Microchip Technology - PIC18LC242-I/SO Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	22
Program Memory Size	16KB (8K x 16)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	A/D 5x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lc242-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-2: PIC18C2X2 PINOUT I/O DESCRIPTIONS

Dia Mara	Pin N	umber	Pin	Buffer	Description
Pin Name	DIP	SOIC	Туре	Туре	Description
MCLR/VPP MCLR	1	1		ST	Master clear (input) or programming voltage (input). Master Clear (Reset) input. This pin is an active low
			'	31	RESET to the device.
VPP			Р		Programming voltage input.
NC	—	—	—	_	These pins should be left unconnected.
OSC1/CLKI OSC1	9	9	I	ST	Oscillator crystal or external clock input. Oscillator crystal input or external clock source input. ST buffer when configured in RC mode. CMOS otherwise
CLKI			I	CMOS	External clock source input. Always associated with pin function OSC1. (See related OSC1/CLKIN, OSC2/CLKOUT pins.)
OSC2/CLKO/RA6	10	10			Oscillator crystal or clock output.
OSC2			0	—	Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode.
CLKO			0	_	In RC mode, OSC2 pin outputs CLKOUT which has 1/4 the frequency of OSC1, and denotes the instruction cycle rate.
RA6			I/O	TTL	General Purpose I/O pin.
INAU			1/0	116	PORTA is a bi-directional I/O port.
					PORTA is a di-directional i/O port.
RA0/AN0	2	2		TT I	
RA0 AN0			I/O	TTL	Digital I/O. Analog input 0.
-			1	Analog	Analog input 0.
RA1/AN1	3	3		TT I	Disting 1/0
RA1			I/O	TTL	Digital I/O.
AN1			1	Analog	Analog input 1.
RA2/AN2/VREF-	4	4	1/0		
RA2			I/O	TTL	Digital I/O.
AN2 Vref-				Analog	Analog input 2.
	_	_	1	Analog	A/D Reference Voltage (Low) input.
RA3/AN3/VREF+	5	5		TT 1	
RA3			I/O	TTL	Digital I/O.
AN3 Vref+				Analog	Analog input 3. A/D Reference Voltage (High) input.
			1	Analog	AVD Relefence voltage (Fligh) linput.
RA4/T0CKI	6	6	I/O	ST/OD	Digital I/O. Open drain when configured as output.
RA4 T0CKI			1/0	ST	Timer0 external clock input.
	-	-	1	31	
RA5/AN4/SS/LVDIN	7	7		TT 1	
RA5			I/O	TTL	Digital I/O.
AN4 SS				Analog ST	Analog input 4. SPI Slave Select input.
LVDIN				Analog	Low Voltage Detect Input.
			'	Analog	- · ·
RA6		elle ta di			See the OSC2/CLKO/RA6 pin.
Legend: TTL = TTL					CMOS = CMOS compatible input or output
ST = Schm		yer inpu	i with C	INIO2 IEVEI	
O = Output	L				P = Power

OD = Open Drain (no P diode to VDD)

	Pin Number			D'	Duffer			
Pin Name	DIP	PLCC	TQFP	Pin Type	Buffer Type	Description		
		1 200	14.1			PORTC is a bi-directional I/O port.		
RC0/T1OSO/T1CKI	15	16	32					
RC0				I/O	ST	Digital I/O.		
T1OSO				0	_	Timer1 oscillator output.		
T1CKI				Ι	ST	Timer1/Timer3 external clock input.		
RC1/T1OSI/CCP2	16	18	35					
RC1				I/O	ST	Digital I/O.		
T1OSI					CMOS	Timer1 oscillator input.		
CCP2	47	40		I/O	ST	Capture2 input, Compare2 output, PWM2 output.		
RC2/CCP1 RC2	17	19	36	I/O	ST	Digital I/O		
CCP1				1/O 1/O	ST	Digital I/O. Capture1 input/Compare1 output/PWM1 output.		
RC3/SCK/SCL	18	20	37	"0	01			
RC3	10	20	57	I/O	ST	Digital I/O.		
SCK				I/O	ST	Synchronous serial clock input/output for		
						SPI mode.		
SCL				I/O	ST	Synchronous serial clock input/output for		
						I ² C mode.		
RC4/SDI/SDA	23	25	42					
RC4				I/O	ST	Digital I/O.		
SDI SDA				I I/O	ST ST	SPI Data In. I ² C Data I/O.		
	24	20	43	1/0	31	T C Data 1/O.		
RC5/SDO RC5	24	26	43	I/O	ST	Digital I/O.		
SDO				0	_	SPI Data Out.		
RC6/TX/CK	25	27	44	-				
RC6	20		••	I/O	ST	Digital I/O.		
ТХ				0	_	USART Asynchronous Transmit.		
СК				I/O	ST	USART Synchronous Clock (see related RX/DT).		
RC7/RX/DT	26	29	1					
RC7				I/O	ST	Digital I/O.		
RX					ST	USART Asynchronous Receive.		
		41-1-1		I/O	ST	USART Synchronous Data (see related TX/CK).		
Legend: TTL = TTL ST = Schn						OS = CMOS compatible input or output		

