

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	33
Program Memory Size	32KB (16K x 16)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18c452t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

REGISTER 4-1: STKPTR REGISTER

	R/C-0	R/C-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
	STKFUL	STKUNF	—	SP4	SP3	SP2	SP1	SP0				
	bit 7											
bit 7 ⁽¹⁾	STKFUL: S	Stack Full Fla	ag bit									
	1 = Stack became full or overflowed											
	0 = Stack has not become full or overflowed											
bit 6 ⁽¹⁾	STKUNF: S	Stack Underf	low Flag bit									
	1 = Stack u	inderflow oc	curred									
	0 = Stack u	inderflow did	l not occur									
bit 5	Unimplem	ented: Read	l as '0'									
bit 4-0	SP4:SP0: Stack Pointer Location bits											

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

FIGURE 4-3: RETURN ADDRESS STACK AND ASSOCIATED REGISTERS

4.2.3 PUSH AND POP INSTRUCTIONS

Since the Top-of-Stack (TOS) is readable and writable, the ability to push values onto the stack and pull values off the stack, without disturbing normal program execution, is a desirable option. To push the current PC value onto the stack, a PUSH instruction can be executed. This will increment the stack pointer and load the current PC value onto the stack. TOSU, TOSH and TOSL can then be modified to place a return address on the stack.

The ability to pull the TOS value off of the stack and replace it with the value that was previously pushed onto the stack, without disturbing normal execution, is achieved by using the POP instruction. The POP instruction discards the current TOS by decrementing the stack pointer. The previous value pushed onto the stack then becomes the TOS value.

4.2.4 STACK FULL/UNDERFLOW RESETS

These resets are enabled by programming the STVREN configuration bit. When the STVREN bit is disabled, a full or underflow condition will set the appropriate STKFUL or STKUNF bit, but not cause a device RESET. When the STVREN bit is enabled, a full or underflow will set the appropriate STKFUL or STKUNF bit and then cause a device RESET. The STKFUL or STKUNF bits are only cleared by the user software or a POR Reset.

$\ensuremath{\textcircled{}^{\circ}}$ 1999-2013 Microchip Technology Inc.

REGISTER FILE SUMMARY (CONTINUED) TABLE 4-2:

File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Details on page:
IPR2	_	_	_	—	BCLIP LVDIP TMR3IP CCP2IP -				1111	73
PIR2	—	—	_	BCLIF LVDIF TMR3IF CCP2IF -						69
PIE2	_	_	_	_	BCLIE	LVDIE	TMR3IE	CCP2IE	0000	71
IPR1	PSPIP	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	1111 1111	72
PIR1	PSPIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	68
PIE1	PSPIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	70
TRISE	IBF	OBF	IBOV	PSPMODE	_	Data Direction	on bits for PO	RTE	0000 -111	88
TRISD	Data Directi	on Control Re	gister for POR	TD					1111 1111	85
TRISC	Data Directi	on Control Re	Control Register for PORTC							83
TRISB	Data Directi	on Control Re	gister for POR	TB		1111 1111	80			
TRISA	_	TRISA6 ⁽¹⁾	Data Directi	on Control Reg	ister for PORT	A			-111 1111	77
LATE	-	—	_	—	-		E Data Latch, E Data Latch		xxx	87
LATD	Read PORT	D Data Latch,	Write PORTE	Data Latch	•				xxxx xxxx	85
LATC	Read PORT	C Data Latch,	Write PORTO	C Data Latch					xxxx xxxx	83
LATB	Read PORT	B Data Latch,	Write PORTE	B Data Latch					xxxx xxxx	80
LATA	_	LATA6 ⁽¹⁾	Read PORT	A Data Latch, V	Write PORTA	Data Latch ⁽¹⁾			-xxx xxxx	77
PORTE	Read PORT	E pins, Write	PORTE Data	Latch					000	87
PORTD	Read PORT	D pins, Write	PORTD Data	Latch					xxxx xxxx	85
PORTC	Read PORT	C pins, Write	PORTC Data	Latch					xxxx xxxx	83
PORTB	Read PORT	B pins, Write	PORTB Data	Latch					xxxx xxxx	80
PORTA	—	RA6 ⁽¹⁾	Read PORT	A pins, Write P	ORTA Data La	atch ⁽¹⁾			-x0x 0000	77

Legend: x = unknown, u = unchanged, - = unimplemented, g = value depends on condition
Note 1: RA6 and associated bits are configured as port pins in RCIO and ECIO oscillator mode only, and read '0' in all other oscillator modes.
2: Bit 21 of the TBLPTRU allows access to the device configuration bits.

