of normal operation. Status bits from the RCON register, RI, TO, PD, POR and BOR, are set or cleared differently in different RESET situations, as indicated in Table 3-2. These bits are used in software to determine the nature of the RESET. See Table 3-3 for a full description of the RESET states of all registers.

A simplified block diagram of the On-Chip Reset Circuit is shown in Figure 3-1.

The Enhanced MCU devices have a $\overline{\text{MCLR}}$ noise filter in the $\overline{\text{MCLR}}$ Reset path. The filter will detect and ignore small pulses.

MCLR pin is not driven low by any internal RESETS, including WDT.

TABLE 4-2: REGISTER FILE SUMMARY

File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Details on page:
TOSU	—			Top-of-Stack	Upper Byte (T	OS<20:16>)			0 0000	37
TOSH	Top-of-Stac	k High Byte (T	OS<15:8>)						0000 0000	37
TOSL	Top-of-Stac	k Low Byte (TO	OS<7:0>)						0000 0000	37
STKPTR	STKFUL	STKUNF		Return Stack	Pointer				00-0 0000	38
PCLATU	—			Holding Regi	ister for PC<20):16>			0 0000	39
PCLATH	Holding Reg	gister for PC<1	5:8>						0000 0000	39
PCL	PC Low Byt	e (PC<7:0>)							0000 0000	39
TBLPTRU	—	—	bit21 ⁽²⁾	Program Mer	mory Table Po	nter Upper By	rte (TBLPTR<	20:16>)	0 0000	57
TBLPTRH	Program Me	emory Table P	pinter High By	te (TBLPTR<1	5:8>)				0000 0000	57
TBLPTRL	Program Me	emory Table P	pinter Low By	te (TBLPTR<7:	:0>)				0000 0000	57
TABLAT	Program Me	emory Table La	atch						0000 0000	57
PRODH	Product Re	gister High Byt	е						XXXX XXXX	61
PRODL	Product Re	gister Low Byte	9						XXXX XXXX	61
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INTOIE	RBIE	TMR0IF	INT0IF	RBIF	0000 000x	65
INTCON2	RBPU	INTEDG0	INTEDG1	INTEDG2	_	TMR0IP	_	RBIP	1111 -1-1	66
INTCON3	INT2IP	INT1IP	_	INT2IE	INT1IE	_	INT2IF	INT1IF	11-0 0-00	67
INDF0	Uses conter	nts of FSR0 to	address data	memory - valu	e of FSR0 not	changed (not	a physical reg	gister)	N/A	50
POSTINC0	Uses conter	nts of FSR0 to	address data	memory - valu	e of FSR0 pos	t-incremented	(not a physic	al register)	N/A	50
POSTDEC0	Uses contents of FSR0 to address data memory - value of FSR0 post-incremented (not a physical register)							N/A	50	
PREINC0	Uses contents of FSR0 to address data memory - value of FSR0 pre-incremented (not a physical register)							N/A	50	
PLUSW0	Uses contents of FSR0 to address data memory - value of FSR0 pre-incremented (not a physical register) - value of FSR0 offset by value in WREG							N/A	50	
FSR0H	_	_	_	_	Indirect Data	Memory Add	ress Pointer () High Byte	0000	50
FSR0L	Indirect Data Memory Address Pointer 0 Low Byte							XXXX XXXX	50	
WREG	Working Register							XXXX XXXX		
INDF1	Uses contents of FSR1 to address data memory - value of FSR1 not changed (not a physical register)							gister)	N/A	50
POSTINC1	Uses conter	nts of FSR1 to	address data	memory - valu	e of FSR1 pos	t-incremented	(not a physic	al register)	N/A	50
POSTDEC1	Uses conter	nts of FSR1 to	address data	memory - valu	e of FSR1 pos	t-decremented	d (not a physic	cal register)	N/A	50
PREINC1	Uses conter	nts of FSR1 to	address data	memory - valu	e of FSR1 pre-	-incremented	(not a physica	l register)	N/A	50
PLUSW1	Uses contents of FSR1 to address data memory - value of FSR1 pre-incremented (not a physical register) N/ Uses contents of FSR1 to address data memory - value of FSR1 pre-incremented (not a physical register) - N/ value of FSR1 offset by value in WREG							N/A	50	
FSR1H	—	_	_	—	Indirect Data	Memory Add	ress Pointer 1	High Byte	0000	50
FSR1L	Indirect Dat	a Memory Add	ress Pointer 1	Low Byte					XXXX XXXX	50
BSR	_	_	_	_	Bank Select	Register			0000	49
INDF2	Uses conter	nts of FSR2 to	address data	memory - valu	e of FSR2 not	changed (not	a physical reg	gister)	N/A	50
POSTINC2	Uses contents of FSR2 to address data memory - value of FSR2 nost-incremented (not a physical register)						al register)	N/A	50	
POSTDEC2	Uses contents of FSR2 to address data memory - value of FSR2 post-decremented (not a physical register)						cal register)	N/A	50	
PREINC2	Uses contents of FSR2 to address data memory - value of FSR2 pre-incremented (not a physical register)						N/A	50		
PLUSW2	Uses contents of FSR2 to address data memory - value of FSR2 pre-incremented (not a physical register) - N. value of FSR2 offset by value in WREG							N/A	50	
FSR2H	_	_	_	_	Indirect Data	Memory Add	ress Pointer 2	2 High Byte	0000	50
FSR2L	Indirect Data Memory Address Pointer 2 Low Byte							- /	xxxx xxxx	50
STATUS								x xxxx	52	
TMR0H	Timer0 Reg	ister Hiah Bvte	9	1	-	I	-	-	0000 0000	95
TMR0L	Timer0 Reg	ister Low Byte							XXXX XXXX	95
TOCON	TMR0ON	TO8BIT	TOCS	TOSF	PSA	T0PS2	T0PS1	T0PS0	1111 1111	93
OSCCON	_		_	_	_	_	_	SCS	0	20
LVDCON	_	_	IRVST	LVDEN	LVDL3	LVDL2	LVDL1	LVDL0	00 0101	175