PIC18C4X2 PINOUT I/O DESCRIPTIONS (CONTINUED) **TABLE 1-3:**

ST = Schmitt Trigger input with CMOS levels I = Input

O = Output

P = Power

OD = Open Drain (no P diode to VDD)

2.7 Effects of SLEEP Mode on the On-chip Oscillator

When the device executes a SLEEP instruction, the on-chip clocks and oscillator are turned off and the device is held at the beginning of an instruction cycle (Q1 state). With the oscillator off, the OSC1 and OSC2 signals will stop oscillating. Since all the transistor

switching currents have been removed, SLEEP mode achieves the lowest current consumption of the device (only leakage currents). Enabling any on-chip feature that will operate during SLEEP will increase the current consumed during SLEEP. The user can wake from SLEEP through external RESET, Watchdog Timer Reset, or through an interrupt.

TABLE 2-3:OSC1 AND OSC2 PIN STATES IN SLEEP MODE

OSC Mode	OSC1 Pin	OSC2 Pin		
RC	Floating, external resistor should pull high	At logic low		
RCIO	Floating, external resistor should pull high	Configured as PORTA, bit 6		
ECIO	Floating	Configured as PORTA, bit 6		
EC	Floating	At logic low		
LP, XT, and HS	Feedback inverter disabled, at quiescent voltage level	Feedback inverter disabled, at quiescent voltage level		

Note: See Table 3-1, in Section 3.0 RESET, for time-outs due to SLEEP and MCLR Reset.

2.8 Power-up Delays

Power up delays are controlled by two timers, so that no external RESET circuitry is required for most applications. The delays ensure that the device is kept in RESET until the device power supply and clock are stable. For additional information on RESET operation, see the "RESET" section.

The first timer is the Power-up Timer (PWRT), which optionally provides a fixed delay of 72 ms (nominal) on power-up only (POR and BOR). The second timer is the Oscillator Start-up Timer, OST, intended to keep the chip in RESET until the crystal oscillator is stable.

With the PLL enabled (HS/PLL oscillator mode), the time-out sequence following a Power-on Reset is different from other oscillator modes. The time-out sequence is as follows: First, the PWRT time-out is invoked after a POR time delay has expired. Then, the Oscillator Start-up Timer (OST) is invoked. However, this is still not a sufficient amount of time to allow the PLL to lock at high frequencies. The PWRT timer is used to provide an additional fixed 2ms (nominal) time-out to allow the PLL ample time to lock to the incoming clock frequency.

ABLE 3-3: INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)									
Register	Applicable Devices		Power-on Reset, Brown-out Reset	MCLR Resets WDT Reset RESET Instruction Stack Resets	Wake-up via WDT n or Interrupt				
FSR1H	242	442	252	452	0000	0000	uuuu		
FSR1L	242	442	252	452	xxxx xxxx	uuuu uuuu	uuuu uuuu		
BSR	242	442	252	452	0000	0000	uuuu		
INDF2	242	442	252	452	N/A	N/A	N/A		
POSTINC2	242	442	252	452	N/A	N/A	N/A		
POSTDEC2	242	442	252	452	N/A	N/A	N/A		
PREINC2	242	442	252	452	N/A	N/A	N/A		
PLUSW2	242	442	252	452	N/A	N/A	N/A		
FSR2H	242	442	252	452	0000	0000	uuuu		
FSR2L	242	442	252	452	xxxx xxxx	սսսս սսսս	uuuu uuuu		
STATUS	242	442	252	452	x xxxx	u uuuu	u uuuu		
TMR0H	242	442	252	452	xxxx xxxx	սսսս սսսս	uuuu uuuu		
TMR0L	242	442	252	452	xxxx xxxx	uuuu uuuu	uuuu uuuu		
T0CON	242	442	252	452	1111 1111	1111 1111	uuuu uuuu		
OSCCON	242	442	252	452	0	0	u		
LVDCON	242	442	252	452	00 0101	00 0101	uu uuuu		
WDTCON	242	442	252	452	0	0	u		
RCON ^(4, 6)	242	442	252	452	00-1 11q0	00-1 qquu	uu-u qquu		
TMR1H	242	442	252	452	xxxx xxxx	uuuu uuuu	uuuu uuuu		
TMR1L	242	442	252	452	xxxx xxxx	uuuu uuuu	นนนน นนนน		
T1CON	242	442	252	452	0-00 0000	u-uu uuuu	u-uu uuuu		
TMR2	242	442	252	452	xxxx xxxx	uuuu uuuu	นนนน นนนน		
PR2	242	442	252	452	1111 1111	1111 1111	1111 1111		
T2CON	242	442	252	452	-000 0000	-000 0000	-uuu uuuu		
SSPBUF	242	442	252	452	xxxx xxxx	uuuu uuuu	นนนน นนนน		
SSPADD	242	442	252	452	0000 0000	0000 0000	นนนน นนนน		
SSPSTAT	242	442	252	452	0000 0000	0000 0000	սսսս սսսս		
SSPCON1	242	442	252	452	0000 0000	0000 0000	นนนน นนนน		
SSPCON2	242	442	252	452	0000 0000	0000 0000	uuuu uuuu		

 TABLE 3-3:
 INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition

Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).