13.1 CCP1 Module

Capture/Compare/PWM Register 1 (CCPR1) is comprised of two 8-bit registers: CCPR1L (low byte) and CCPR1H (high byte). The CCP1CON register controls the operation of CCP1. All are readable and writable.

TABLE 13-1: CCP MODE - TIMER RESOURCE

CCP Mode	Timer Resource
Capture	Timer1 or Timer3
Compare	Timer1 or Timer3
PWM	Timer2

13.2 CCP2 Module

Capture/Compare/PWM Register2 (CCPR2) is comprised of two 8-bit registers: CCPR2L (low byte) and CCPR2H (high byte). The CCP2CON register controls the operation of CCP2. All are readable and writable.

TABLE 13-2: INTERACTION OF TWO CCP MODULES

CCPx Mode	CCPy Mode	Interaction
Capture	Capture	TMR1 or TMR3 time-base. Time-base can be different for each CCP.
Capture	Compare	The compare could be configured for the special event trigger, which clears either TMR1, or TMR3, depending upon which time-base is used.
Compare	Compare	The compare(s) could be configured for the special event trigger, which clears TMR1, or TMR3, depending upon which time-base is used.
PWM	PWM	The PWMs will have the same frequency and update rate (TMR2 interrupt).
PWM	Capture	None.
PWM	Compare	None.

NOTES:

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN
						bit 0
		² 0.01				
General Call Er le interrupt wh ral call addres	en a general		• •	received in	the SSPSI	२
T: Acknowledg Transmit moo owledge was r owledge was r	<u>le:</u> not received	from slave	er mode only	/)		
Acknowledge <u>Receive mod</u> t will be transr	<u>e:</u>			nowledge s	equence at	the end of
Acknowledge <u>Receive mod</u> e Acknowledg natically cleare owledge seque	<u>e:</u> e sequence ed by hardwa	on SDA and				ata bit.
eceive Enable		laster mode	only)			
les Receive m ive idle	ode for I ² C					
OP Condition I ease Control: e STOP condi condition idle	tion on SDA			cally cleare	ed by hardw	are.
epeated STAF e Repeated S natically cleare ated START c	TART conditi ed by hardwa	ion on SDA a			nly)	
ART Condition	Enabled bit	(In I ² C Maste	er mode onl	y)		
e START cond T condition id		A and SCL pi	ns. Automa	tically clear	ed by hard	ware.
this bit may n	ot be set (no	spooling) ar	SEN: If the I nd the SSPE	² C module 3UF may n	is not in the ot be writte	Idle mode, n (or writes
	this bit may n	this bit may not be set (no	For bits ACKEN, RCEN, PEN, RSEN, S this bit may not be set (no spooling) ar to the SSPBUF are disabled).	this bit may not be set (no spooling) and the SSPE	this bit may not be set (no spooling) and the SSPBUF may not	For bits ACKEN, RCEN, PEN, RSEN, SEN: If the I ² C module is not in the this bit may not be set (no spooling) and the SSPBUF may not be written to the SSPBUF are disabled).

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	l bit, read as '0'
- n = Value at POR reset	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

REGISTER 14-3: SSPCON2: MSSP CONTROL REGISTER2

15.0 ADDRESSABLE UNIVERSAL SYNCHRONOUS ASYNCHRONOUS RECEIVER TRANSMITTER (USART)

The Universal Synchronous Asynchronous Receiver Transmitter (USART) module is one of the two serial I/O modules. (USART is also known as a Serial Communications Interface or SCI.) The USART can be configured as a full duplex asynchronous system that can communicate with peripheral devices, such as CRT terminals and personal computers, or it can be configured as a half-duplex synchronous system that can communicate with peripheral devices, such as A/D or D/A integrated circuits, serial EEPROMs, etc. The USART can be configured in the following modes:

- Asynchronous (full duplex)
- Synchronous Master (half duplex)
- Synchronous Slave (half duplex)

In order to configure pins RC6/TX/CK and RC7/RX/DT as the Universal Synchronous Asynchronous Receiver Transmitter:

- bit SPEN (RCSTA<7>) must be set (= 1), and
- bits TRISC<7:6> must be cleared (= 0).

Register 15-1 shows the Transmit Status and Control Register (TXSTA) and Register 15-2 shows the Receive Status and Control Register (RCSTA).