Legend: x = unknown, u = unchanged, - = unimplemented, g = value depends on condition
Note 1: RA6 and associated bits are configured as port pins in RCIO and ECIO oscillator mode only, and read '0' in all other oscillator modes.
2: Bit 21 of the TBLPTRU allows access to the device configuration bits.

7.5 RCON Register

The RCON register contains the bit which is used to enable prioritized interrupts (IPEN).

- n = Value at POR reset

REGISTER 7-10: RCON REGISTER

	R/W-0	R/W-0	U-0	R/W-1	R-1	R-1	R/W-0	R/W-0
	IPEN	LWRT	—	RI	TO	PD	POR	BOR
	bit 7							bit 0
bit 7	IPEN: Inte	rrupt Priority	Enable bit					
	1 = Enabl 0 = Disab	e priority leve le priority leve	ls on interrup els on interru	ots pts (16CXXX	(compatibili	ty mode)		
bit 6	LWRT: Loi	ng Write Enal	ole bit					
	For details	of bit operati	on, see Reg	ister 4-3				
bit 5	Unimplem	nented: Read	l as '0'					
bit 4	RI: RESET	Instruction F	lag bit					
	For details	of bit operati	on, see Reg	ister 4-3				
bit 3	TO: Watch	ndog Time-ou	t Flag bit					
	For details	of bit operation	on, see Reg	ister 4-3				
bit 2	PD: Powe	r-down Detec	tion Flag bit					
	For details	of bit operation	on, see Reg	ister 4-3				
bit 1	POR: Pow	/er-on Reset	Status bit					
	For details of bit operation, see Register 4-3							
bit 0	BOR: Brown-out Reset Status bit							
	For details of bit operation, see Register 4-3							
	Legend:							
	R = Reada	able bit	W = Wr	itable bit	U = Unimr	plemented	bit, read as	ʻ0'

'0' = Bit is cleared

'1' = Bit is set

x = Bit is unknown

12.0 TIMER3 MODULE

The Timer3 module timer/counter has the following features:

- 16-bit timer/counter (two 8-bit registers: TMR3H and TMR3L)
- Readable and writable (both registers)
- Internal or external clock select
- Interrupt-on-overflow from FFFFh to 0000h
- Reset from CCP module trigger

Figure 12-1 is a simplified block diagram of the Timer3 module.

Register 12-1 shows the Timer3 control register. This register controls the operating mode of the Timer3 module and sets the CCP clock source.

Register 10-1 shows the Timer1 control register. This register controls the operating mode of the Timer1 module, as well as contains the Timer1 oscillator enable bit (T1OSCEN), which can be a clock source for Timer3.