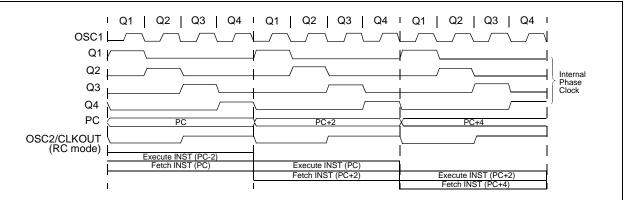
- 2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).
- **3:** When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.
- 4: See Table 3-2 for RESET value for specific condition.
- 5: Bit 6 of PORTA, LATA, and TRISA are enabled in ECIO and RCIO oscillator modes only. In all other oscillator modes, they are disabled and read '0'.
- 6: The long write enable is only reset on a POR or $\overline{\text{MCLR}}$ Reset.
- 7: Bit 6 of PORTA, LATA and TRISA are not available on all devices. When unimplemented, they are read as '0'.

4.3 Fast Register Stack

A "fast interrupt return" option is available for interrupts. A Fast Register Stack is provided for the STATUS, WREG and BSR registers and are only one in depth. The stack is not readable or writable and is loaded with the current value of the corresponding register when the processor vectors for an interrupt. The values in the registers are then loaded back into the working registers, if the FAST RETURN instruction is used to return from the interrupt.

A low or high priority interrupt source will push values into the stack registers. If both low and high priority interrupts are enabled, the stack registers cannot be used reliably for low priority interrupts. If a high priority interrupt occurs while servicing a low priority interrupt, the stack register values stored by the low priority interrupt will be overwritten.

If high priority interrupts are not disabled during low priority interrupts, users must save the key registers in software during a low priority interrupt.


If no interrupts are used, the fast register stack can be used to restore the STATUS, WREG and BSR registers at the end of a subroutine call. To use the fast register stack for a subroutine call, a FAST CALL instruction must be executed.

Example 4-1 shows a source code example that uses the fast register stack.

EXAMPLE 4-1: FAST REGISTER STACK CODE EXAMPLE

CALL SUB1, FAST	;STATUS, WREG, BSR ;SAVED IN FAST REGISTER ;STACK
SUB1	
RETURN FAST	;RESTORE VALUES SAVED ;IN FAST REGISTER STACK

FIGURE 4-4: CLOCK/INSTRUCTION CYCLE

4.4 PCL, PCLATH and PCLATU

The program counter (PC) specifies the address of the instruction to fetch for execution. The PC is 21-bits wide. The low byte is called the PCL register. This register is readable and writable. The high byte is called the PCH register. This register contains the PC<15:8> bits and is not directly readable or writable. Updates to the PCH register. The upper byte is called PCU. This register contains the PC<20:16> bits and is not directly readable or writable. Updates to the PCH register. The Upper byte is called PCU. This register contains the PC<20:16> bits and is not directly readable or writable. Updates to the PCU register may be performed through the PCLATU register.

The PC addresses bytes in the program memory. To prevent the PC from becoming misaligned with word instructions, the LSB of PCL is fixed to a value of '0'. The PC increments by 2 to address sequential instructions in the program memory.

The CALL, RCALL, GOTO and program branch instructions write to the program counter directly. For these instructions, the contents of PCLATH and PCLATU are not transferred to the program counter.

The contents of PCLATH and PCLATU will be transferred to the program counter by an operation that writes PCL. Similarly, the upper two bytes of the program counter will be transferred to PCLATH and PCLATU by an operation that reads PCL. This is useful for computed offsets to the PC (see Section 4.8.1).

4.5 Clocking Scheme/Instruction Cycle

The clock input (from OSC1) is internally divided by four to generate four non-overlapping quadrature clocks, namely Q1, Q2, Q3 and Q4. Internally, the program counter (PC) is incremented every Q1, the instruction is fetched from the program memory and latched into the instruction register in Q4. The instruction is decoded and executed during the following Q1 through Q4. The clocks and instruction execution flow is shown in Figure 4-4.

EXAMPLE 6-3: 16 x 16 UNSIGNED MULTIPLY ROUTINE

	MOVF	ARG1L,	W		
	MULWF	ARG2L		;	ARG1L * ARG2L ->
				;	PRODH: PRODL
	MOVFF	PRODH,	RES1	;	
	MOVFF	PRODL,	RES0	;	
;					
	MOVF	ARG1H,	W		
	MULWF	ARG2H		;	ARG1H * ARG2H ->
				;	PRODH: PRODL
	MOVFF	PRODH,	RES3	;	
	MOVFF	PRODL,	RES2	;	
;					
	MOVF	ARG1L,	W		
	MULWF	ARG2H		;	ARG1L * ARG2H ->
				;	PRODH: PRODL
	MOVF	PRODL,	W	;	
	ADDWF	RES1,	F	;	Add cross
	MOVF	PRODH,	W	;	products
	ADDWFC	RES2,	F	;	
	CLRF	WREG,	F	;	
	ADDWFC	RES3,	F	;	
;					
	MOVF	ARG1H,	W	;	
	MULWF	ARG2L		;	ARG1H * ARG2L ->
				;	PRODH: PRODL
	MOVF	PRODL,	W	;	
	ADDWF	RES1,		;	Add cross
	MOVF	PRODH,	W	;	products
	ADDWFC	RES2,	F	;	
	CLRF	WREG,	F	;	
	ADDWFC	RES3,	F	;	

Example 6-4 shows the sequence to do a 16 x 16 signed multiply. Equation 6-2 shows the algorithm used. The 32-bit result is stored in four registers, RES3:RES0. To account for the sign bits of the arguments, each argument pairs' Most Significant bit (MSb) is tested and the appropriate subtractions are done.