REGISTER 15-1: TXSTA: TRANSMIT STATUS AND CONTROL REGISTER

	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R-1	R/W-0		
	CSRC	TX9	TXEN	SYNC		BRGH	TRMT	TX9D		
	bit 7							bit 0		
bit 7	Asynchron Don't care Synchrono 1 = Master		generated in	•	BRG)					
bit 6	1 = Selects	Transmit Enal s 9-bit transmi s 8-bit transmi	ission							
bit 5	1 = Transm	 D = Selects 8-bit transmission TXEN: Transmit Enable bit 1 = Transmit enabled 10 = Transmit disabled 								
	Note:	SREN/CREN	l overrides T	XEN in SYN	C mode.					
bit 4	1 = Synchr	ART Mode Se onous mode nronous mode								
bit 3	Unimplem	ented: Read	as '0'							
bit 2	BRGH: Hig Asynchron 1 = High sp 0 = Low sp Synchrono Unused in	beed beed <u>us mode:</u>	Select bit							
bit 1	TRMT : Trai 1 = TSR er 0 = TSR fu		egister Status	s bit						
bit 0	TX9D: 9th	bit of transmit	t data. Can b	e Address/D	ata bit or a	parity bit.				
	Legend:									
	R = Reada	ble bit	W = Wri	table bit	U = Unimp	lemented b	oit, read as '	0'		

- 3			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR reset	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

FIGURE 15-3: ASYNCHRONOUS TRANSMISSION (BACK TO BACK)

TABLE 15-6: REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other RESETS
INTCON	GIE/GIEH	PEIE/ GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INTOIF	RBIF	0000 000x	0000 000u
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
IPR1	PSPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	0000 0000	0000 0000
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 -00x	0000 -00x
TXREG	USART Tra	insmit Re	egister						0000 0000	0000 0000
TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
SPBRG	SPBRG Baud Rate Generator Register								0000 0000	0000 0000
				1.1						

Legend: x = unknown, - = unimplemented locations read as '0'.

Shaded cells are not used for Asynchronous Transmission.

Note 1: The PSPIF, PSPIE and PSPIP bits are reserved on the PIC18C2X2 devices. Always maintain these bits clear.

15.3 USART Synchronous Master Mode

In Synchronous Master mode, the data is transmitted in a half-duplex manner, (i.e., transmission and reception do not occur at the same time). When transmitting data, the reception is inhibited and vice versa. Synchronous mode is entered by setting bit SYNC (TXSTA<4>). In addition, enable bit SPEN (RCSTA<7>) is set in order to configure the RC6/TX/CK and RC7/RX/DT I/O pins to CK (clock) and DT (data) lines, respectively. The Master mode indicates that the processor transmits the master clock on the CK line. The Master mode is entered by setting bit CSRC (TXSTA<7>).

15.3.1 USART SYNCHRONOUS MASTER TRANSMISSION

The USART transmitter block diagram is shown in Figure 15-1. The heart of the transmitter is the transmit (serial) shift register (TSR). The shift register obtains its data from the read/write transmit buffer register TXREG. The TXREG register is loaded with data in software. The TSR register is not loaded until the last bit has been transmitted from the previous load. As soon as the last bit is transmitted, the TSR is loaded with new data from the TXREG (if available). Once the TXREG register transfers the data to the TSR register (occurs in one TCYCLE), the TXREG is empty and inter-

rupt bit TXIF (PIR1<4>) is set. The interrupt can be enabled/disabled by setting/clearing enable bit TXIE (PIE1<4>). Flag bit TXIF will be set, regardless of the state of enable bit TXIE, and cannot be cleared in software. It will reset only when new data is loaded into the TXREG register. While flag bit TXIF indicates the status of the TXREG register, another bit TRMT (TXSTA<1>) shows the status of the TSR register. TRMT is a read only bit, which is set when the TSR is empty. No interrupt logic is tied to this bit, so the user has to poll this bit in order to determine if the TSR register is empty. The TSR is not mapped in data memory, so it is not available to the user.

To set up a Synchronous Master Transmission:

- 1. Initialize the SPBRG register for the appropriate baud rate (Section 15.1).
- 2. Enable the synchronous master serial port by setting bits SYNC, SPEN, and CSRC.
- 3. If interrupts are desired, set enable bit TXIE.
- 4. If 9-bit transmission is desired, set bit TX9.
- 5. Enable the transmission by setting bit TXEN.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit TX9D.
- 7. Start transmission by loading data to the TXREG register.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other RESETS
INTCON	GIE/ GIEH	PEIE/ GIEL	TMR0IE	INTOIE	RBIE	TMR0IF	INTOIF	RBIF	0000 000x	0000 000u
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
IPR1	PSPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	0000 0000	0000 0000
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 -00x	0000 -00x
TXREG	USART T	JSART Transmit Register							0000 0000	0000 0000
TXSTA	CSRC	TX9	TXEN	SYNC		BRGH	TRMT	TX9D	0000 -010	0000 -010
SPBRG	Baud Rate	e Genera	ator Regist	er					0000 0000	0000 0000

TABLE 15-8: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER TRANSMISSION

Legend: x = unknown, - = unimplemented, read as '0'.