REGISTER 12-1: T3CON: TIMER3 CONTROL REGISTER

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ĺ	RD16	T3CCP2	T3CKPS1	T3CKPS0	T3CCP1	T3SYNC	TMR3CS	TMR3ON
	bit 7							bit 0

bit 7	RD16: 16-bit Read/Write M 1 = Enables register Read/	ode Enable Write of Timer3 in one	e 16-bit operation	
	0 = Enables register Read/	Write of Timer3 in two	8-bit operations	
bit 6-3	T3CCP2:T3CCP1: Timer3	and Timer1 to CCPx B	Enable bits	
	1x = Timer3 is the clock so 01 = Timer3 is the clock so Timer1 is the clock so 00 = Timer1 is the clock so	urce for compare/capt urce for compare/capt ource for compare/capt urce for compare/capt	ure CCP modules ture of CCP2, ture of CCP1 ture CCP modules	
bit 5-4	T3CKPS1:T3CKPS0: Time	r3 Input Clock Presca	le Select bits	
	11 = 1:8 Prescale value 10 = 1:4 Prescale value 01 = 1:2 Prescale value 00 = 1:1 Prescale value			
bit 2	T3SYNC: Timer3 External ((Not usable if the system clWhen TMR3CS = 1:1 = Do not synchronize external cl0 = Synchronize external cl	Clock Input Synchroni ock comes from Time ernal clock input lock input	zation Control bit r1/Timer3.)	
	When TMR3CS = 0:			
	This bit is ignored. Timer3 u	uses the internal clock	when TMR3CS = 0.	
bit 1	TMR3CS: Timer3 Clock So	ource Select bit		
	 1 = External clock input from (on the rising edge after 0 = Internal clock (Fosc/4) 	m Timer1 oscillator or r the first falling edge)	Т1СКІ	
bit 0	TMR3ON: Timer3 On bit			
	1 = Enables Timer3 0 = Stops Timer3			
	Legend:			
	R = Readable bit	W = Writable bit	U = Unimplemented bit, read a	as 'O'
	- n = Value at POR reset	'1' = Bit is set	'0' = Bit is cleared x = Bit is	unknown

13.4 Compare Mode

In Compare mode, the 16-bit CCPR1 (CCPR2) register value is constantly compared against either the TMR1 register pair value or the TMR3 register pair value. When a match occurs, the RC2/CCP1 (RC1/CCP2) pin is:

- driven High
- driven Low
- toggle output (High to Low or Low to High)
- remains unchanged

The action on the pin is based on the value of control bits CCP1M3:CCP1M0 (CCP2M3:CCP2M0). At the same time, interrupt flag bit, CCP1IF (CCP2IF) is set.

13.4.1 CCP PIN CONFIGURATION

The user must configure the CCPx pin as an output by clearing the appropriate TRISC bit.

Note: Clearing the CCP1CON register will force the RC2/CCP1 compare output latch to the default low level. This is not the data latch.

13.4.2 TIMER1/TIMER3 MODE SELECTION

Timer1 and/or Timer3 must be running in Timer mode, or Synchronized Counter mode, if the CCP module is using the compare feature. In Asynchronous Counter mode, the compare operation may not work.

13.4.3 SOFTWARE INTERRUPT MODE

When generate software interrupt is chosen, the CCP1 pin is not affected. Only a CCP interrupt is generated (if enabled).

13.4.4 SPECIAL EVENT TRIGGER

In this mode, an internal hardware trigger is generated, which may be used to initiate an action.

The special event trigger output of CCP1 resets the TMR1 register pair. This allows the CCPR1 register to effectively be a 16-bit programmable period register for Timer1.

The special trigger output of CCPx resets either the TMR1 or TMR3 register pair. Additionally, the CCP2 Special Event Trigger will start an A/D conversion if the A/D module is enabled.

Note: The special event trigger from the CCP2 module will not set the Timer1 or Timer3 interrupt flag bits.

FIGURE 13-2: COMPARE MODE OPERATION BLOCK DIAGRAM

13.5 PWM Mode

In Pulse Width Modulation (PWM) mode, the CCP1 pin produces up to a 10-bit resolution PWM output. Since the CCP1 pin is multiplexed with the PORTC data latch, the TRISC<2> bit must be cleared to make the CCP1 pin an output.

Note:	Clearing the CCP1CON register will force
	the CCP1 PWM output latch to the default
	low level. This is not the PORTC I/O data
	latch.

Figure 13-3 shows a simplified block diagram of the CCP module in PWM mode.

For a step-by-step procedure on how to set up the CCP module for PWM operation, see Section 13.5.3.