EQUATION 6-2: 16 x 16 SIGNED MULTIPLICATION ALGORITHM

RES3:RES0

= ARG1H:ARG1L • ARG2H:ARG2L = (ARG1H • ARG2H • 2¹⁶)+ (ARG1H • ARG2L • 2⁸)+ (ARG1L • ARG2L • 2⁸)+ (ARG1L • ARG2L)+ (-1 • ARG2L

```
(-1 \bullet ARG1H < 7 > \bullet ARG2H: ARG2L \bullet 2^{16})
```

EXAMPLE 6-4: 16 x 16 SIGNED MULTIPLY ROUTINE

	MOVF	ARG1L, V	W		
	MULWF	ARG2L		;	ARG1L * ARG2L ->
				;	PRODH: PRODL
	MOVFF	PRODH, H	RES1	;	
	MOVFF	PRODL, H	RESO	;	
;					
	MOVF	ARG1H, V	W		
	MULWF	ARG2H		;	ARG1H * ARG2H ->
					PRODH: PRODL
	MOVFF	PRODH, H	RES3	;	
	MOVFF	PRODL, H			
;		111022, 1		'	
'	MOVF	ARG1L, V	TAT		
	MULWF	ARG11, ARG2H			ARG1L * ARG2H ->
	HOLWI	AICOZII			PRODH: PRODL
	MOVF	ז זמספת	TAT		PRODITIPRODE
	ADDWF	PRODL, N RES1, N		;	Add cross
	MOVF	PRODH, V			products
	ADDWFC	RES2, I		;	
	CLRF	WREG, I		;	
	ADDWFC	RES3, I	F.	;	
;	MOTE	100111			
	MOVF	ARG1H, V	W	;	
	MULWF	ARG2L			ARG1H * ARG2L ->
					PRODH: PRODL
	MOVF	PRODL, V		;	
	ADDWF	RES1, I			Add cross
	MOVF	PRODH, V		;	products
	ADDWFC	RES2, F		;	
	CLRF	WREG, F		;	
	ADDWFC	RES3, F		;	
;					
	BTFSS			;	ARG2H:ARG2L neg?
	BRA	SIGN_ARG		;	no, check ARG1
	MOVF	ARG1L, V	W	;	
	SUBWF	RES2		;	
	MOVF	ARG1H, V	W	;	
	SUBWFB	RES3			
;					
SI	GN_ARG1				
	BTFSS	ARG1H,			ARG1H:ARG1L neg?
	BRA	CONT_COI	DE	;	no, done
	MOVF	ARG2L, V	W	;	
	SUBWF	RES2		;	
	MOVF	ARG2H, V	W	;	
	SUBWFB	RES3			
;					
CO	NT_CODE				
	:				

7.6 INT0 Interrupt

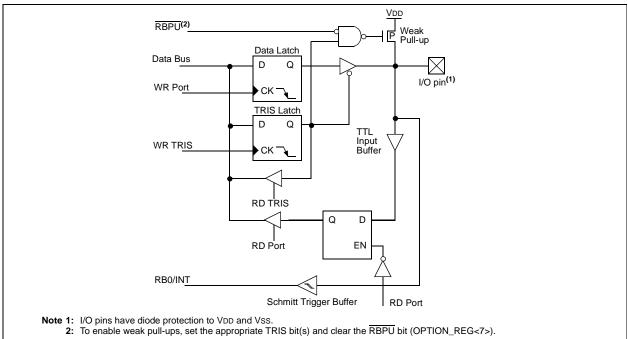
External interrupts on the RB0/INT0, RB1/INT1 and RB2/INT2 pins are edge triggered: either rising, if the corresponding INTEDGx bit is set in the INTCON2 register, or falling, if the INTEDGx bit is clear. When a valid edge appears on the RBx/INTx pin, the corresponding flag bit INTxF is set. This interrupt can be disabled by clearing the corresponding enable bit INTxE. Flag bit INTxF must be cleared in software in the Interrupt Service Routine before re-enabling the interrupt. All external interrupts (INT0, INT1 and INT2) can wake-up the processor from SLEEP, if bit INTxE was set prior to going into SLEEP. If the global interrupt enable bit GIE set, the processor will branch to the interrupt vector following wake-up.

Interrupt priority for INT1 and INT2 is determined by the value contained in the interrupt priority bits, INT1IP (INTCON3<6>) and INT2IP (INTCON3<7>). There is no priority bit associated with INT0. It is always a high priority interrupt source.

