

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I²C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	33
Program Memory Size	32KB (16K x 16)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LCC (J-Lead)
Supplier Device Package	44-PLCC (16.59x16.59)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18c452t-i-l

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@mail.microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)
- The Microchip Corporate Literature Center; U.S. FAX: (480) 792-7277

When contacting a sales office or the literature center, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com/cn to receive the most current information on all of our products.

1.0 DEVICE OVERVIEW

This document contains device specific information for the following four devices:

- 1. PIC18C242
- 2. PIC18C252
- 3. PIC18C442
- 4. PIC18C452

These devices come in 28-pin and 40-pin packages. The 28-pin devices do not have a Parallel Slave Port (PSP) implemented and the number of Analog-to-Digital (A/D) converter input channels is reduced to 5. An overview of features is shown in Table 1-1.

The following two figures are device block diagrams sorted by pin count: 28-pin for Figure 1-1 and 40-pin for Figure 1-2. The 28-pin and 40-pin pinouts are listed in Table 1-2 and Table 1-3, respectively.

Features	PIC18C242	PIC18C252	PIC18C442	PIC18C452
Operating Frequency	DC - 40 MHz	DC - 40 MHz	DC - 40 MHz	DC - 40 MHz
Program Memory (Bytes)	16K	32K	16K	32K
Program Memory (Instructions)	8192	16384	8192	16384
Data Memory (Bytes)	512	1536	512	1536
Interrupt Sources	16	16	17	17
I/O Ports	Ports A, B, C	Ports A, B, C	Ports A, B, C, D, E	Ports A, B, C, D, E
Timers	4	4	4	4
Capture/Compare/PWM Modules	2	2	2	2
Serial Communications	MSSP,	MSSP,	MSSP,	MSSP,
	Addressable	Addressable	Addressable	Addressable
	USART	USART	USART	USART
Parallel Communications	—		PSP	PSP
10-bit Analog-to-Digital Module	5 input channels	5 input channels	8 input channels	8 input channels
RESETS (and Delays)	POR, BOR,	POR, BOR,	POR, BOR,	POR, BOR,
	RESET Instruction,	RESET Instruction,	RESET Instruction,	RESET Instruction,
	Stack Full,	Stack Full,	Stack Full,	Stack Full,
	Stack Underflow	Stack Underflow	Stack Underflow	Stack Underflow
	(PWRT, OST)	(PWRT, OST)	(PWRT, OST)	(PWRT, OST)
Programmable Low Voltage Detect	Yes	Yes	Yes	Yes
Programmable Brown-out Reset	Yes	Yes	Yes	Yes
Instruction Set	75 Instructions	75 Instructions	75 Instructions	75 Instructions
Packages	28-pin DIP	28-pin DIP	40-pin DIP	40-pin DIP
	28-pin SOIC	28-pin SOIC	44-pin PLCC	44-pin PLCC
	28-pin JW	28-pin JW	44-pin TQFP	44-pin TQFP
		1	40-pin JW	40-pin JW

TABLE 1-1: DEVICE FEATURES

3.0 RESET

The PIC18CXX2 differentiates between various kinds of RESET:

- a) Power-on Reset (POR)
- b) MCLR Reset during normal operation
- c) MCLR Reset during SLEEP
- d) Watchdog Timer (WDT) Reset (during normal operation)
- e) Programmable Brown-out Reset (BOR)
- f) RESET Instruction
- g) Stack Full Reset
- h) Stack Underflow Reset

Most registers are unaffected by a RESET. Their status is unknown on POR and unchanged by all other RESETS. The other registers are forced to a "RESET state" on Power-on Reset, MCLR, WDT Reset, Brownout Reset, MCLR Reset during SLEEP, and by the RESET instruction. Most registers are not affected by a WDT wake-up, since this is viewed as the resumption of normal operation. Status bits from the RCON register, RI, TO, PD, POR and BOR, are set or cleared differently in different RESET situations, as indicated in Table 3-2. These bits are used in software to determine the nature of the RESET. See Table 3-3 for a full description of the RESET states of all registers.

A simplified block diagram of the On-Chip Reset Circuit is shown in Figure 3-1.

The Enhanced MCU devices have a $\overline{\text{MCLR}}$ noise filter in the $\overline{\text{MCLR}}$ Reset path. The filter will detect and ignore small pulses.

MCLR pin is not driven low by any internal RESETS, including WDT.