A PWM output (Figure 13-4) has a time-base (period) and a time that the output stays high (duty cycle). The frequency of the PWM is the inverse of the period (1/period).

13.5.1 PWM PERIOD

The PWM period is specified by writing to the PR2 register. The PWM period can be calculated using the following formula:

PWM frequency is defined as 1 / [PWM period].

When TMR2 is equal to PR2, the following three events occur on the next increment cycle:

- TMR2 is cleared
- The CCP1 pin is set (exception: if PWM duty cycle = 0%, the CCP1 pin will not be set)
- The PWM duty cycle is latched from CCPR1L into CCPR1H

Note:	The Timer2 postscaler (see Section 11.0)
	is not used in the determination of the
	PWM frequency. The postscaler could be
	used to have a servo update rate at a dif-
	ferent frequency than the PWM output.

13.5.2 PWM DUTY CYCLE

The PWM duty cycle is specified by writing to the CCPR1L register and to the CCP1CON<5:4> bits. Up to 10-bit resolution is available. The CCPR1L contains the eight MSbs and the CCP1CON<5:4> contains the two LSbs. This 10-bit value is represented by CCPR1L:CCP1CON<5:4>. The following equation is used to calculate the PWM duty cycle in time:

```
PWM duty cycle = (CCPR1L:CCP1CON<5:4>) •
Tosc • (TMR2 prescale value)
```

CCPR1L and CCP1CON<5:4> can be written to at any time, but the duty cycle value is not latched into CCPR1H until after a match between PR2 and TMR2 occurs (i.e., the period is complete). In PWM mode, CCPR1H is a read only register.

The CCPR1H register and a 2-bit internal latch are used to double buffer the PWM duty cycle. This double buffering is essential for glitchless PWM operation.

When the CCPR1H and 2-bit latch match TMR2 concatenated with an internal 2-bit Q clock or 2 bits of the TMR2 prescaler, the CCP1 pin is cleared.

The maximum PWM resolution (bits) for a given PWM frequency is given by the equation:

PWM Resolution (max) =
$$\frac{\log(\frac{FOSC}{FPWM})}{\log(2)}$$
 bits

Note: If the PWM duty cycle value is longer than the PWM period, the CCP1 pin will not be cleared.

14.2 Control Registers

The MSSP module has three associated registers. These include a status register (SSPSTAT) and two control registers (SSPCON1 and SSPCON2).

REGISTER 14-1: SSPSTAT: MSSP STATUS REGISTER

- n = Value at POR

'1' = Bit is set

	R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0				
	SMP	CKE	D/A	Р	S	R/W	UA	BF				
	bit 7							bit 0				
bit 7	SMP: Sam	ple bit										
	SPI Master	SPI Master mode:										
	1 = Input d	ata sampled	at end of da	ata output ti	me							
	0 = Input d	0 = Input data sampled at middle of data output time										
	SPI Slave	SPI Slave mode:										
	SMP must	be cleared v	when SPI is	used in Slav	/e mode							
	In J ² C Master or Slave mode:											
	1 = Slew r 0 = Slew r	ate control c ate control e	isabled for s nabled for h	standard spe high speed r	eed mode (1 node (400 kl	00 kHz and Hz)	1 MHz)					
bit 6	CKE: SPI	Clock Edge	Select bit									
	<u>CKP = 0:</u>	CKP = 0:										
	1 = Data tr	ansmitted or	n rising edge	e of SCK								
	0 = Data tr	ansmitted or	n falling edg	e of SCK								
	<u>CKP = 1:</u>											
	1 = Data tra	ansmitted or	n falling edg	e of SCK								
	0 <u>=</u> Data tr	ansmitted or	n rising edge	e of SCK								
bit 5	D/A: Data/	Address bit ((I ² C mode o	nly)								
	1 = Indicate	es that the la	ast byte rece	eived or tran	smitted was	data						
	0 = Indicate	es that the la	ast byte rece	eived or tran	smitted was	address						
bit 4	 P: STOP bit (I²C mode only. This bit is cleared when the MSSP module is disabled, SSPEN is cleared.) 1 = Indicates that a STOP bit has been detected last (this bit is '0' on RESET) 0 = STOP bit was not detected last 											
	Legend											
	P - Poada	hla hit	$\Lambda = \Lambda = \Lambda$	le hit	II – Unimpl	lemented bit	read as '0'					
	r = reada		vv = vvnlap		o = ommp	ienienieu Dil	, ieau as 0					

