

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I²C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	33
Program Memory Size	32KB (16K x 16)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18c452t-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.7 Effects of SLEEP Mode on the On-chip Oscillator

When the device executes a SLEEP instruction, the on-chip clocks and oscillator are turned off and the device is held at the beginning of an instruction cycle (Q1 state). With the oscillator off, the OSC1 and OSC2 signals will stop oscillating. Since all the transistor

switching currents have been removed, SLEEP mode achieves the lowest current consumption of the device (only leakage currents). Enabling any on-chip feature that will operate during SLEEP will increase the current consumed during SLEEP. The user can wake from SLEEP through external RESET, Watchdog Timer Reset, or through an interrupt.

TABLE 2-3:OSC1 AND OSC2 PIN STATES IN SLEEP MODE

OSC Mode	OSC1 Pin	OSC2 Pin		
RC	Floating, external resistor should pull high	At logic low		
RCIO	Floating, external resistor should pull high	Configured as PORTA, bit 6		
ECIO	Floating	Configured as PORTA, bit 6		
EC	Floating	At logic low		
LP, XT, and HS	Feedback inverter disabled, at quiescent voltage level	Feedback inverter disabled, at quiescent voltage level		

Note: See Table 3-1, in Section 3.0 RESET, for time-outs due to SLEEP and MCLR Reset.

2.8 Power-up Delays

Power up delays are controlled by two timers, so that no external RESET circuitry is required for most applications. The delays ensure that the device is kept in RESET until the device power supply and clock are stable. For additional information on RESET operation, see the "RESET" section.

The first timer is the Power-up Timer (PWRT), which optionally provides a fixed delay of 72 ms (nominal) on power-up only (POR and BOR). The second timer is the Oscillator Start-up Timer, OST, intended to keep the chip in RESET until the crystal oscillator is stable.

With the PLL enabled (HS/PLL oscillator mode), the time-out sequence following a Power-on Reset is different from other oscillator modes. The time-out sequence is as follows: First, the PWRT time-out is invoked after a POR time delay has expired. Then, the Oscillator Start-up Timer (OST) is invoked. However, this is still not a sufficient amount of time to allow the PLL to lock at high frequencies. The PWRT timer is used to provide an additional fixed 2ms (nominal) time-out to allow the PLL ample time to lock to the incoming clock frequency.

NOTES:

4.2 Return Address Stack

The return address stack allows any combination of up to 31 program calls and interrupts to occur. The PC (Program Counter) is pushed onto the stack when a CALL or RCALL instruction is executed, or an interrupt is acknowledged. The PC value is pulled off the stack on a RETURN, RETLW or a RETFIE instruction. PCLATU and PCLATH are not affected by any of the call or return instructions.

The stack operates as a 31-word by 21-bit RAM and a 5-bit stack pointer, with the stack pointer initialized to 00000b after all RESETS. There is no RAM associated with stack pointer 00000b. This is only a RESET value. During a CALL type instruction causing a push onto the stack, the stack pointer is first incremented and the RAM location pointed to by the stack pointer is written with the contents of the PC. During a RETURN type instruction causing a pop from the stack, the contents of the RAM location pointed to by the STKPTR is transferred to the PC and then the stack pointer is decremented.

The stack space is not part of either program or data space. The stack pointer is readable and writable, and the address on the top of the stack is readable and writable through SFR registers. Data can also be pushed to, or popped from, the stack, using the top-of-stack SFRs. Status bits indicate if the stack pointer is at, or beyond the 31 levels provided.

4.2.1 TOP-OF-STACK ACCESS

The top of the stack is readable and writable. Three register locations, TOSU, TOSH and TOSL hold the contents of the stack location pointed to by the STKPTR register. This allows users to implement a software stack, if necessary. After a CALL, RCALL or interrupt, the software can read the pushed value by reading the TOSU, TOSH and TOSL registers. These values can be placed on a user defined software stack. At return time, the software can replace the TOSU, TOSH and TOSL and do a return.

The user must disable the global interrupt enable bits during this time to prevent inadvertent stack operations.

4.2.2 RETURN STACK POINTER (STKPTR)

The STKPTR register contains the stack pointer value, the STKFUL (stack full) status bit, and the STKUNF (stack underflow) status bits. Register 4-1 shows the STKPTR register. The value of the stack pointer can be 0 through 31. The stack pointer increments when values are pushed onto the stack and decrements when values are popped off the stack. At RESET, the stack pointer value will be 0. The user may read and write the stack pointer value. This feature can be used by a Real Time Operating System for return stack maintenance.

After the PC is pushed onto the stack 31 times (without popping any values off the stack), the STKFUL bit is set. The STKFUL bit can only be cleared in software or by a POR.

The action that takes place when the stack becomes full, depends on the state of the STVREN (Stack Overflow Reset Enable) configuration bit. Refer to Section 18.0 for a description of the device configuration bits. If STVREN is set (default), the 31st push will push the (PC + 2) value onto the stack, set the STKFUL bit, and reset the device. The STKFUL bit will remain set and the stack pointer will be set to 0.