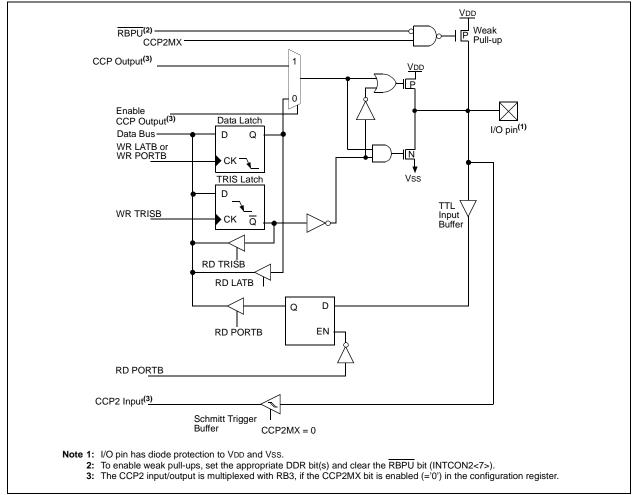
7.7 TMR0 Interrupt

In 8-bit mode (which is the default), an overflow (FFh \rightarrow 00h) in the TMR0 register will set flag bit TMR0IF. In 16-bit mode, an overflow (FFFFh \rightarrow 0000h) in the TMR0H:TMR0L registers will set flag bit TMR0IF. The interrupt can be enabled/disabled by setting/clearing enable bit TOIE (INTCON<5>). Interrupt priority for Timer0 is determined by the value contained in the interrupt priority bit TMR0IP (INTCON2<2>). See Section 8.0 for further details on the Timer0 module.

7.8 PORTB Interrupt-on-Change


An input change on PORTB<7:4> sets flag bit RBIF (INTCON<0>). The interrupt can be enabled/disabled by setting/clearing enable bit, RBIE (INTCON<3>). Interrupt priority for PORTB Interrupt-on-change is determined by the value contained in the interrupt priority bit, RBIP (INTCON2<0>).

7.9 Context Saving During Interrupts


During an interrupt, the return PC value is saved on the stack. Additionally, the WREG, STATUS and BSR registers are saved on the fast return stack. If a fast return from interrupt is not used (see Section 4.3), the user may need to save the WREG, STATUS and BSR registers in software. Depending on the user's application, other registers may also need to be saved. Example 7-1 saves and restores the WREG, STATUS and BSR registers during an Interrupt Service Routine.

MOVWF	W_TEMP	; W_TEMP is in virtual bank
MOVFF	STATUS, STATUS_TEMP	; STATUS_TEMP located anywhere
MOVFF	BSR, BSR_TEMP	; BSR located anywhere
;		
; USER	ISR CODE	
;		
MOVFF	BSR_TEMP, BSR	; Restore BSR
MOVF	W_TEMP, W	; Restore WREG
MOVFF	STATUS TEMP, STATUS	; Restore STATUS
	—	

14.2 Control Registers

The MSSP module has three associated registers. These include a status register (SSPSTAT) and two control registers (SSPCON1 and SSPCON2).

REGISTER 14-1: SSPSTAT: MSSP STATUS REGISTER

- n = Value at POR

'1' = Bit is set

	R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0		
	SMP	CKE	D/A	Р	S	R/W	UA	BF		
	bit 7	1	1	1				bit 0		
bit 7	SMD: Som	nlo hit								
	SMP: Sample bit SPI Master mode:									
			l at end of da	ata outout tii	me					
	-		l at middle o							
	SPI Slave r									
			when SPI is	used in Slav	/e mode					
		ter or Slave								
				standard sp	eed mode (1	00 kHz and	1 MHz)			
	0 = Slew r	ate control e	enabled for h	nigh speed r	node (400 kl	Hz)				
bit 6	CKE: SPI (Clock Edge	Select bit							
	<u>CKP = 0:</u>									
	1 = Data tra	ansmitted or	n rising edge	e of SCK						
	0 = Data tra	ansmitted or	n falling edg	e of SCK						
	<u>CKP = 1:</u>									
			n falling edg							
			n rising edge							
bit 5			(I ² C mode o							
			•		smitted was					
	0 = Indicate	es that the la	ast byte rece	eived or tran	smitted was	address				
bit 4	P: STOP b									
	•	•					SSPEN is c	leared.)		
					ed last (this b	oit is '0' on R	ESET)			
	0 = STOP	bit was not c	letected last							
	Legend:									
	R = Reada	ble bit	W = Writab	le bit	U = Unimpl	emented bit	t. read as '0'			
		R = Readable bit $W = Writable bit$ $U = Unimplemented bit, read as '0'$								

'0' = Bit is cleared

x = Bit is unknown

REGISTER 14-1: SSPSTAT: MSSP STATUS REGISTER (CONTINUED)