Shaded cells are not used for Synchronous Master Transmission.

Note 1: The PSPIF, PSPIE and PSPIP bits are reserved on the PIC18C2X2 devices. Always maintain these bits clear.

FIGURE 15-6: SYNCHRONOUS TRANSMISSION

FIGURE 15-7: SYNCHRONOUS TRANSMISSION (THROUGH TXEN)

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other RESETS
INTCON	GIE/ GIEH	PEIE/ GIEL	TMR0IE	INTOIE	RBIE	TMR0IF	INT0IF	RBIF	0000 000x	0000 000u
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
IPR1	PSPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	0000 0000	0000 0000
PIR2	_		_	_	BCLIF	LVDIF	TMR3IF	CCP2IF	0000	0000
PIE2	_		—	_	BCLIE	LVDIE	TMR3IE	CCP2IE	0000	0000
IPR2	_	_	_	—	BCLIP	LVDIP	TMR3IP	CCP2IP	0000	0000
ADRESH	A/D Result	t Register							xxxx xxxx	uuuu uuuu
ADRESL	A/D Result	t Register							xxxx xxxx	uuuu uuuu
ADCON0	ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/ DONE	—	ADON	0000 00-0	0000 00-0
ADCON1	ADFM	ADCS2	_	_	PCFG3	PCFG2	PCFG1	PCFG0	000	000
PORTA	_	RA6	RA5	RA4	RA3	RA2	RA1	RA0	0x 0000	0u 0000
TRISA	—	PORTA D	ata Directio	n Register					11 1111	11 1111
PORTE	_	—	_	—	_	RE2	RE1	RE0	000	000
LATE	—	_	_	—	—	LATE2	LATE1	LATE0	xxx	uuu
TRISE	IBF	OBF	IBOV	PSPMODE		PORTE Da	ata Directior	n bits	0000 -111	0000 -111

TABLE 16-3: SUMMARY OF A/D REGISTERS

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used for A/D conversion.

Note 1: The PSPIF, PSPIE and PSPIP bits are reserved on the PIC18C2X2 devices. Always maintain these bits clear.

18.0 SPECIAL FEATURES OF THE CPU

There are several features intended to maximize system reliability, minimize cost through elimination of external components, provide power saving operating modes and offer code protection. These are:

- OSC Selection
- RESET
 - Power-on Reset (POR)
 - Power-up Timer (PWRT)
 - Oscillator Start-up Timer (OST)
 - Brown-out Reset (BOR)
- Interrupts
- Watchdog Timer (WDT)
- SLEEP
- Code Protection
- ID Locations
- In-circuit Serial Programming

All PIC18CXX2 devices have a Watchdog Timer, which is permanently enabled via the configuration bits or software-controlled. It runs off its own RC oscillator for added reliability. There are two timers that offer necessary delays on power-up. One is the Oscillator Start-up Timer (OST), intended to keep the chip in RESET until the crystal oscillator is stable. The other is the Powerup Timer (PWRT), which provides a fixed delay on power-up only, designed to keep the part in RESET while the power supply stabilizes. With these two timers on-chip, most applications need no external RESET circuitry. SLEEP mode is designed to offer a very low current Power-down mode. The user can wake-up from SLEEP through external RESET, Watchdog Timer Wake-up or through an interrupt. Several oscillator options are also made available to allow the part to fit the application. The RC oscillator option saves system cost, while the LP crystal option saves power. A set of configuration bits are used to select various options.

18.1 Configuration Bits

The configuration bits can be programmed (read as '0'), or left unprogrammed (read as '1'), to select various device configurations. These bits are mapped starting at program memory location 300000h.

The user will note that address 300000h is beyond the user program memory space. In fact, it belongs to the configuration memory space (300000h - 3FFFFh), which can only be accessed using table reads and table writes.