If STVREN is cleared, the STKFUL bit will be set on the 31st push and the stack pointer will increment to 31. Any additional pushes will not overwrite the 31st push and STKPTR will remain at 31.

When the stack has been popped enough times to unload the stack, the next pop will return a value of zero to the PC and sets the STKUNF bit, while the stack pointer remains at 0. The STKUNF bit will remain set until cleared in software or a POR occurs.

Note: Returning a value of zero to the PC on an underflow, has the effect of vectoring the program to the RESET vector, where the stack conditions can be verified and appropriate actions can be taken.

FFFh	TOSU	FDFh	INDF2 ⁽³⁾	FBFh	CCPR1H	F9Fh	IPR1
FFEh	TOSH	FDEh	POSTINC2(3)	FBEh	CCPR1L	F9Eh	PIR1
FFDh	TOSL	FDDh	POSTDEC2 ⁽³⁾	FBDh	CCP1CON	F9Dh	PIE1
FFCh	STKPTR	FDCh	PREINC2 ⁽³⁾	FBCh	CCPR2H	F9Ch	
FFBh	PCLATU	FDBh	PLUSW2 ⁽³⁾	FBBh	CCPR2L	F9Bh	
FFAh	PCLATH	FDAh	FSR2H	FBAh	CCP2CON	F9Ah	
FF9h	PCL	FD9h	FSR2L	FB9h	—	F99h	_
FF8h	TBLPTRU	FD8h	STATUS	FB8h	—	F98h	—
FF7h	TBLPTRH	FD7h	TMR0H	FB7h	—	F97h	
FF6h	TBLPTRL	FD6h	TMR0L	FB6h	—	F96h	TRISE ⁽²⁾
FF5h	TABLAT	FD5h	T0CON	FB5h	—	F95h	TRISD ⁽²⁾
FF4h	PRODH	FD4h		FB4h	—	F94h	TRISC
FF3h	PRODL	FD3h	OSCCON	FB3h	TMR3H	F93h	TRISB
FF2h	INTCON	FD2h	LVDCON	FB2h	TMR3L	F92h	TRISA
FF1h	INTCON2	FD1h	WDTCON	FB1h	T3CON	F91h	
FF0h	INTCON3	FD0h	RCON	FB0h	<u> </u>	F90h	
FEFh	INDF0 ⁽³⁾	FCFh	TMR1H	FAFh	SPBRG	F8Fh	
FEEh	POSTINC0 ⁽³⁾	FCEh	TMR1L	FAEh	RCREG	F8Eh	
FEDh	POSTDEC0 ⁽³⁾	FCDh	T1CON	FADh	TXREG	F8Dh	LATE ⁽²⁾
FECh	PREINC0 ⁽³⁾	FCCh	TMR2	FACh	TXSTA	F8Ch	LATD ⁽²⁾
FEBh	PLUSW0 ⁽³⁾	FCBh	PR2	FABh	RCSTA	F8Bh	LATC
FEAh	FSR0H	FCAh	T2CON	FAAh	—	F8Ah	LATB
FE9h	FSR0L	FC9h	SSPBUF	FA9h	—	F89h	LATA
FE8h	WREG	FC8h	SSPADD	FA8h	—	F88h	
FE7h	INDF1 ⁽³⁾	FC7h	SSPSTAT	FA7h	—	F87h	
FE6h	POSTINC1 ⁽³⁾	FC6h	SSPCON1	FA6h	—	F86h	
FE5h	POSTDEC1 ⁽³⁾	FC5h	SSPCON2	FA5h	—	F85h	
FE4h	PREINC1 ⁽³⁾	FC4h	ADRESH	FA4h	—	F84h	PORTE ⁽²⁾
FE3h	PLUSW1 ⁽³⁾	FC3h	ADRESL	FA3h	—	F83h	PORTD ⁽²⁾
FE2h	FSR1H	FC2h	ADCON0	FA2h	IPR2	F82h	PORTC
FE1h	FSR1L	FC1h	ADCON1	FA1h	PIR2	F81h	PORTB
FE0h	BSR	FC0h	_	FA0h	PIE2	F80h	PORTA

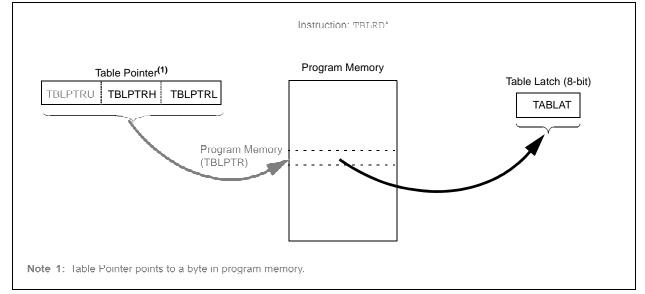
SPECIAL FUNCTION REGISTER MAP **TABLE 4-1:**

Note 1: Unimplemented registers are read as '0'.2: This register is not available on PIC18C2X2 devices.