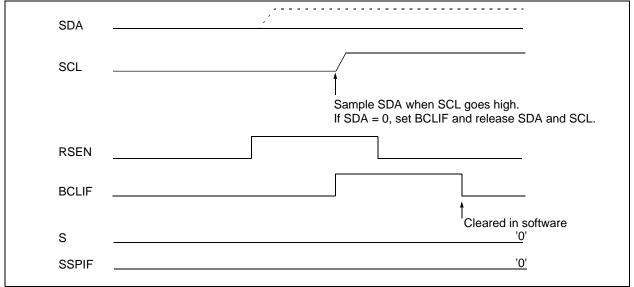
	R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0			
	SMP	CKE	D/Ā	Р	S	R/W	UA	BF			
	bit 7							bit 0			
bit 3	S: START bit										
	(I ² C mode only. This bit is cleared when the MSSP module is disabled, SSPEN is cleared.) 1 = Indicates that a START bit has been detected last (this bit is '0' on RESET)										
			detected las		ied last (this	Dit is 'U' on I	RESEI)				
bit 2	R/W: Read	/Write bit inf	formation (I ²	C mode onl	y)						
				•	he last addre		his bit is onl	y valid from			
			ne next STA	RT bit, STO	P bit, or not	ACK bit.					
	In I ² C Slav	<u>e mode:</u>									
	0 = Write										
	In I ² C Mast										
		it is in progr									
		nit is not in p this bit with	•	I. PEN. RCI	EN, or ACKE	N will indica	ate if the MS	SP is in			
	IDLE m		•=, •••=-	.,,							
bit 1	UA: Update	e Address b	it (10-bit I ² C	mode only)							
					address in t	the SSPADE	O register				
			need to be u	pdated							
bit 0		Full Status b									
		<u>PI and I²C r</u>		full							
	 Receive complete, SSPBUF is full Receive not complete, SSPBUF is empty 										
		² C mode on									
	1 = Data transmit in progress (does not include the ACK and STOP bits), SSPBUF is full										
	$0 = Data transmit complete (does not include the \overline{ACK} and STOP bits), SSPBUF is empty$										
	Legend:										
	R = Reada	ble bit	W = Writab	le bit	U = Unimpl	emented bit	, read as '0'				
	- n = Value	at POR	'1' = Bit is s	set	'0' = Bit is c	leared	x = Bit is ur	nknown			

14.4.16.2 Bus Collision During a Repeated START Condition

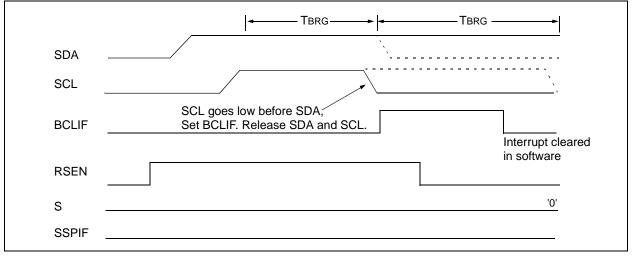
During a Repeated START condition, a bus collision occurs if:

- a) A low level is sampled on SDA when SCL goes from low level to high level.
- b) SCL goes low before SDA is asserted low, indicating that another master is attempting to transmit a data '1'.

When the user de-asserts SDA and the pin is allowed to float high, the BRG is loaded with SSPADD<6:0> and counts down to 0. The SCL pin is then de-asserted, and when sampled high, the SDA pin is sampled.


If SDA is low, a bus collision has occurred (i.e., another master is attempting to transmit a data '0', Figure 14-27). If SDA is sampled high, the BRG is

reloaded and begins counting. If SDA goes from high to low before the BRG times out, no bus collision occurs because no two masters can assert SDA at exactly the same time.


If SCL goes from high to low before the BRG times out and SDA has not already been asserted, a bus collision occurs. In this case, another master is attempting to transmit a data '1' during the Repeated START condition, Figure 14-28.

If, at the end of the BRG time-out, both SCL and SDA are still high, the SDA pin is driven low and the BRG is reloaded and begins counting. At the end of the count, regardless of the status of the SCL pin, the SCL pin is driven low and the Repeated START condition is complete.

FIGURE 14-28: BUS COLLISION DURING REPEATED START CONDITION (CASE 2)