4.7.1 TWO-WORD INSTRUCTIONS

The PIC18CXX2 devices have four two-word instructions: MOVFF, CALL, GOTO and LFSR. The second word of these instructions has the 4 MSBs set to 1's and is a special kind of NOP instruction. The lower 12bits of the second word contain data to be used by the instruction. If the first word of the instruction is executed, the data in the second word is accessed. If the second word of the instruction is executed by itself (first word was skipped), it will execute as a NOP. This action is necessary when the two-word instruction is preceded by a conditional instruction that changes the PC. A program example that demonstrates this concept is shown in Example 4-3. Refer to Section 19.0 for further details of the instruction set.

EXAMPLE 4-3:	TWO-WORD INSTRUCTIONS

CASE 1:			
Object Code	Source Cod	e	
0110 0110 0000 0000	TSTFSZ	REG1	; is RAM location 0?
1100 0001 0010 0011	MOVFF	REG1, REG2	; No, execute 2-word instruction
1111 0100 0101 0110			; 2nd operand holds address of REG2
0010 0100 0000 0000	ADDWF	REG3	; continue code
CASE 2:			
Object Code	Source Cod	e	
0110 0110 0000 0000	TSTFSZ	REG1	; is RAM location 0?
1100 0001 0010 0011	MOVFF	REG1, REG2	; Yes
1111 0100 0101 0110			; 2nd operand becomes NOP
0010 0100 0000 0000	ADDWF	REG3	; continue code

4.8 Lookup Tables

Lookup tables are implemented two ways. These are:

- Computed GOTO
- Table Reads

4.8.1 COMPUTED GOTO

A computed GOTO is accomplished by adding an offset to the program counter (ADDWF PCL).

A lookup table can be formed with an ADDWF PCL instruction and a group of RETLW 0xnn instructions. WREG is loaded with an offset into the table, before executing a call to that table. The first instruction of the called routine is the ADDWF PCL instruction. The next instruction executed will be one of the RETLW 0xnn instructions that returns the value 0xnn to the calling function.

The offset value (value in WREG) specifies the number of bytes that the program counter should advance.

In this method, only one data byte may be stored in each instruction location and room on the return address stack is required.

4.8.2 TABLE READS/TABLE WRITES

A better method of storing data in program memory allows 2 bytes of data to be stored in each instruction location.

Lookup table data may be stored 2 bytes per program word by using table reads and writes. The table pointer (TBLPTR) specifies the byte address and the table latch (TABLAT) contains the data that is read from, or written to program memory. Data is transferred to/from program memory one byte at a time.

A description of the Table Read/Table Write operation is shown in Section 5.0.

4.10 Access Bank

The Access Bank is an architectural enhancement, which is very useful for C compiler code optimization. The techniques used by the C compiler may also be useful for programs written in assembly.

This data memory region can be used for:

- Intermediate computational values
- · Local variables of subroutines
- Faster context saving/switching of variables
- Common variables
- Faster evaluation/control of SFRs (no banking)

The Access Bank is comprised of the upper 128 bytes in Bank 15 (SFRs) and the lower 128 bytes in Bank 0. These two sections will be referred to as Access RAM High and Access RAM Low, respectively. Figure 4-6 and Figure 4-7 indicate the Access RAM areas.

A bit in the instruction word specifies if the operation is to occur in the bank specified by the BSR register or in the Access Bank. This bit is denoted by the 'a' bit (for access bit).

When forced in the Access Bank (a = '0'), the last address in Access RAM Low is followed by the first address in Access RAM High. Access RAM High maps the Special Function registers, so that these registers can be accessed without any software overhead. This is useful for testing status flags and modifying control bits.

4.11 Bank Select Register (BSR)

The need for a large general purpose memory space dictates a RAM banking scheme. The data memory is partitioned into sixteen banks. When using direct addressing, the BSR should be configured for the desired bank.

BSR<3:0> holds the upper 4 bits of the 12-bit RAM address. The BSR<7:4> bits will always read '0's, and writes will have no effect.

A MOVLB instruction has been provided in the instruction set to assist in selecting banks.

If the currently selected bank is not implemented, any read will return all '0's and all writes are ignored. The STATUS register bits will be set/cleared as appropriate for the instruction performed.

Each Bank extends up to FFh (256 bytes). All data memory is implemented as static RAM.