3: This is not a physical register.

5.0 TABLE READS/TABLE WRITES

Enhanced devices have two memory spaces: the program memory space and the data memory space. The program memory space is 16-bits wide, while the data memory space is 8 bits wide. Table Reads and Table Writes have been provided to move data between these two memory spaces through an 8-bit register (TABLAT).


The operations that allow the processor to move data between the data and program memory spaces are:

- Table Read (TBLRD)
- Table Write (TBLWT)

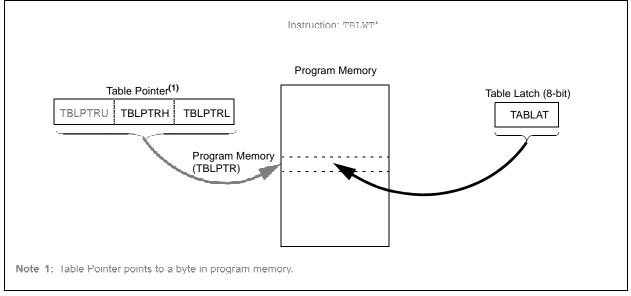

Table Read operations retrieve data from program memory and place it into the data memory space. Figure 5-1 shows the operation of a Table Read with program and data memory.

Table Write operations store data from the data memory space into program memory. Figure 5-2 shows the operation of a Table Write with program and data memory.

Table operations work with byte entities. A table block containing data is not required to be word aligned, so a table block can start and end at any byte address. If a Table Write is being used to write an executable program to program memory, program instructions will need to be word aligned.

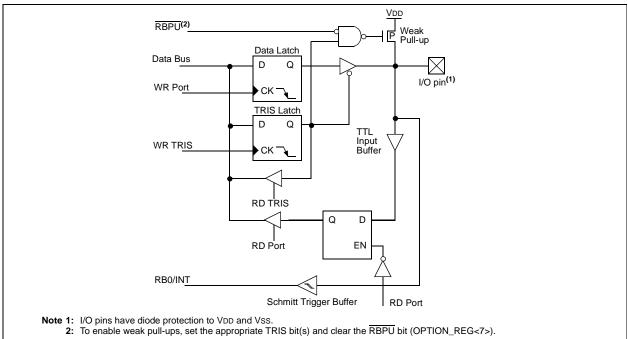


FIGURE 5-2: TABLE WRITE OPERATION

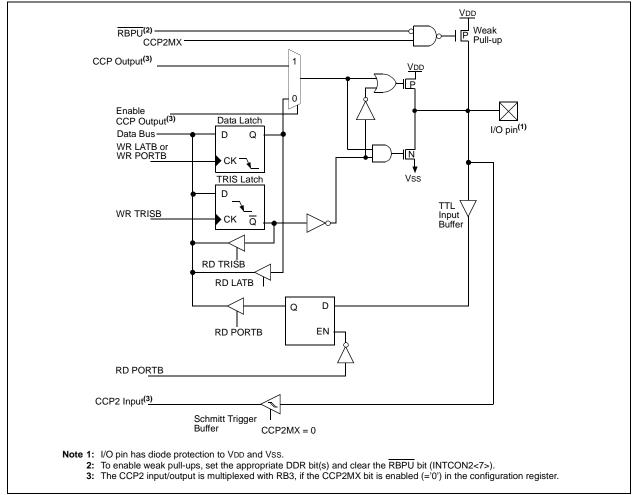


FIGURE 5-1: TABLE READ OPERATION

NOTES:

11.0 TIMER2 MODULE

The Timer2 module timer has the following features:

- 8-bit timer (TMR2 register)
- 8-bit period register (PR2)
- Readable and writable (both registers)
- Software programmable prescaler (1:1, 1:4, 1:16)
- Software programmable postscaler (1:1 to 1:16)
- Interrupt on TMR2 match of PR2
- SSP module optional use of TMR2 output to generate clock shift

Timer2 has a control register shown in Register 11-1. Timer2 can be shut-off by clearing control bit TMR2ON (T2CON<2>) to minimize power consumption. Figure 11-1 is a simplified block diagram of the Timer2 module. Register 11-1 shows the Timer2 control register. The prescaler and postscaler selection of Timer2 are controlled by this register.

11.1 Timer2 Operation

Timer2 can be used as the PWM time-base for the PWM mode of the CCP module. The TMR2 register is readable and writable, and is cleared on any device RESET. The input clock (Fosc/4) has a prescale option of 1:1, 1:4, or 1:16, selected by control bits T2CKPS1:T2CKPS0 (T2CON<1:0>). The match output of TMR2 goes through a 4-bit postscaler (which gives a 1:1 to 1:16 scaling inclusive) to generate a TMR2 interrupt (latched in flag bit TMR2IF, (PIR1<1>)).

The prescaler and postscaler counters are cleared when any of the following occurs:

- · a write to the TMR2 register
- a write to the T2CON register
- any device RESET (Power-on Reset, MCLR Reset, Watchdog Timer Reset, or Brown-out Reset)

TMR2 is not cleared when T2CON is written.