'0' = Bit is cleared

x = Bit is unknown

REGISTER 14-2: SSPCON1: MSSP CONTROL REGISTER1 (CONTINUED)

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0			
	bit 7							bit 0			
bit 4	CKP: Clock	k Polarity Se	elect bit								
	In SPI mod	<u>le:</u>									
1 = Idle state for clock is a high level 0 = Idle state for clock is a low level											
	0 = Idle state for clock is a low level										
	In I ² C Slave mode:										
	SCK releas										
	 1 = Enable clock 0 = Holds clock low (clock stretch). (Used to ensure data setup time.) 										
	In I ² C Mast	ter mode:	,	· ·		1 /					
	Unused in	this mode									
bit 3-0	SSPM3:SS	SPM0: Synch	nronous Ser	ial Port Mod	le Select bits	6					
	0000 = SP	I Master mo	de, clock =	Fosc/4							
	0001 = SP	I Master mo	de, clock =	Fosc/16							
	0010 = SP	I Master mo	de, clock =	Fosc/64							
	0011 = SP	I Master mo	de, clock =	TMR2 o <u>utp</u> u	it/2						
	0100 = SP	I Slave mod	e, clock = S	CK pin. <u>SS</u>	pin control e	nabled.					
	0101 = 5P	Slave mod	e, CIOCK = Su a 7 bit addr	5K pin. 55 p	Din control di	sabled. 55 (can be used	as I/O pin.			
	0110 = 100	Slave mode	a 10-hit add	ress							
	$1000 = I^2C$	Master mod	de. clock = F	=osc / (4 * (SSPADD+1))					
	1001 = Reserved										
	1010 = Re	served									
	$1011 = I^2C$	firmware co	ontrolled Ma	ster mode (Slave idle)						
	1100 = Re	served									
	1101 = Reserved 1110 = I^2C Slave mode, 7-bit address with START and STOP bit interrupts enabled										
1111 = I^2C Slave mode, 10-bit address with START and STOP bit inte							rrupts enable	ed			
	·										
	Legend:										

R = Readable bit	W = Writable bit	U = Unimplemented bi	it, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

14.3.7 SLEEP OPERATION

In Master mode, all module clocks are halted, and the transmission/reception will remain in that state until the device wakes from SLEEP. After the device returns to normal mode, the module will continue to transmit/ receive data.

In Slave mode, the SPI transmit/receive shift register operates asynchronously to the device. This allows the device to be placed in SLEEP mode, and data to be shifted into the SPI transmit/receive shift register. When all 8-bits have been received, the MSSP interrupt flag bit will be set and if enabled, will wake the device from SLEEP.

14.3.8 EFFECTS OF A RESET

A RESET disables the MSSP module and terminates the current transfer.

14.3.9 BUS MODE COMPATIBILITY

Table 14-1 shows the compatibility between the standard SPI modes and the states of the CKP and CKE control bits.

Standard SPI Mode	Control Bits State					
Terminology	СКР	CKE				
0, 0	0	1				
0, 1	0	0				
1, 0	1	1				
1, 1	1	0				

There is also a SMP bit which controls when the data is sampled.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other RESETS
INTCON	GIE/GIEH	PEIE/ GIEL	TMR0IE	INTOIE	RBIE	TMR0IF	INTOIF	RBIF	0000 000x	0000 000u
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
IPR1	PSPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	0000 0000	0000 0000
TRISC	PORTC Da	ta Directior	n Register						1111 1111	1111 1111
SSPBUF	Synchronous Serial Port Receive Buffer/Transmit Register						xxxx xxxx	uuuu uuuu		
SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
TRISA	—	PORTA Data Direction Register						11 1111	11 1111	
SSPSTAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	0000 0000	0000 0000

.

TABLE 14-2: REGISTERS ASSOCIATED WITH SPI OPERATION

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the MSSP in SPI mode. **Note 1:** The PSPIF, PSPIE and PSPIP bits are reserved on the PIC18C2X2 devices. Always maintain these bits clear.