File	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default/ Unprogrammed Value
300000h	CONFIG1L	CP	CP	CP	CP	CP	СР	CP	CP	1111 1111
300001h	CONFIG1H	_	_	OSCSEN	_	_	FOSC2	FOSC1	FOSC0	111111
300002h	CONFIG2L	_	_	_	_	BORV1	BORV0	BODEN	PWRTEN	1111
300003h	CONFIG2H	_	_	_	_	WDTPS2	WDTPS1	WDTPS0	WDTEN	1111
300005h	CONFIG3H	_	_	_	_	_	_	_	CCP2MX	1
300006h	CONFIG4L	_	_	_	_	_	_	LVEN	STVREN	11
3FFFFEh	DEVID1	DEV2	DEV1	DEV0	REV4	REV3	REV2	REV1	REV0	0000 0000
3FFFFFh	DEVID2	DEV10	DEV9	DEV8	DEV7	DEV6	DEV5	DEV4	DEV3	0000 0010

TABLE 18-1: CONFIGURATION BITS AND DEVICE IDS

Legend: x = unknown, u = unchanged, - = unimplemented, q = value depends on condition. Shaded cells are unimplemented, read as '0'

REGISTER 18-1:	CONFIGU	CONFIGURATION REGISTER 1 HIGH (CONFIG1H: BYTE ADDRESS 300001h)											
	R/P-1	R/P-1	R/P-1	U-0	U-0	R/P-1	R/P-1	R/P-1					
	Reserved	Reserved	OSCSEN		_	FOSC2	FOSC1	FOSC0					
	bit 7	bit 7 b											
bit 7-6	Reserved:	Read as '1'											
bit 5	OSCSEN: (SCSEN: Oscillator System Clock Switch Enable bit											
		 1 = Oscillator system clock switch option is disabled (main oscillator is source) 0 = Oscillator system clock switch option is enabled (oscillator switching is enabled) 											
bit 4-3	Unimplem	ented: Read	as '0'										
bit 2-0	FOSC2:FO	SCO: Oscilla	tor Selection	bits									
		oscillator w/O			encv = (4 x F	-osc)							
		scillator w/O) (,							
		scillator w/O	SC2 configur	ed as divide	-by-4 clock o	utput							
	011 = RC c 010 = HS c												
	001 = XT o												
	000 = LP o	scillator											
	Legend:												
	R = Readat	ole bit	P = Program	mable bit	U = Unimple	mented bi	t, read as '	0'					

REGISTER 18-2: CONFIGURATION REGISTER 1 LOW (CONFIG1L: BYTE ADDRESS 300000h)

| R/P-1 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| CP |
| bit 7 | | | | | | | bit 0 |

- n = Value when device is unprogrammed u = Unchanged from programmed state

bit 7-0 CP: Code Protection bits (apply when in Code Protected Microcontroller mode)

1 = Program memory code protection off

0 = All of program memory code protected

Legend:		
R = Readable bit	P = Programmable bit	U = Unimplemented bit, read as '0'
- n = Value when device	ce is unprogrammed	u = Unchanged from programmed state

TABLE 19-1: OPCODE FIELD DESCRIPTIONS

Field	Description
a	RAM access bit
	a = 0: RAM location in Access RAM (BSR register is ignored)
	a = 1: RAM bank is specified by BSR register
bbb	Bit address within an 8-bit file register (0 to 7)
BSR	Bank Select Register. Used to select the current RAM bank.
d	Destination select bit;
	d = 0: store result in WREG,
dt.	d = 1: store result in file register f.
dest	Destination either the WREG register or the specified register file location 8-bit Register file address (0x00 to 0xFF)
f	
fs	12-bit Register file address (0x000 to 0xFFF). This is the source address.
fd	12-bit Register file address (0x000 to 0xFFF). This is the destination address.
k	Literal field, constant data or label (may be either an 8-bit, 12-bit or a 20-bit value)
label	
mm	The mode of the TBLPTR register for the Table Read and Table Write instructions Only used with Table Read and Table Write instructions:
*	No Change to register (such as TBLPTR with Table reads and writes)
*+	Post-Increment register (such as TBLPTR with Table reads and writes)
	Post-Decrement register (such as TBLPTR with Table reads and writes) Pre-Increment register (such as TBLPTR with Table reads and writes)
+*	
n	The relative address (2's complement number) for relative branch instructions, or the direct address for Call/Branch and Return instructions
PRODH	Product of Multiply high byte
PRODL	Product of Multiply low byte
S	Fast Call/Return mode select bit.
	s = 0: do not update into/from shadow registers
	s = 1: certain registers loaded into/from shadow registers (Fast mode)
u	Unused or Unchanged
WREG	Working register (accumulator)
x	Don't care (0 or 1)
	The assembler will generate code with $x = 0$. It is the recommended form of use for compatibility with all Microchip software tools.
TBLPTR	21-bit Table Pointer (points to a Program Memory location)
TABLAT	8-bit Table Latch
TOS	Top-of-Stack
PC	Program Counter
PCL	Program Counter Low Byte
PCH	Program Counter High Byte
PCLATH	Program Counter High Byte Latch
PCLATU	Program Counter Upper Byte Latch
GIE	Global Interrupt Enable bit
	Watchdog Timer
WDT TO	Time-out bit
PD	Power-down bit
C, DC, Z, OV, N	ALU status bits Carry, Digit Carry, Zero, Overflow, Negative
[]	Optional
	Contents
()	
\rightarrow	Assigned to
< >	Register bit field In the set of
e	
italics	User defined term (font is courier)