REGISTER 11-1: T2CON: TIMER2 CONTROL REGISTER

	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	—	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0
	bit 7							bit 0
bit 7	Unimple	emented: Re	ead as '0'					
bit 6-3	TOUTPS	S3:TOUTPS	0 : Timer2 Ou	itput Postsca	le Select bits			
	0000 =	1:1 Postscal	e					
	0001 =	1:2 Postscal	e					
	•							
	•							
	•	1:16 Postsca						
bit 2		N: Timer2 O	n bit					
	1 = Time							
		er2 is off						
bit 1-0			: Timer2 Clo	ck Prescale	Select bits			
		escaler is 1						
		escaler is 4 escaler is 16						
	TX = HG							
	Laward							
	Legend:							
	R = Rea	dable bit	W =	Writable bit		•	l bit, read as	ʻ0'
	- n = Va	ue at POR r	eset '1' =	Bit is set	'0' = Bit	is cleared	x = Bit is u	unknown

13.5.3 SETUP FOR PWM OPERATION

The following steps should be taken when configuring the CCP module for PWM operation:

- 1. Set the PWM period by writing to the PR2 register.
- 2. Set the PWM duty cycle by writing to the CCPR1L register and CCP1CON<5:4> bits.
- Make the CCP1 pin an output by clearing the TRISC<2> bit.
- 4. Set the TMR2 prescale value and enable Timer2 by writing to T2CON.
- 5. Configure the CCP1 module for PWM operation.

TABLE 13-4: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 40 MHz

PWM Frequency	2.44 kHz	9.77 kHz	39.06 kHz	156.25 kHz	312.50 kHz	416.67 kHz
Timer Prescaler (1, 4, 16)	16	4	1	1	1	1
PR2 Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Maximum Resolution (bits)	14	12	10	8	7	6.58

TABLE 13-5: REGISTERS ASSOCIATED WITH PWM AND TIMER2

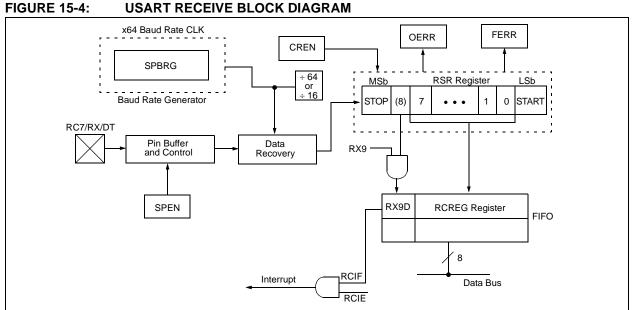
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	PC	ie on)R,)R	all o	ie on other SETS
INTCON	GIE/ GIEH	PEIE/ GIEL	TMR0IE	INTOIE	RBIE	TMR0IF	INTOIF	RBIF	0000	000x	0000	000u
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000	0000	0000	0000
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000	0000	0000	0000
IPR1	PSPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	0000	0000	0000	0000
TRISC	PORTC Da	ata Direction	Register						1111	1111	1111	1111
TMR2	Timer2 Mo	dule Registe	er						0000	0000	0000	0000
PR2	Timer2 Mo	dule Period	Register						1111	1111	1111	1111
T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000	0000	-000	0000
CCPR1L	Capture/Co	ompare/PWI	M Register1	(LSB)					xxxx	xxxx	uuuu	uuuu
CCPR1H	Capture/Co	ompare/PWI	M Register1	(MSB)					xxxx	xxxx	uuuu	uuuu
CCP1CON	_	_	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00	0000	00	0000
CCPR2L	Capture/Co	ompare/PWI	M Register2	(LSB)					xxxx	xxxx	uuuu	uuuu
CCPR2H	Capture/Co	ompare/PWI	M Register2	(MSB)					xxxx	xxxx	uuuu	uuuu
CCP2CON			DC2B1	DC2B0	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00	0000	00	0000

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by PWM and Timer2.

Note 1: The PSPIF, PSPIE and PSPIP bits are reserved on the PIC18C2X2 devices. Always maintain these bits clear.

USART ASYNCHRONOUS 15.2.2 RECEIVER

The receiver block diagram is shown in Figure 15-4. The data is received on the RC7/RX/DT pin and drives the data recovery block. The data recovery block is actually a high speed shifter operating at x16 times the baud rate, whereas the main receive serial shifter operates at the bit rate, or at Fosc. This mode would typically be used in RS-232 systems.


To set up an Asynchronous Reception:

- Initialize the SPBRG register for the appropriate 1. baud rate. If a high speed baud rate is desired, set bit BRGH (Section 15.1).
- 2. Enable the asynchronous serial port by clearing bit SYNC and setting bit SPEN.
- 3. If interrupts are desired, set enable bit RCIE.
- 4. If 9-bit reception is desired, set bit RX9.
- Enable the reception by setting bit CREN. 5.
- 6. Flag bit RCIF will be set when reception is complete and an interrupt will be generated if enable bit RCIE was set.
- 7. Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- Read the 8-bit received data by reading the 8. RCREG register.
- 9. If any error occurred, clear the error by clearing enable bit CREN.