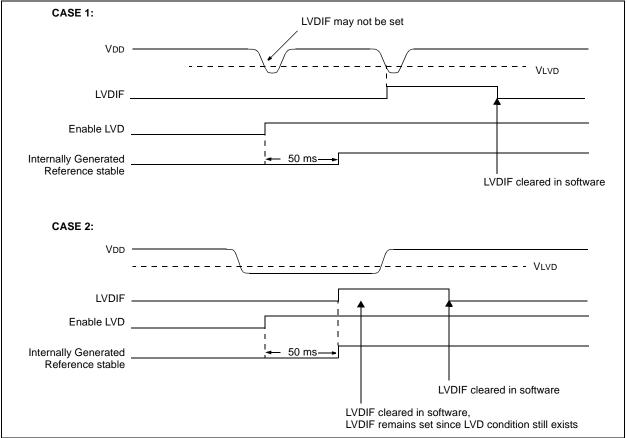
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other RESETS
INTCON	GIE/ GIEH	PEIE/ GIEL	TMR0IE	INTOIE	RBIE	TMR0IF	INT0IF	RBIF	0000 000x	0000 000u
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
IPR1	PSPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	0000 0000	0000 0000
PIR2	_		_	_	BCLIF	LVDIF	TMR3IF	CCP2IF	0000	0000
PIE2	_		—	_	BCLIE	LVDIE	TMR3IE	CCP2IE	0000	0000
IPR2	_	_	_	—	BCLIP	LVDIP	TMR3IP	CCP2IP	0000	0000
ADRESH	A/D Result Register						xxxx xxxx	uuuu uuuu		
ADRESL	A/D Result Register						xxxx xxxx	uuuu uuuu		
ADCON0	ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/ DONE	—	ADON	0000 00-0	0000 00-0
ADCON1	ADFM	ADCS2	_	_	PCFG3	PCFG2	PCFG1	PCFG0	000	000
PORTA	_	RA6	RA5	RA4	RA3	RA2	RA1	RA0	0x 0000	0u 0000
TRISA	— PORTA Data Direction Register						11 1111	11 1111		
PORTE	_	—	_	—	_	RE2	RE1	RE0	000	000
LATE	—	_	_	—	—	LATE2	LATE1	LATE0	xxx	uuu
TRISE	IBF	OBF	IBOV	PSPMODE		PORTE Da	ata Directior	n bits	0000 -111	0000 -111

TABLE 16-3: SUMMARY OF A/D REGISTERS

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used for A/D conversion.

Note 1: The PSPIF, PSPIE and PSPIP bits are reserved on the PIC18C2X2 devices. Always maintain these bits clear.

17.2 Operation


Depending on the power source for the device voltage, the voltage normally decreases relatively slowly. This means that the LVD module does not need to be constantly operating. To decrease the current requirements, the LVD circuitry only needs to be enabled for short periods, where the voltage is checked. After doing the check, the LVD module may be disabled.

Each time that the LVD module is enabled, the circuitry requires some time to stabilize. After the circuitry has stabilized, all status flags may be cleared. The module will then indicate the proper state of the system.

The following steps are needed to set up the LVD module:

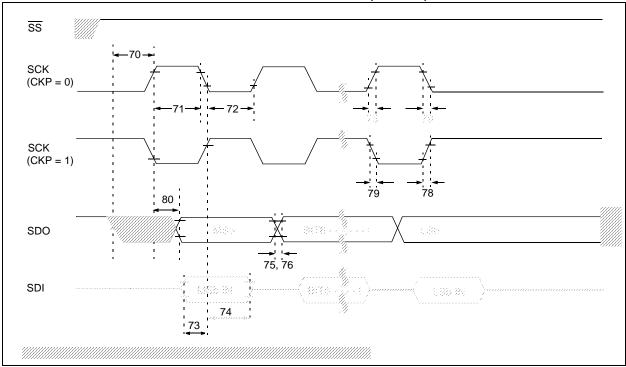
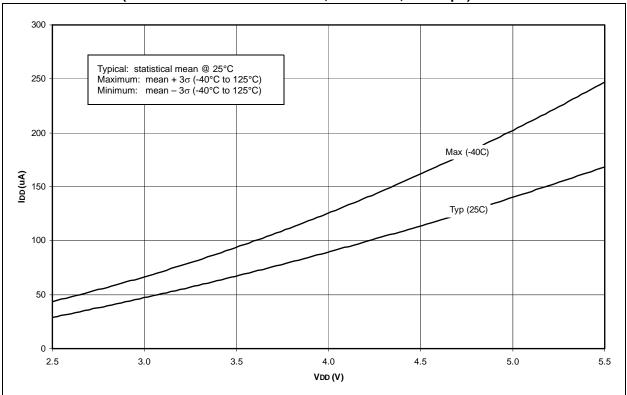

- Write the value to the LVDL3:LVDL0 bits (LVD-CON register), which selects the desired LVD Trip Point.
- 2. Ensure that LVD interrupts are disabled (the LVDIE bit is cleared, or the GIE bit is cleared).
- 3. Enable the LVD module (set the LVDEN bit in the LVDCON register).
- 4. Wait for the LVD module to stabilize (the IRVST bit to become set).
- 5. Clear the LVD interrupt flag, which may have falsely become set until the LVD module has stabilized (clear the LVDIF bit).
- 6. Enable the LVD interrupt (set the LVDIE and the GIE bits).

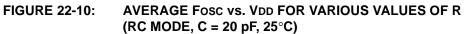
Figure 17-4 shows typical waveforms that the LVD module may be used to detect.