14.4.7 I²C MASTER MODE REPEATED START CONDITION TIMING

A Repeated START condition occurs when the RSEN bit (SSPCON2<1>) is programmed high and the I^2C logic module is in the idle state. When the RSEN bit is set, the SCL pin is asserted low. When the SCL pin is sampled low, the baud rate generator is loaded with the contents of SSPADD<5:0> and begins counting. The SDA pin is released (brought high) for one baud rate generator count (T_{BRG}). When the baud rate generator times out, if SDA is sampled high, the SCL pin will be de-asserted (brought high). When SCL is sampled high, the baud rate generator is reloaded with the contents of SSPADD<6:0> and begins counting. SDA and SCL must be sampled high for one TBRG. This action is then followed by assertion of the SDA pin (SDA = 0) for one TBRG, while SCL is high. Following this, the RSEN bit (SSPCON2<1>) will be automatically cleared and the baud rate generator will not be reloaded, leaving the SDA pin held low. As soon as a START condition is detected on the SDA and SCL pins, the S bit (SSPSTAT<3>) will be set. The SSPIF bit will not be set until the baud rate generator has timed out.

- Note 1: If RSEN is programmed while any other event is in progress, it will not take effect.
 - 2: A bus collision during the Repeated START condition occurs if:
 - SDA is sampled low when SCL goes from low to high.
 - SCL goes low before SDA is asserted low. This may indicate that another master is attempting to transmit a data "1".

Immediately following the SSPIF bit getting set, the user may write the SSPBUF with the 7-bit address in 7-bit mode, or the default first address in 10-bit mode. After the first eight bits are transmitted and an ACK is received, the user may then transmit an additional eight bits of address (10-bit mode), or eight bits of data (7-bit mode).

14.4.7.1 WCOL Status Flag

If the user writes the SSPBUF when a Repeated START sequence is in progress, the WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).

Note: Because queueing of events is not allowed, writing of the lower 5 bits of SSPCON2 is disabled until the Repeated START condition is complete.

FIGURE 14-17: REPEAT START CONDITION WAVEFORM

PIC18CXX2

The value that is in the ADRESH/ADRESL registers is not modified for a Power-on Reset. The ADRESH/ ADRESL registers will contain unknown data after a Power-on Reset.

After the A/D module has been configured as desired, the selected channel must be acquired before the conversion is started. The analog input channels must have their corresponding TRIS bits selected as an input. To determine acquisition time, see Section 16.1. After this acquisition time has elapsed, the A/D conversion can be started. The following steps should be followed for doing an A/D conversion:

- 1. Configure the A/D module:
 - · Configure analog pins, voltage reference and digital I/O (ADCON1)
 - Select A/D input channel (ADCON0)
 - Select A/D conversion clock (ADCON0)
 - Turn on A/D module (ADCON0)
- 2. Configure A/D interrupt (if desired):
 - · Clear ADIF bit
 - Set ADIE bit
 - · Set GIE bit
- 3. Wait the required acquisition time.
- 4. Start conversion:
 - Set GO/DONE bit (ADCON0)
- 5. Wait for A/D conversion to complete, by either:
 - Polling for the GO/DONE bit to be cleared

OR

- Waiting for the A/D interrupt
- 6. Read A/D Result registers (ADRESH/ADRESL); clear bit ADIF if required.
- 7. For next conversion, go to step 1 or step 2, as required. The A/D conversion time per bit is defined as TAD. A minimum wait of 2TAD is required before next acquisition starts.

FIGURE 16-2: ANALOG INPUT MODEL

16.1 A/D Acquisition Requirements

For the A/D converter to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The analog input model is shown in Figure 16-2. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD). The source impedance affects the offset voltage at the analog input (due to pin leakage current). The maximum recommended impedance for analog sources is 2.5 k Ω . After the analog input channel is selected (changed), this acquisition must be done before the conversion can be started.

When the conversion is started, the hold-Note: ing capacitor is disconnected from the input pin.