SETTING UP 9-BIT MODE WITH 15.2.3 ADDRESS DETECT

This mode would typically be used in RS-485 systems. To set up an Asynchronous Reception with Address **Detect Enable:**

- 1. Initialize the SPBRG register for the appropriate baud rate. If a high speed baud rate is required, set the BRGH bit.
- 2. Enable the asynchronous serial port by clearing the SYNC bit and setting the SPEN bit.
- If interrupts are required, set the RCEN bit and 3. select the desired priority level with the RCIP bit.
- 4. Set the RX9 bit to enable 9-bit reception.
- Set the ADDEN bit to enable address detect. 5.
- Enable reception by setting the CREN bit.
- The RCIF bit will be set when reception is com-7. plete. The interrupt will be acknowledged if the RCIE and GIE bits are set.
- 8. Read the RCSTA register to determine if any error occurred during reception, as well as read bit 9 of data (if applicable).
- 9. Read RCREG to determine if the device is being addressed.
- 10. If any error occurred, clear the CREN bit.
- 11. If the device has been addressed, clear the ADDEN bit to allow all received data into the receive buffer and interrupt the CPU.

16.4 A/D Conversions

Figure 16-3 shows the operation of the A/D converter after the GO bit has been set. Clearing the GO/DONE bit during a conversion will abort the current conversion. The A/D result register pair will NOT be updated with the partially completed A/D conversion sample. That is, the ADRESH:ADRESL registers will continue to contain the value of the last completed conversion (or the last value written to the ADRESH:ADRESL registers). After the A/D conversion is aborted, a 2TAD wait is required before the next acquisition is started. After this 2TAD wait, acquisition on the selected channel is automatically started.

Note: The GO/DONE bit should NOT be set in the same instruction that turns on the A/D.

16.5 Use of the CCP2 Trigger

An A/D conversion can be started by the "special event trigger" of the CCP2 module. This requires that the CCP2M3:CCP2M0 bits (CCP2CON<3:0>) be programmed as 1011 and that the A/D module is enabled (ADON bit is set). When the trigger occurs, the GO/ DONE bit will be set, starting the A/D conversion and the Timer1 (or Timer3) counter will be reset to zero. Timer1 (or Timer3) is reset to automatically repeat the A/D acquisition period with minimal software overhead (moving ADRESH/ADRESL to the desired location). The appropriate analog input channel must be selected and the minimum acquisition done before the "special event trigger" sets the GO/DONE bit (starts a conversion).

If the A/D module is not enabled (ADON is cleared), the "special event trigger" will be ignored by the A/D module, but will still reset the Timer1 (or Timer3) counter.

	TAD TAD1	l				TAD6						
TT	b 9	b8	b7	b6	b5	b4	b3	b2	b1	b0	b0	
	Conver	sion St	arts									
Hole	ding capa	citor is	discon	nected	trom a	inalog i	nput (t	ypically	[,] 100 n	s)		
Set C	GO bit			Ţ								

FIGURE 16-3: A/D CONVERSION TAD CYCLES

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other RESETS
INTCON	GIE/ GIEH	PEIE/ GIEL	TMR0IE	INTOIE	RBIE	TMR0IF	INT0IF	RBIF	0000 000x	0000 000u
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
IPR1	PSPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	0000 0000	0000 0000
PIR2	_		_	_	BCLIF	LVDIF	TMR3IF	CCP2IF	0000	0000
PIE2	_		—	_	BCLIE	LVDIE	TMR3IE	CCP2IE	0000	0000
IPR2	_	_	_	—	BCLIP	LVDIP	TMR3IP	CCP2IP	0000	0000
ADRESH	A/D Result	t Register							xxxx xxxx	uuuu uuuu
ADRESL	A/D Result	t Register							xxxx xxxx	uuuu uuuu
ADCON0	ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/ DONE	—	ADON	0000 00-0	0000 00-0
ADCON1	ADFM	ADCS2	_	_	PCFG3	PCFG2	PCFG1	PCFG0	000	000
PORTA	_	RA6	RA5	RA4	RA3	RA2	RA1	RA0	0x 0000	0u 0000
TRISA	—	PORTA D	ata Directio	n Register					11 1111	11 1111
PORTE	_	—	_	—	_	RE2	RE1	RE0	000	000
LATE	—	_	_	—	—	LATE2	LATE1	LATE0	xxx	uuu
TRISE	IBF	OBF	IBOV	PSPMODE		PORTE Da	ata Directior	n bits	0000 -111	0000 -111

TABLE 16-3: SUMMARY OF A/D REGISTERS

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used for A/D conversion.

Note 1: The PSPIF, PSPIE and PSPIP bits are reserved on the PIC18C2X2 devices. Always maintain these bits clear.