A MOVFF instruction ignores the BSR, since the 12-bit addresses are embedded into the instruction word.

Section 4.12 provides a description of indirect addressing, which allows linear addressing of the entire RAM space.

© 1999-2013 Microchip Technology Inc.

REGISTER 7-3: INTCON3 REGISTER

bit

bit

bit bit

bit

bit bit

bit

R/W-1	R/W-1	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
INT2IP	INT1IP	_	INT2IE	INT1IE	_	INT2IF	INT1IF
bit 7							bit 0
INT2IP: IN	IT2 External li	nterrupt Prio	rity bit				
1 = High p 0 = Low pr	riority iority						
INT1IP: IN	IT1 External li	nterrupt Prio	rity bit				
1 = High priority 0 = Low priority							
Unimplem	nented: Read	as '0'					
INT2IE: INT2 External Interrupt Enable bit 1 = Enables the INT2 external interrupt 0 = Disables the INT2 external interrupt							
INT1IE: IN	IT1 External li	nterrupt Ena	ble bit				
1 = Enables the INT1 external interrupt 0 = Disables the INT1 external interrupt							
Unimplem	nented: Read	as '0'					
INT2IF: INT2 External Interrupt Flag bit							
1 = The INT2 external interrupt occurred (must be cleared in software)							
INT1IF: IN	T1 External Ir	nterrupt Flag	bit				
1 = The IN (must I 0 = The IN	T1 external in be cleared in T1 external ir	nterrupt occu software) nterrupt did r	rred ot occur				
Legend:							
R = Reada	able bit	W = Wr	itable bit	U = Unimn	lemented	bit. read as	'0'
- n = Value	at POR rese	t '1' = Bit	is set	'0' – Rit is	cleared	v – Ritis I	inknown

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit, or the global enable bit. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt. This feature allows for software polling.

7.5 RCON Register

The RCON register contains the bit which is used to enable prioritized interrupts (IPEN).

- n = Value at POR reset

REGISTER 7-10: RCON REGISTER

	R/W-0	R/W-0	U-0	R/W-1	R-1	R-1	R/W-0	R/W-0	
	IPEN	LWRT	—	RI	TO	PD	POR	BOR	
	bit 7							bit 0	
bit 7	IPEN: Interrupt Priority Enable bit								
	 1 = Enable priority levels on interrupts 0 = Disable priority levels on interrupts (16CXXX compatibility mode) 								
bit 6	LWRT: Loi	ng Write Enal	ole bit						
	For details	of bit operati	on, see Reg	ister 4-3					
bit 5	Unimplem	nented: Read	l as '0'						
bit 4	RI: RESET	Instruction F	lag bit						
	For details	of bit operati	on, see Reg	ister 4-3					
bit 3	TO: Watch	ndog Time-ou	t Flag bit						
	For details	of bit operation	on, see Reg	ister 4-3					
bit 2	PD: Powe	r-down Detec	tion Flag bit						
	For details	of bit operation	on, see Reg	ister 4-3					
bit 1	POR: Pow	/er-on Reset	Status bit						
	For details of bit operation, see Register 4-3								
bit 0	BOR: Brow	wn-out Reset	Status bit						
	For details of bit operation, see Register 4-3								
	Legend:								
	R = Reada	able bit	W = Wr	itable bit	U = Unimr	plemented	bit, read as	ʻ0'	

'0' = Bit is cleared

'1' = Bit is set

x = Bit is unknown

15.0 ADDRESSABLE UNIVERSAL SYNCHRONOUS ASYNCHRONOUS RECEIVER TRANSMITTER (USART)

The Universal Synchronous Asynchronous Receiver Transmitter (USART) module is one of the two serial I/O modules. (USART is also known as a Serial Communications Interface or SCI.) The USART can be configured as a full duplex asynchronous system that can communicate with peripheral devices, such as CRT terminals and personal computers, or it can be configured as a half-duplex synchronous system that can communicate with peripheral devices, such as A/D or D/A integrated circuits, serial EEPROMs, etc. The USART can be configured in the following modes:

- Asynchronous (full duplex)
- Synchronous Master (half duplex)
- Synchronous Slave (half duplex)

In order to configure pins RC6/TX/CK and RC7/RX/DT as the Universal Synchronous Asynchronous Receiver Transmitter:

- bit SPEN (RCSTA<7>) must be set (= 1), and
- bits TRISC<7:6> must be cleared (= 0).