Mnemonic,		Description	Cycles	16-k	oit Instr	uction V	Status	Natas	
Opera	nds	Description	Cycles	MSb			LSb	Affected	Notes
CONTROL	OPERA	TIONS							
BC	n	Branch if Carry	1 (2)	1110	0010	nnnn	nnnn	None	
BN	n	Branch if Negative	1 (2)	1110	0110	nnnn	nnnn	None	
BNC	n	Branch if Not Carry	1 (2)	1110	0011	nnnn	nnnn	None	
BNN	n	Branch if Not Negative	1 (2)	1110	0111	nnnn	nnnn	None	
BNOV	n	Branch if Not Overflow	1 (2)	1110	0101	nnnn	nnnn	None	
BNZ	n	Branch if Not Zero	2	1110	0001	nnnn	nnnn	None	
BOV	n	Branch if Overflow	1 (2)	1110	0100	nnnn	nnnn	None	
BRA	n	Branch Unconditionally	1 (2)	1101	0nnn	nnnn	nnnn	None	
BZ	n	Branch if Zero	1 (2)	1110	0000	nnnn	nnnn	None	
CALL	n, s	Call subroutine1st word	2	1110	110s	kkkk	kkkk	None	
		2nd word		1111	kkkk	kkkk	kkkk		
CLRWDT	_	Clear Watchdog Timer	1	0000	0000	0000	0100	TO, PD	
DAW	—	Decimal Adjust WREG	1	0000	0000	0000	0111	С	
GOTO	n	Go to address1st word	2	1110	1111	kkkk	kkkk	None	
		2nd word		1111	kkkk	kkkk	kkkk		
NOP	—	No Operation	1	0000	0000	0000	0000	None	
NOP	—	No Operation (Note 4)	1	1111	xxxx	xxxx	xxxx	None	
POP	_	Pop top of return stack (TOS)	1	0000	0000	0000	0110	None	
PUSH	—	Push top of return stack (TOS)	1	0000	0000	0000	0101	None	
RCALL	n	Relative Call	2	1101	1nnn	nnnn	nnnn	None	
RESET		Software device RESET	1	0000	0000	1111	1111	All	
RETFIE	S	Return from interrupt enable	2	0000	0000	0001	000s	GIE/GIEH,	
								PEIE/GIEL	
RETLW	k	Return with literal in WREG	2	0000	1100	kkkk	kkkk	None	
RETURN	S	Return from Subroutine	2	0000	0000	0001	001s	None	
SLEEP		Go into standby mode	1	0000	0000	0000	0011	TO, PD	

TABLE 19-2:	PIC18CXXX INSTRUCTION SET	(CONTINUED)	,
		(

Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned.

3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

4: Some instructions are 2 word instructions. The second word of these instructions will be executed as a NOP, unless the first word of the instruction retrieves the information embedded in these 16-bits. This ensures that all program memory locations have a valid instruction.

5: If the table write starts the write cycle to internal memory, the write will continue until terminated.

NEG	F	Negate f	Negate f							
Synt	tax:	[<i>label</i>] N	EGF f	[,a]						
Ope	rands:	0 ≤ f ≤ 255 a ∈ [0,1]	$\begin{array}{l} 0 \leq f \leq 255 \\ a \in [0,1] \end{array}$							
Ope	ration:	$(\overline{f}) + 1 \rightarrow$	f							
State	us Affected:	N,OV, C, [DC, Z							
Enco	oding:	0110	110a	ffff	ffff					
Des	cription:	Location 'f compleme the data m 0, the Acc selected, c If 'a' = 1, th selected a	Location 'f' is negated using two's complement. The result is placed in the data memory location 'f'. If 'a' is 0, the Access Bank will be selected, overriding the BSR value. If 'a' = 1, then the bank will be selected as per the BSP value.							
Wor	ds:	1	1							
Cycl	es:	1	1							
QC	Cycle Activity:									
	Q1	Q2	Q3		Q4					
	Decode	Read register 'f'	Process Data	reg	Write gister 'f'					
<u>Exa</u>	mple:	NEGF R	EG, 1							
Before Instruction										
	REG	= 0011 1	.010 [0x3	3A]						
	REG	tion = 1100 C	110 [0x0	26]						

NOF)									
Synt	ax:	[label]	NOP							
Ope	rands:	None	None							
Ope	ration:	No opera	ation							
Status Affected: None										
Enco	oding:	0000 1111	00000 0000 000 xxxx xxxx xx			0000 xxxx				
Desc	cription:	No opera	ation.							
Wor	ds:	1								
Cycl	es:	1	1							
QC	ycle Activity:									
Q1		Q2	Q	3		Q4				
	Decode	No operation	No	No operation		No operation				

Example:

None.