NOTES:

19.1 Instruction Set

ADD	DLW	ADD litera	al to WRE	G						
Synt	tax:	[<i>label</i>] A	DDLW I	(
Ope	rands:	$0 \le k \le 25$	5							
Ope	ration:	(WREG) +	$- k \rightarrow WRE$	G						
State	us Affected:	N,OV, C, [DC, Z							
Enco	oding:	0000	1111 }	kkk	kkkk					
Description:		The conte to the 8-bit placed in V	t literal 'k' a							
Words:		1	1							
Cycles:		1	1							
QC	Cycle Activity:									
	Q1	Q2	Q3		Q4					
	Decode	Read literal 'k'	Process Data	-	/rite to VREG					
<u>Exa</u>	mple: Before Instru	iction)x15							
	WREG =									
	After Instruct									
	WREG =	0x25								

ADDWF	ADD WR	EG to f							
Syntax:	[label] A	DDWF	f [,d	d[,a] f [,d [,a]				
Operands:	0 ≤ f ≤ 255 d ∈ [0,1] a ∈ [0,1]	5							
Operation:	(WREG) -	(WREG) + (f) \rightarrow dest							
Status Affected:	N,OV, C,	DC, Z							
Encoding:	0010	01da	fff	f	ffff				
Description:	the result is 1, the re ister 'f' (de Access B	Add WREG to register 'f'. If 'd' is 0, the result is stored in WREG. If 'd' is 1, the result is stored back in reg- ister 'f' (default). If 'a' is 0, the Access Bank will be selected. If 'a' is 1, the BSR is used.							
Words:	1								
Cycles:	1								
Q Cycle Activity									
Q1	Q2	Q3	3		Q4				
Decode	Read register 'f'	Proce Data			/rite to stination				
Example:	ADDWF	REG,	0, 0						
Before Instru	uction								
WREG REG	= 0x17 = 0xC2								
After Instruc	tion								
WDEC	- 0~09								

WREG	=	0xD9
REG	=	0xC2

SLEEP	Enter SL	EEP mode		SUBFWB	Subtract	f from WRE	G with borro		
Syntax:	[label]	SLEEP		Syntax:	[label]	SUBFWB	f [,d [,a]		
Operands:	None			Operands:	$0 \le f \le 25$	-			
Operation:	$00h \rightarrow W$	/DT,			d ∈ [0,1]				
		T postscaler,			a ∈ [0,1]				
	$1 \rightarrow TO, 0 \rightarrow PD$			Operation:		$-(f) - (\overline{C}) -$	→ dest		
				Status Affected:	N,OV, C,	DC, Z			
Status Affected:	TO, PD			Encoding:	0101	0101 01da ffff ffff			
Encoding:	0000	0000 000		Description:		Subtract register 'f' and carry flag			
Description:		er-down statu				from WREG			
		The time-out et. Watchdog				thod). If 'd' is WREG. If 'd'			
		caler are clea			is stored i	in register 'f' (default). If 'a'		
	The proc	essor is put i	nto SLEEP			cess Bank w			
	mode wit	th the oscillat	or stopped.			g the BSR va bank will be s			
Nords:	1					value (defau			
Cycles:	1			Words:	1				
Q Cycle Activity	<i>/</i> :			Cycles:	1				
Q1	Q2	Q3	Q4	Q Cycle Activity					
Decode	No	Process	Go to	Q1	Q2	Q3	Q4		
	operation	Data	sleep	Decode	Read	Process	Write to		
Example:	SLEEP				register 'f'	Data	destination		
Before Instr	uction			Example 1:	SUBFWB	REG, 1,	0		
$\overline{TO} =$?			Before Instru	uction				
PD =	?			REG	= 3				
After Instruc	1 †			WREG C	= 2 = 1				
$\frac{10}{PD} =$	0			After Instruc					
f If WDT cause	es wake-up, tl	his bit is clea	red.	REG	= FF				
				WREG	= 2				
				C Z	= 0 = 0				
				Ν	= 1	; result :	is negativ		
				Example 2:	SUBFWB	REG, 0,	0		
				Before Instru	uction				
				REG	= 2				
				WREG C	= 5 = 1				
				After Instruc	tion				
				REG	= 2				
				WREG C	= 3 = 1				
				Z	= 1 = 0				
				Ν	= 0	; result :	is positiv		
				Example 3:	SUBFWB	REG, 1,	0		
				Before Instru					
				REG	= 1				
				WREG C	= 2 = 0				
				After Instruc	tion				
				REG	= 0				
				WREG	= 2				
				WREG C Z	= 2 = 1 = 1	; result :	is zero		

20.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers are supported with a full range of hardware and software development tools:

- Integrated Development Environment
 - MPLAB[®] IDE Software
- Assemblers/Compilers/Linkers
 - MPASM[™] Assembler
 - MPLAB C17 and MPLAB C18 C Compilers
 - MPLINK[™] Object Linker/
 - MPLIB[™] Object Librarian
- Simulators
 - MPLAB SIM Software Simulator
- Emulators
 - MPLAB ICE 2000 In-Circuit Emulator
- ICEPIC[™] In-Circuit Emulator
- In-Circuit Debugger
 - MPLAB ICD for PIC16F87X
- Device Programmers
 - PRO MATE[®] II Universal Device Programmer
- PICSTART[®] Plus Entry-Level Development Programmer
- Low Cost Demonstration Boards
 - PICDEM[™]1 Demonstration Board
 - PICDEM 2 Demonstration Board
 - PICDEM 3 Demonstration Board
 - PICDEM 17 Demonstration Board
 - KEELOQ[®] Demonstration Board

20.1 MPLAB Integrated Development Environment Software

The MPLAB IDE software brings an ease of software development previously unseen in the 8-bit microcontroller market. The MPLAB IDE is a Windows[®]-based application that contains:

- An interface to debugging tools
 - simulator
 - programmer (sold separately)
 - emulator (sold separately)
 - in-circuit debugger (sold separately)
- A full-featured editor
- A project manager
- Customizable toolbar and key mapping
- A status bar
- On-line help

The MPLAB IDE allows you to:

- Edit your source files (either assembly or 'C')
- One touch assemble (or compile) and download to PIC MCU emulator and simulator tools (automatically updates all project information)
- Debug using:
 - source files
 - absolute listing file
 - machine code

The ability to use MPLAB IDE with multiple debugging tools allows users to easily switch from the costeffective simulator to a full-featured emulator with minimal retraining.

20.2 MPASM Assembler

The MPASM assembler is a full-featured universal macro assembler for all PIC MCUs.

The MPASM assembler has a command line interface and a Windows shell. It can be used as a stand-alone application on a Windows 3.x or greater system, or it can be used through MPLAB IDE. The MPASM assembler generates relocatable object files for the MPLINK object linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, an absolute LST file that contains source lines and generated machine code, and a COD file for debugging.

The MPASM assembler features include:

- Integration into MPLAB IDE projects.
- User-defined macros to streamline assembly code.
- Conditional assembly for multi-purpose source files.
- Directives that allow complete control over the assembly process.

20.3 MPLAB C17 and MPLAB C18 C Compilers

The MPLAB C17 and MPLAB C18 Code Development Systems are complete ANSI 'C' compilers for Microchip's PIC17CXXX and PIC18CXXX family of microcontrollers, respectively. These compilers provide powerful integration capabilities and ease of use not found with other compilers.

For easier source level debugging, the compilers provide symbol information that is compatible with the MPLAB IDE memory display.

21.1 DC Characteristics

PIC18LCXX2 (Industrial)				Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial							
PIC18CXX2 (Industrial, Extended)			$\begin{array}{llllllllllllllllllllllllllllllllllll$								
Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions				
	Vdd	Supply Voltage									
D001		PIC18LCXX2	2.5	_	5.5	V	HS, XT, RC and LP osc mode				
D001		PIC18CXX2	4.2	—	5.5	V					
D002	Vdr	RAM Data Retention Voltage ⁽¹⁾	1.5	—	-	V					
D003	VPOR	VDD Start Voltage to ensure internal Power-on Reset signal		—	0.7	V	See section on Power-on Reset for details				
D004	Svdd	VDD Rise Rate to ensure internal Power-on Reset signal	0.05	—		V/ms	See section on Power-on Reset for details				
	VBOR	Brown-out Reset Voltage									
D005		PIC18LCXX2									
		BORV1:BORV0 = 11	2.5	_	2.66	V					
		BORV1:BORV0 = 10	2.7		2.86	V					
		BORV1:BORV0 = 01	4.2		4.46	V					
		BORV1:BORV0 = 00	4.5	—	4.78	V					
D005		PIC18CXX2									
		BORV1:BORV0 = 1x	N.A.	—	N.A.	V	Not in operating voltage range of device				
		BORV1:BORV0 = 01	4.2	—	4.46	V					
		BORV1:BORV0 = 00	4.5	—	4.78	V					

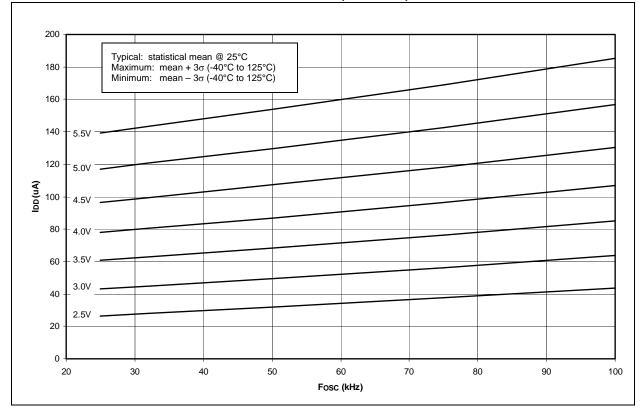
Legend: Shading of rows is to assist in readability of the table.