Register 15-1 shows the Transmit Status and Control Register (TXSTA) and Register 15-2 shows the Receive Status and Control Register (RCSTA).

REGISTER 15-1: TXSTA: TRANSMIT STATUS AND CONTROL REGISTER

	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R-1	R/W-0		
	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D		
	bit 7							bit 0		
bit 7	CSRC: Clo	ock Source Se	elect bit							
	Asynchrone Don't care	ous mode:								
	Synchrono	<u>us mode:</u>								
	1 = Master	mode (clock	generated in	ternally fron	n BRG)					
1.11.0	0 = Slave r	node (clock fi	om external	source)						
DIT 6	1×9 : 9-bit 1 = Selects	i ransmit Enai 9-bit transmi	DIE DIT Ission							
	0 = Selects	8-bit transmi	ission							
bit 5	TXEN: Trai	nsmit Enable	bit							
	1 = Transm	nit enabled								
	0 = Iransm	nit disabled								
	Note:	SREN/CREN	l overrides T	XEN in SYN	C mode.					
bit 4	SYNC: US	ART Mode Se	elect bit							
	1 = Synchr	onous mode								
	0 = Asynch	nronous mode)							
bit 3	Unimplem	ented: Read	as '0'							
bit 2	BRGH: Hig	h Baud Rate	Select bit							
	1 = High sr	ous mode: beed								
	0 = Low sp	eed								
	<u>Synchrono</u>	Synchronous mode:								
	Unused in	this mode								
bit 1	TRMT: Trai	nsmit Shift Re	egister Status	s bit						
	1 = 1SR er 0 = TSR fu	npty II								
bit 0	TX9D: 9th	bit of transmi	t data. Can b	e Address/E	ata bit or a	parity bit.				
	Legend:									
	R = Reada	ble bit	W = Wri	table bit	U = Unimr	plemented h	oit, read as '	0'		

- 3			
R = Readable bit	W = Writable bit	U = Unimplemented	l bit, read as '0'
- n = Value at POR reset	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

The analog reference voltage is software selectable to either the device's positive and negative supply voltage (VDD and VSS) or the voltage level on the RA3/AN3/ VREF+ pin and RA2/AN2/VREF-.

The A/D converter has a unique feature of being able to operate while the device is in SLEEP mode. To operate in SLEEP, the A/D conversion clock must be derived from the A/D's internal RC oscillator.

The output of the sample and hold is the input into the converter, which generates the result via successive approximation.

A device RESET forces all registers to their RESET state. This forces the A/D module to be turned off and any conversion is aborted.

Each port pin associated with the A/D converter can be configured as an analog input (RA3 can also be a voltage reference) or as a digital I/O.

The ADRESH and ADRESL registers contain the result of the A/D conversion. When the A/D conversion is complete, the result is loaded into the ADRESH/ ADRESL registers, the GO/DONE bit (ADCON0<2>) is cleared, and A/D interrupt flag bit ADIF is set. The block diagram of the A/D module is shown in Figure 16-1.

FIGURE 16-1: A/D BLOCK DIAGRAM

To calculate the minimum acquisition time, Equation 16-1 may be used. This equation assumes that 1/2 LSb error is used (1024 steps for the A/D). The 1/2 LSb error is the maximum error allowed for the A/D to meet its specified resolution.

EQUATION 16-1: ACQUISITION TIME

TACQ	=	Amplifier Settling Time + Holding Capacitor Charging Time + Temperature Coefficient
	=	TAMP + TC + TCOFF

EQUATION 16-2: A/D MINIMUM CHARGING TIME

```
VHOLD = (VREF - (VREF/2048)) \cdot (1 - e^{(-Tc/CHOLD(RIC + RSS + RS))})
or
TC = -(120 \text{ pF})(1 \text{ k}\Omega + \text{Rss} + \text{Rs}) \ln(1/2047)
```

Example 16-1 shows the calculation of the minimum required acquisition time TACQ. This calculation is based on the following application system assumptions:

•	CHOLD	=	120 pF
•	Rs	=	2.5 kΩ
•	Conversion Error	\leq	1/2 LSb

- VDD = $5V \rightarrow Rss = 7 k\Omega$
- Temperature = 50°C (system max.)
- VHOLD = 0V @ time = 0