20.13 PICDEM 3 Low Cost PIC16CXXX Demonstration Board

The PICDEM 3 demonstration board is a simple demonstration board that supports the PIC16C923 and PIC16C924 in the PLCC package. It will also support future 44-pin PLCC microcontrollers with an LCD Module. All the necessary hardware and software is included to run the basic demonstration programs. The user can program the sample microcontrollers provided with the PICDEM 3 demonstration board on a PRO MATE II device programmer, or a PICSTART Plus development programmer with an adapter socket, and easily test firmware. The MPLAB ICE in-circuit emulator may also be used with the PICDEM 3 demonstration board to test firmware. A prototype area has been provided to the user for adding hardware and connecting it to the microcontroller socket(s). Some of the features include a RS-232 interface, push button switches, a potentiometer for simulated analog input, a thermistor and separate headers for connection to an external LCD module and a keypad. Also provided on the PICDEM 3 demonstration board is a LCD panel, with 4 commons and 12 segments, that is capable of displaying time, temperature and day of the week. The PICDEM 3 demonstration board provides an additional RS-232 interface and Windows software for showing the demultiplexed LCD signals on a PC. A simple serial interface allows the user to construct a hardware demultiplexer for the LCD signals.

20.14 PICDEM 17 Demonstration Board

The PICDEM 17 demonstration board is an evaluation board that demonstrates the capabilities of several Microchip microcontrollers, including PIC17C752, PIC17C756A, PIC17C762 and PIC17C766. All necessary hardware is included to run basic demo programs, which are supplied on a 3.5-inch disk. A programmed sample is included and the user may erase it and program it with the other sample programs using the PRO MATE II device programmer, or the PICSTART Plus development programmer, and easily debug and test the sample code. In addition, the PICDEM 17 demonstration board supports downloading of programs to and executing out of external FLASH memory on board. The PICDEM 17 demonstration board is also usable with the MPLAB ICE in-circuit emulator, or the PICMASTER emulator and all of the sample programs can be run and modified using either emulator. Additionally, a generous prototype area is available for user hardware.

20.15 KEELOQ Evaluation and Programming Tools

KEELOQ evaluation and programming tools support Microchip's HCS Secure Data Products. The HCS evaluation kit includes a LCD display to show changing codes, a decoder to decode transmissions and a programming interface to program test transmitters.

FIGURE 21-7: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING

FIGURE 21-8: BROWN-OUT RESET TIMING

TABLE 21-7:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER
AND BROWN-OUT RESET REQUIREMENTS

Param. No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions
30	TmcL	MCLR Pulse Width (low)	2			μS	
31	Twdt	Watchdog Timer Time-out Period (No Postscaler)	7	18	33	ms	
32	Tost	Oscillation Start-up Timer Period	1024Tosc		1024Tosc		Tosc = OSC1 period
33	TPWRT	Power up Timer Period	28	72	132	ms	
34	Tıoz	I/O Hi-impedance from MCLR Low or Watchdog Timer Reset	_	2	—	μS	
35	TBOR	Brown-out Reset Pulse Width	200	_	—	μS	$VDD \le BVDD$ (See D005)
36	Tivrst	Time for Internal Reference Voltage to become stable	—	20	50	μS	

PIC18CXX2

FIGURE 22-16: TYPICAL AND MAXIMUM AlwDT vs. VDD OVER TEMPERATURE (WDT ENABLED)

DS39026D-page 270

FIGURE 22-22: TYPICAL AND MAXIMUM Vol vs. lol (VDD = 5V, -40°C TO +125°C)

© 1999-2013 Microchip Technology Inc.

28-Lead Ceramic Dual In-line with Window (JW) - 600 mil (CERDIP)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

		INCHES*		MILLIMETERS			
Dimension	MIN	NOM	MAX	MIN	NOM	MAX	
Number of Pins	n		28			28	
Pitch	р		.100			2.54	
Top to Seating Plane	А	.195	.210	.225	4.95	5.33	5.72
Ceramic Package Height	A2	.155	.160	.165	3.94	4.06	4.19
Standoff	A1	.015	.038	.060	0.38	0.95	1.52
Shoulder to Shoulder Width	Е	.595	.600	.625	15.11	15.24	15.88
Ceramic Pkg. Width	E1	.514	.520	.526	13.06	13.21	13.36
Overall Length	D	1.430	1.460	1.490	36.32	37.08	37.85
Tip to Seating Plane	L	.125	.138	.150	3.18	3.49	3.81
Lead Thickness	С	.008	.010	.012	0.20	0.25	0.30
Upper Lead Width		.050	.058	.065	1.27	1.46	1.65
Lower Lead Width	В	.016	.020	.023	0.41	0.51	0.58
Overall Row Spacing §	eB	.610	.660	.710	15.49	16.76	18.03
Window Diameter	W	.270	.280	.290	6.86	7.11	7.37

Kontrolling Parameter
 Significant Characteristic
 JEDEC Equivalent: MO-103
 Drawing No. C04-013