Note 1: This is the limit to which VDD can be lowered in SLEEP mode, or during a device RESET, without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

- OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD MCLR = VDD; WDT enabled/disabled as specified.
- 3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or Vss, and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR,...).
- **4:** For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kOhm.


21.2 DC Characteristics: PIC18CXX2 (Industrial, Extended) PIC18LCXX2 (Industrial) (Continued)

DC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$				
Param No.	Symbol	Characteristic	Min	Max	Units	Conditions	
	Vol	Output Low Voltage					
D080		I/O ports	—	0.6	V	IOL = 8.5 mA, VDD = 4.5V, -40°C to +85°C	
D080A			—	0.6	V	IOL = 7.0 mA, VDD = 4.5V, -40°C to +125°C	
D083		OSC2/CLKOUT (RC mode)	—	0.6	V	IOL = 1.6 mA, VDD = 4.5V, -40°C to +85°C	
D083A			—	0.6	V	IOL = 1.2 mA, VDD = 4.5V, -40°C to +125°C	
	Vон	Output High Voltage ⁽³⁾					
D090		I/O ports	Vdd - 0.7	—	V	IOH = -3.0 mA, VDD = 4.5V, -40°С to +85°С	
D090A			Vdd - 0.7	—	V	IOH = -2.5 mA, VDD = 4.5V, -40°С to +125°С	
D092		OSC2/CLKOUT (RC mode)	Vdd - 0.7	—	V	IOH = -1.3 mA, VDD = 4.5V, -40°С to +85°С	
D092A			Vdd - 0.7	—	V	IOH = -1.0 mA, VDD = 4.5V, -40°С to +125°С	
D150	Vod	Open Drain High Voltage	_	8.5	V	RA4 pin	
		Capacitive Loading Specs on Output Pins					
D101	Сю	All I/O pins and OSC2 (in RC mode)	—	50	pF	To meet the AC Timing Specifications	
D102	Св	SCL, SDA	—	400	pF	In I ² C mode	

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC MCU be driven with an external clock while in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

FIGURE 22-7: TYPICAL IDD vs. Fosc OVER VDD (LP MODE)

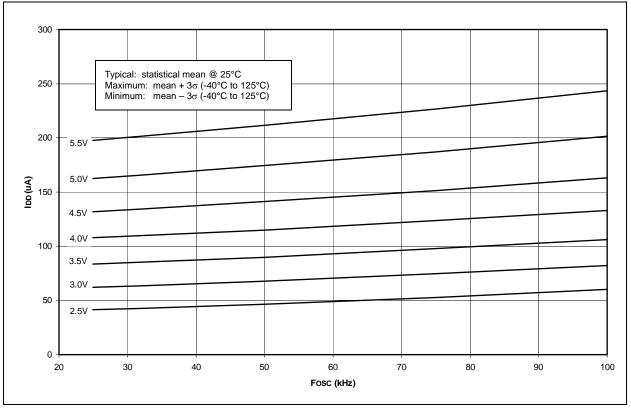
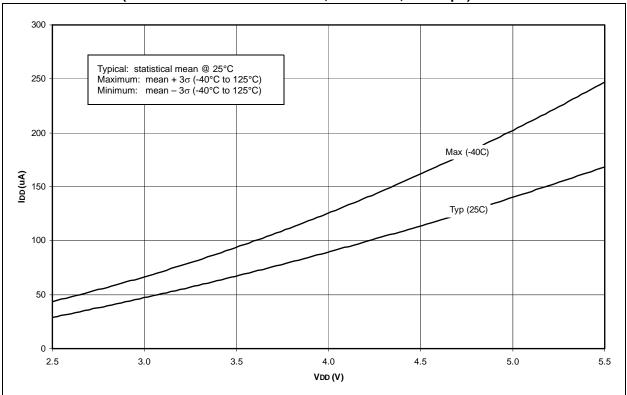
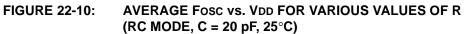
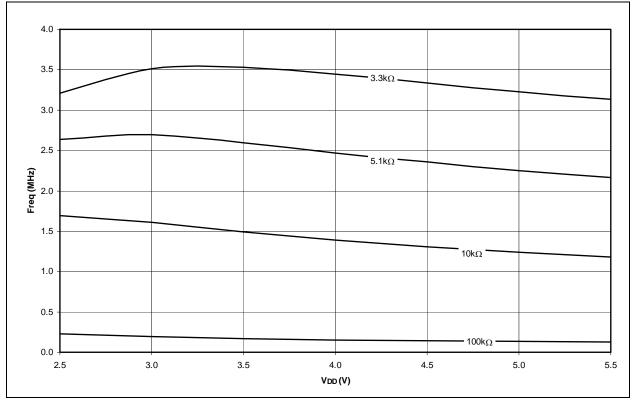





FIGURE 22-9: TYPICAL AND MAXIMUM IDD vs. VDD (TIMER1 AS MAIN OSCILLATOR, 32.768 kHz, C = 47 pF)

© 1999-2013 Microchip Technology Inc.