EXAMPLE 16-1: CALCULATING THE MINIMUM REQUIRED ACQUISITION TIME

 $\begin{array}{rcl} {\rm TACQ} &=& {\rm TAMP} + {\rm TC} + {\rm TCOFF} \\ \\ {\rm Temperature \ coefficient \ is \ only \ required \ for \ temperatures > 25^{\circ}{\rm C}. \\ \\ {\rm TACQ} &=& 2\ \mu{\rm s} + {\rm Tc} + [({\rm Temp} - 25^{\circ}{\rm C})(0.05\ \mu{\rm s}/^{\circ}{\rm C})] \\ \\ {\rm TC} &=& -{\rm CHOLD}\ ({\rm RIC} + {\rm RSS} + {\rm RS})\ \ln(1/2047) \\ &\quad -120\ {\rm pF}\ (1\ k\Omega + 7\ k\Omega + 2.5\ k\Omega)\ \ln(0.0004885) \\ &\quad -120\ {\rm pF}\ (10.5\ k\Omega)\ \ln(0.0004885) \\ &\quad -1.26\ \mu{\rm s}\ (-7.6241) \\ &\quad 9.61\ \mu{\rm s} \\ \end{array}$

17.1 Control Register

The Low Voltage Detect Control register controls the operation of the Low Voltage Detect circuitry.

REGISTER 17-1: LVDCON REGISTER

	U-0	U-0	R-0	R/W-0	R/W-0	R/W-1	R/W-0	R/W-1
		—	IRVST	LVDEN	LVDL3	LVDL2	LVDL1	LVDL0
	bit 7							bit 0
bit 7-6	Unimplen	nented: Read	d as '0'					
bit 5	IRVST: Int	ernal Refere	nce Voltage	Stable Flag	bit			
	1 = Indicat specifi 0 = Indicat specifi	tes that the L ed voltage ra tes that the L ed voltage ra	ow Voltage I ange ow Voltage I ange and the	Detect logic Detect logic	will generate will not gene pt should no	e the interrup erate the inte	ot flag at th errupt flag a d	e at the
bit 4	LVDEN: L	ow Voltage D	Detect Power	r Enable bit				
	1 = Enable 0 = Disabl	es LVD, powe es LVD, pow	ers up LVD o ers down LV	circuit D circuit				
bit 3-0	LVDL3:LV	DL0: Low Vo	oltage Detec	tion Limit bit	S			
	<pre>1111 = External analog input is used (input comes from the LVDIN pin) 1110 = 4.5V min 4.77V max. 1101 = 4.2V min 4.45V max. 1100 = 4.0V min 4.24V max. 1011 = 3.8V min 4.03V max. 1010 = 3.6V min 3.82V max. 1001 = 3.5V min 3.71V max. 1000 = 3.3V min 3.50V max. 0111 = 3.0V min 3.18V max. 0110 = 2.8V min 2.97V max. 0101 = 2.7V min 2.86V max. 0101 = 2.7V min 2.65V max. 0111 = 2.4V min 2.54V max. 0011 = 2.0V min 2.12V max.</pre>							
	Note:	LVDL3:LVD of the devic	L0 modes w	hich result insted.	n a trip point	below the v	alid operat	ing voltage

Legend:	
R = Readable bit	W = Writable bit
U = Unimplemented bit, read as '0'	- n = Value at POR reset

19.1 Instruction Set

ADD	DLW	ADD liter	al to W	REG					
Synt	tax:	[label] A	[<i>label</i>] ADDLW k						
Ope	rands:	$0 \le k \le 25$	$0 \le k \le 255$						
Ope	ration:	(WREG) ·	+ k \rightarrow W	/REG					
Statu	us Affected:	N,OV, C,	N,OV, C, DC, Z						
Enco	oding:	0000	1111	kkkk		kkkk			
Des	cription:	The conte to the 8-bi placed in	The contents of WREG are added to the 8-bit literal 'k' and the result is placed in WREG.						
Words:		1	1						
Cycl	es:	1	1						
QC	Cycle Activity:								
	Q1	Q2	Q	Q3		Q4			
	Decode	Read literal 'k'	Proce Data	Process Data		Write to WREG			
<u>Exa</u>	mple:	ADDLW	0x15						
	Before Instru	iction							
	WREG =	0x10							
	After Instruct	ion							
	WREG =	0x25							