TABLE 19-2: PIC18CXXX INSTRUCTION SET

Mnemo	onic,	Description	Ovelar	16-l	oit Instr	uction V	Nord	Status	Natar
Opera	nds	Description	Cycles	MSb			LSb	Affected	Notes
BYTE-ORI	ENTED F	FILE REGISTER OPERATIONS							
ADDWF	f, d, a	Add WREG and f	1	0010	01da	ffff	ffff	C, DC, Z, OV, N	1, 2
ADDWFC	f, d, a	Add WREG and Carry bit to f	1	0010	00da	ffff	ffff	C, DC, Z, OV, N	1, 2
ANDWF	f, d, a	AND WREG with f	1	0001	01da	ffff	ffff	Z, N	1,2
CLRF	f, a	Clear f	1	0110	101a	ffff	ffff	Z	2
COMF	f, d, a	Complement f	1	0001	11da	ffff	ffff	Z, N	1, 2
CPFSEQ	f, a	Compare f with WREG, skip =	1 (2 or 3)	0110	001a	ffff	ffff	None	4
CPFSGT	f, a	Compare f with WREG, skip >	1 (2 or 3)	0110	010a	ffff	ffff	None	4
CPFSLT	f, a	Compare f with WREG, skip <	1 (2 or 3)	0110	000a	ffff	ffff	None	1, 2
DECF	f, d, a	Decrement f	1	0000	01da	ffff	ffff	C, DC, Z, OV, N	1, 2, 3, 4
DECFSZ	f, d, a	Decrement f, Skip if 0	1 (2 or 3)	0010	11da	ffff	ffff	None	1, 2, 3, 4
DCFSNZ	f, d, a	Decrement f, Skip if Not 0	1 (2 or 3)	0100	11da	ffff	ffff	None	1, 2
INCF	f, d, a	Increment f	1	0010	10da	ffff	ffff	C, DC, Z, OV, N	1, 2, 3, 4
INCFSZ	f, d, a	Increment f, Skip if 0	1 (2 or 3)	0011	11da	ffff	ffff	None	4
INFSNZ	f, d, a	Increment f, Skip if Not 0	1 (2 or 3)	0100	10da	ffff	ffff	None	1, 2
IORWF	f, d, a	Inclusive OR WREG with f	1	0001	00da	ffff	ffff	Z, N	1, 2
MOVF	f, d, a	Move f	1	0101	00da	ffff	ffff	Z, N	1
MOVFF	f _s , f _d	Move f _s (source) to 1st word	2	1100	ffff	ffff	ffff	None	
	0 u	f _d (destination)2nd word		1111	ffff	ffff	ffff		
MOVWF	f, a	Move WREG to f	1	0110	111a	ffff	ffff	None	
MULWF	f, a	Multiply WREG with f	1	0000	001a	ffff	ffff	None	
NEGF	f, a	Negate f	1	0110	110a	ffff	ffff	C, DC, Z, OV, N	1, 2
RLCF	f, d, a	Rotate Left f through Carry	1	0011	01da	ffff	ffff	C, Z, N	
RLNCF	f, d, a	Rotate Left f (No Carry)	1	0100	01da	ffff	ffff	Z, N	1, 2
RRCF	f, d, a	Rotate Right f through Carry	1	0011	00da	ffff	ffff	C, Z, N	
RRNCF	f, d, a	Rotate Right f (No Carry)	1	0100	00da	ffff	ffff	Z, N	
SETF	f, a	Set f	1	0110	100a	ffff	ffff	None	
SUBFWB	f, d, a	Subtract f from WREG with	1	0101	01da	ffff	ffff	C, DC, Z, OV, N	1, 2
	6	borrow							
SUBWF	f, d, a	Subtract WREG from f	1		11da	ffff	ffff	C, DC, Z, OV, N	4 0
SUBWFB	f, d, a	Subtract WREG from f with	1	0101	10da	ffff	tttt	C, DC, Z, OV, N	1, 2
		borrow							
SWAPF	f, d, a	Swap nibbles in f	1		10da	ffff	ffff	None	4
TSTFSZ	f, a	Test f, skip if 0	1 (2 or 3)	0110		ffff		None	1, 2
XORWF	f, d, a	Exclusive OR WREG with f	1	0001	10da	ffff	ffff	Ζ, Ν	
	ITED FIL	E REGISTER OPERATIONS	1	r				I	
BCF	f, b, a	Bit Clear f	1	1001	bbba	ffff	ffff	None	1, 2
BSF	f, b, a	Bit Set f	1	1000	bbba	ffff	ffff	None	1, 2
BTFSC	f, b, a	Bit Test f, Skip if Clear	1 (2 or 3)	1011	bbba	ffff	ffff	None	3, 4
BTFSS	f, b, a	Bit Test f, Skip if Set	1 (2 or 3)	1010	bbba	ffff	ffff	None	3, 4
BTG	f, d, a	Bit Toggle f	1	0111	bbba	ffff	ffff	None	1, 2

Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned.

3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

4: Some instructions are 2 word instructions. The second word of these instructions will be executed as a NOP, unless the first word of the instruction retrieves the information embedded in these 16-bits. This ensures that all program memory locations have a valid instruction.

5: If the table write starts the write cycle to internal memory, the write will continue until terminated.

IOR	LW	Inclusive	Inclusive OR literal with WREG						
Synt	ax:	[label]	IORLW	k					
Ope	rands:	$0 \le k \le 25$	55						
Ope	ration:	(WREG)	.OR. k –	→ WRE	G				
Status Affected:		N,Z	N,Z						
Encoding:		0000	1001	kkkk	kkkk				
Des	cription:	The conte with the e result is p	ight-bit l	iteral 'k					
Wor	ds:	1	1						
Cycl	es:	1							
QC	cycle Activity:								
	Q1	Q2	Q3	}	Q4				
	Decode	Read literal 'k'	Proce Data		Write to WREG				
Example: Before Instruc		IORLW	0x35						
	WREG After Instruct	= 0x9A							

WREG = 0xBF

IORWF	Inclusive	Inclusive OR WREG with f						
Syntax:	[label]	IORWF	f [,d	[,a]				
Operands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$	5						
Operation:	(WREG) .	OR. (f) -	→ dest	I				
Status Affected:	N,Z							
Encoding:	0001	00da	ffff	ffff				
	'f'. If 'd' is 0, the result is placed in WREG. If 'd' is 1, the result is placed back in register 'f' (default). If 'a' is 0, the Access Bank will be selected, overriding the BSR value. If 'a' = 1, then the bank will be selected as per the BSR value (default).							
	selected a	as per th	e BSR					
Words:	selected a	as per th	e BSR					
Words: Cycles:	selected a (default).	as per th	e BSR					
	selected a (default). 1	as per th	e BSR					
Cycles:	selected a (default). 1	is per th Q3						
Cycles: Q Cycle Activity:	selected a (default). 1 1		SS	value				
Cycles: Q Cycle Activity: Q1	selected a (default). 1 1 Q2 Read register 'f'	Q3 Proce	SS a	Q4 Write to				

Delore instru	Clion	
RESULT	=	0x13
WREG	=	0x91
After Instruct	ion	
RESULT	=	0x13

LFS	R	Load FSF	R		MOVF	Move f			
Synt	tax:	[label]	LFSR f,k		Syntax:	[label]	MOVF f[,	d [,a]	
Ope	rands:	$\begin{array}{l} 0 \leq f \leq 2 \\ 0 \leq k \leq 40 \end{array}$	95		Operands:	$0 \le f \le 255$ d \in [0,1]	5		
Ope	ration:	$k \rightarrow FSRf$				a ∈ [0,1]			
State	us Affected:	None			Operation:	$f \rightarrow dest$			
Enco	oding:	1110 1111		ff k ₁₁ kkk kk kkkk	Status Affected: Encoding:	N,Z	00da fi	fff ffff	
Des	Description: The 12-bit literal 'k' is loaded into the file select register pointed to by 'f'.			Description:	moved to		ter 'f' are n dependent If 'd' is 0, the		
Wor	Words: 2							EG. If 'd' is 1,	
Cycl	Cycles: 2						ack in register f' can be any-		
QC	Cycle Activity	:						bank. If 'a' is	
	Q1	Q2	Q3	Q4			ess Bank w		
	Decode	Read literal 'k' MSB	Process Data	Write literal 'k' MSB to FSRfH		selected, overriding the BSR value. If 'a' = 1, then the bank will be selected as per the BSR value (default).			
	Decode	Read literal	Process	Write literal	Words:	1			
		'k' LSB	Data	'k' to FSRfL	Cycles:	1			
Exai	mple:	LFSR 2,	0x3AB		Q Cycle Activity	:			
	After Instruc	tion			Q1	Q2	Q3	Q4	
	FSR2H FSR2L		03 AB		Decode	Read register 'f'	Process Data	Write WREG	
					Example:	MOVF R	EG, 0, 0		
					Before Instru				
					REG WREG		:22 :FF		
					After Instruc	tion			