ADDWF		EG to f						
Syntax:	[<i>label</i>] A[[<i>label</i>] ADDWF f [,d [,a] f [,d [,a]						
Operands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$						
Operation:	(WREG) +	$+$ (f) \rightarrow c	lest					
Status Affected:	N,OV, C, I	DC, Z						
Encoding:	0010	01da	fff	f	ffff			
2000nption.	the result is 1, the re ister 'f' (de Access Ba is 1, the B	the result is stored in WREG. If 'd' is 1, the result is stored back in reg- ister 'f' (default). If 'a' is 0, the Access Bank will be selected. If 'a' is 1, the BSR is used.						
Words:	1							
Cycles:	1							
Q Cycle Activity	:							
Q1	Q2	Q3	3		Q4			
Decode	Read register 'f'	Proce Data	ess a	V des	/rite to stination			
Example:	ADDWF	REG,	0, 0					
Before Instru	uction							
WREG REG After Instruc	= 0x17 = 0xC2							

WREG	=	0xD9
REG	=	0xC2

ANDWF	AND WRI	EG with f		BC		Branch if	Carry			
Syntax:	[label] A	NDWF f[,d [,a]	Syn	tax:	[label] B	C n			
Operands:	$0 \le f \le 25$	5		Оре	Operands: $-128 \le n \le 127$					
d ∈ [0,1] a ∈ [0,1]		Ope	Operation: if carry bit is '1' (PC) + 2 + 2n \rightarrow PC							
Operation:	(WREG) .	AND. (f) \rightarrow d	est	Stat	us Affected:	None	None			
Status Affected:	N,Z			Enc	odina:	1110	0010 nn	nn nnnn		
Encoding:	0001	01da ff:	ff ffff	Des	cription:	If the Carr	v bit is '1'. th	en the pro-		
Description: The contents of WREG are Al with register 'f'. If 'd' is 0, the r is stored in WREG. If 'd' is 1, result is stored back in register (default). If 'a' is 0, the Access Bank will be selected. If 'a' is BSR will not be overridden (default).			are AND'ed 0, the result d' is 1, the register 'f' Access If 'a' is 1, the Iden	Wor	ds:	gram will I The 2's cc added to t have incre instruction PC+2+2n. a two-cycl	oranch. omplement n he PC. Since mented to fe a, the new ac This instru- e instruction	umber '2n' is the PC will etch the next ldress will be ction is then		
Words:	1			Cvc	les:	1(2)				
Cycles:	1			0.0	Cycle Activity	·· (_)				
Q Cycle Activity	:			lf J	ump:	•				
Q1	Q2	Q3	Q4	-	Q1	Q2	Q3	Q4		
Decode	Read register 'f'	Process Data	Write to destination		Decode	Read literal 'n'	Process Data	Write to PC		
					No	No	No	No		
Example:	ANDWF	REG, 0, 0		If N	o Jump.	operation	operation	operation		
Before Instru	uction				Q1	Q2	Q3	Q4		
WREG REG	= 0x17 = 0xC2				Decode	Read literal	Process	No		
After Instruc	tion					'n'	Data	operation		
WREG REG	= 0x02 = 0xC2			<u>Exa</u>	<u>mple</u> : Before Instr	HERE	BC 5			
					PC After Instruc	= ad	dress (HER	E)		

If Carry PC If Carry PC

= = = l; address (HERE+12) 0; address (HERE+2)

21.2 DC Characteristics: PIC18CXX2 (Industrial, Extended) PIC18LCXX2 (Industrial)

рс сн	ARACTE	RISTICS	Standard O Operating te	perating Cor emperature	-40°C \leq TA \leq +85°C for industrial -40°C \leq TA \leq +125°C for extended		
Param No.	Symbol	Characteristic	Min	Мах	Units	Conditions	
	VIL	Input Low Voltage					
		I/O ports:					
D030		with TTL buffer	Vss	0.15Vdd	V	VDD < 4.5V	
D030A			—	0.8	V	$4.5V \le VDD \le 5.5V$	
D031		with Schmitt Trigger buffer	Vss	0.2VDD	V		
		RC3 and RC4	Vss	0.3VDD	V		
D032		MCLR	Vss	0.2Vdd	V		
D032A		OSC1 (in XT, HS and LP modes)	Vss	0.3Vdd	V		
Dooo		and $110SI$	1/22	0.01/77			
D033	N /	USCT (IN RC and EC mode)."	VSS	0.2VDD	V		
	VIH						
D 040			0.051/	N /= -			
D040		with IIL buffer	0.25VDD + 0.8V	VDD	V	VDD < 4.5V	
D040A			2.0	Vdd	V	$4.5V \leq V\text{DD} \leq 5.5V$	
D041		with Schmitt Trigger buffer	0.8Vdd	Vdd	V		
		RC3 and RC4	0.7Vdd	Vdd	V		
D042		MCLR, OSC1 (EC mode)	0.8Vdd	Vdd	V		
D042A		OSC1 (in XT, HS and LP modes) and T1OSI	0.7Vdd	Vdd	V		
D043		OSC1 (RC mode) ⁽¹⁾	0.9Vdd	Vdd	V		
	lı∟	Input Leakage Current ^(2,3)					
D060		I/O ports	—	±1	μA	$Vss \le VPIN \le VDD,$ Pin at hi-impedance	
D061		MCLR	_	±5	μA	$Vss \le VPIN \le VDD$	
D063		OSC1	—	±5	μA	$Vss \leq V \text{PIN} \leq V \text{DD}$	
	IPU	Weak Pull-up Current					
D070	IPURB	PORTB weak pull-up current	50	400	μA	VDD = 5V, VPIN = VSS	

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC MCU be driven with an external clock while in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

21.3.2 TIMING CONDITIONS

The temperature and voltages specified in Table 21-3 apply to all timing specifications unless otherwise noted. Figure 21-4 specifies the load conditions for the timing specifications.

TABLE 21-3: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC

	Standard Operating Conditions (unless otherwise stated)					
	Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial					
AC CHARACTERISTICS	-40°C \leq TA \leq +125°C for extended					
	Operating voltage VDD range as described in DC spec Section 21.1. LC parts operate for industrial temperatures only.					

FIGURE 21-4: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

FIGURE 21-10: CAPTURE/COMPARE/PWM TIMINGS (CCP1 AND CCP2)

TABLE 21-9: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP1 AND CCP2)

Param. No.	Symbol	Characteristic			Min	Мах	Units	Conditions
50	TccL	CCPx input low	No Presca	ler	0.5Tcy + 20	—	ns	
		time	With	PIC18CXXX	10	_	ns	
			Prescaler	PIC18LCXXX	20	_	ns	
51	TccH	CCPx input high time	No Prescaler		0.5TCY + 20	—	ns	
			With	PIC18CXXX	10	—	ns	
			Prescaler	PIC18LCXXX	20	_	ns	
52	2 TccP CCPx input period			<u>3Tcy + 40</u>	—	ns	N = prescale	
					N			value (1,4 or 16)
53	TccR	CCPx output fall time PIC18CXXX PIC18LCXXX		PIC18CXXX	_	25	ns	
				—	50	ns		
54	TccF CCPx output fall time		PIC18CXXX		25	ns		
				PIC18LCXXX		50	ns	

FIGURE 22-3: TYPICAL IDD vs. Fosc OVER VDD (HS/PLL MODE)

40-Lead Plastic Dual In-line (P) - 600 mil (PDIP)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		INCHES*		MILLIMETERS			
Dimension	Limits	MIN	NOM	MAX	MIN	NOM	MAX	
Number of Pins	n		40			40		
Pitch	р		.100			2.54		
Top to Seating Plane	Α	.160	.175	.190	4.06	4.45	4.83	
Molded Package Thickness	A2	.140	.150	.160	3.56	3.81	4.06	
Base to Seating Plane	A1	.015			0.38			
Shoulder to Shoulder Width	Е	.595	.600	.625	15.11	15.24	15.88	
Molded Package Width	E1	.530	.545	.560	13.46	13.84	14.22	
Overall Length	D	2.045	2.058	2.065	51.94	52.26	52.45	
Tip to Seating Plane	L	.120	.130	.135	3.05	3.30	3.43	
Lead Thickness	С	.008	.012	.015	0.20	0.29	0.38	
Upper Lead Width	B1	.030	.050	.070	0.76	1.27	1.78	
Lower Lead Width	В	.014	.018	.022	0.36	0.46	0.56	
Overall Row Spacing §	eB	.620	.650	.680	15.75	16.51	17.27	
Mold Draft Angle Top		5	10	15	5	10	15	
Mold Draft Angle Bottom	β	5	10	15	5	10	15	

* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side.

JEDEC Equivalent: MO-011

Drawing No. C04-016