 $\begin{array}{rcl} \text{REG} &=& 0 \text{x22} \\ \text{WREG} &=& 0 \text{x22} \end{array}$

23.2 **Package Details**

The following sections give the technical details of the packages.

28-Lead Skinny Plastic Dual In-line (SP) – 300 mil (PDIP)

	Units				N	IILLIMETERS	
Dimension	Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		28			28	
Pitch	р		.100			2.54	
Top to Seating Plane	Α	.140	.150	.160	3.56	3.81	4.06
Molded Package Thickness	A2	.125	.130	.135	3.18	3.30	3.43
Base to Seating Plane	A1	.015			0.38		
Shoulder to Shoulder Width	Е	.300	.310	.325	7.62	7.87	8.26
Molded Package Width	E1	.275	.285	.295	6.99	7.24	7.49
Overall Length	D	1.345	1.365	1.385	34.16	34.67	35.18
Tip to Seating Plane	L	.125	.130	.135	3.18	3.30	3.43
Lead Thickness	с	.008	.012	.015	0.20	0.29	0.38
Upper Lead Width	B1	.040	.053	.065	1.02	1.33	1.65
Lower Lead Width	В	.016	.019	.022	0.41	0.48	0.56
Overall Row Spacing §	eB	.320	.350	.430	8.13	8.89	10.92
Mold Draft Angle Top	α	5	10	15	5	10	15
Mold Draft Angle Bottom	β	5	10	15	5	10	15

* Controlling Parameter § Significant Characteristic

Notes:

Dimension D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MO-095 Drawing No. C04-070

PIC18CXX2 PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO. Device	− X /XX XXX Temperature Package Pattern Range	 Examples: a) PIC18LC452 - I/P 301 = Industrial temp., PDIP package, 4 MHz, Extended VDD limits, QTP pattern #301. b) PIC18LC242 - I/SO = Industrial temp.,
Device	PIC18CXX2 ⁽¹⁾ , PIC18CXX2T ⁽²⁾ ; VDD range 4.2V to 5.5V PIC18LCXX2 ⁽¹⁾ , PIC18LCXX2T ⁽²⁾ ; VDD range 2.5V to 5.5V	 b) FICTOLO242 - #300 - Industrial temp., SOIC package, Extended VDD limits. c) PIC18C442 - E/P = Extended temp., PDIP package, 40MHz, normal VDD limits.
Temperature Range	$I = -40^{\circ}C \text{ to } +85^{\circ}C (Industrial)$ $E = -40^{\circ}C \text{ to } +125^{\circ}C (Extended)$	
Package	JW = Windowed CERDIP ⁽³⁾ PT = TQFP (Thin Quad Flatpack) SO = SOIC SP = Skinny plastic dip P = PDIP L = PLCC	 Note 1: C = Standard Voltage range LC = Wide Voltage Range 2: T = in tape and reel - SOIC, PLCC, and TQFP packages only. 3: JW Devices are UV erasable and can be programmed to any device configu-
Pattern	QTP, SQTP, Code or Special Requirements (blank otherwise)	ration. JW Devices meet the electrical requirement of each oscillator type (including LC devices).

Sales and Support

Data Sheets

Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

- 1. Your local Microchip sales office
- 2. The Microchip Worldwide Site (www.microchip.com)

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 Australia - Sydney

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755 China - Beijing

Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hangzhou Tel: 86-571-2819-3187 Fax: 86-571-2819-3189

China - Hong Kong SAR Tel: 852-2943-5100 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460

Fax: 86-25-8473-2470 China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7828 Fax: 886-7-330-9305

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828

Fax: 45-4485-2829 France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820