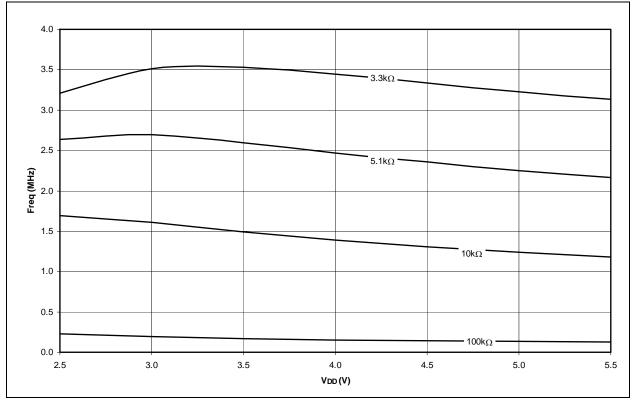
FIGURE 17-4: LOW VOLTAGE DETECT WAVEFORMS

COMF	Complement f	CPFSEQ	Compare f with WREG, skip if f = WREG			
Syntax:	[<i>label</i>] COMF f[,d[,a]	Syntax:	[label] C	CPFSEQ f	,a]	
Operands:			$0 \le f \le 255$	5		
	d ∈ [0,1] a ∈ [0,1]		a ∈ [0,1]			
Operation:	$(\overline{f}) \rightarrow dest$	Operation:	(f) – (WRE skip if (f) = (unsigned			
Status Affected:	N,Z	Status Affected:	None	companson		
Encoding:	0001 11da ffff ffff			001a ff		
Description:	The contents of register 'f' are com- plemented. If 'd' is 0, the result is stored in WREG. If 'd' is 1, the result is stored back in register 'f' (default). If 'a' is 0, the Access Bank will be selected, overriding the BSR value. If 'a' = 1, then the bank will be selected as per the BCR value. (default)	Encoding: Description:	0110001affffffffCompares the contents of data memory location 'f' to the contents of WREG by performing an unsigned subtraction.instructionIf 'f' = WREG, then the fetched instruction is discarded and a NOP is executed instead, making this a true and a instruction is (for the fetched)			
	BSR value (default).		two-cycle instruction. If 'a' is 0, the Access Bank will be selected, over-			
Words:	1		riding the BSR value. If 'a' = 1, then			
Cycles:	1			vill be selecte	ed as per the	
Q Cycle Activity:	00 00 01		BSR value	e (default).		
Q1 Decode	Q2 Q3 Q4 Read Process Write to	Words:	1			
Decode	register 'f' Data destination	Cycles:	1(2)	voloo if akin	and followed	
Example:	COMF REG, 0, 0			a 2-word ins		
Before Instru	ction	Q Cycle Activity:	-			
REG	= 0x13	Q1	Q2	Q3	Q4	
After Instruct	ION = 0x13	Decode	Read	Process	No	
WREG	= 0xEC	If alkin:	register 'f'	Data	operation	
		If skip: Q1	Q2	Q3	Q4	
		No	No	No	No	
		operation	operation	operation	operation	
		If skip and follow	ved by 2-word instruction:			
		Q1	Q2	Q3	Q4	
		No operation	No operation	No operation	No operation	
		No	No	No	No	
		operation	operation	operation	operation	
		<u>Example</u> :	HERE NEQUAL EQUAL	CPFSEQ REG :	;, O	
	Before Instruction PC Address = HERE WREG = ? REG = ? After Instruction If REG = WREG; PC = Address (EQUA: If REG ≠ WREG;					
PC = Address					JAL)	

FIGURE 21-12: EXAMPLE SPI MASTER MODE TIMING (CKE = 0)


TABLE 21-11: EXAMPLE SPI MODE REQUIREMENTS (MASTER MODE, CKE = 0)


Param. No.	Symbol	Characterist	Min	Max	Units	Conditions	
70	TssL2scH, TssL2scL	$\overline{SS}\downarrow$ to $SCK\downarrow$ or $SCK\uparrow$ input	Тсү	—	ns		
71	TscH	SCK input high time	Continuous	1.25Tcy + 30		ns	
71A		(Slave mode)	Single Byte	40	_	ns	(Note 1)
72	TscL	SCK input low time	Continuous	1.25Tcy + 30		ns	
72A		(Slave mode)	Single Byte	40	_	ns	(Note 1)
73	TdiV2scH, TdiV2scL	Setup time of SDI data input t	100	_	ns		
73A	Тв2в	Last clock edge of Byte1 to th of Byte2	1.5Tcy + 40	_	ns	(Note 2)	
74	TscH2diL, TscL2diL	Hold time of SDI data input to	100	_	ns		
75	TdoR	SDO data output rise time	PIC18CXXX	—	25	ns	
			PIC18LCXXX		45	ns	
76	TdoF	SDO data output fall time		25	ns		
78	TscR	SCK output rise time (Master mode)	PIC18CXXX	—	25	ns	
			PIC18LCXXX		45	ns	
79	TscF	SCK output fall time (Master r	—	25	ns		
80	TscH2doV,	SDO data output valid after	PIC18CXXX	—	50	ns	
TscL2doV		SCK edge	PIC18LCXXX	_	100	ns	


Note 1: Requires the use of Parameter # 73A.

2: Only if Parameter # 71A and # 72A are used.

FIGURE 22-9: TYPICAL AND MAXIMUM IDD vs. VDD (TIMER1 AS MAIN OSCILLATOR, 32.768 kHz, C = 47 pF)

© 1999-2013 Microchip Technology Inc.

NOTES:

NOTES:

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 Australia - Sydney

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755 China - Beijing

Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hangzhou Tel: 86-571-2819-3187 Fax: 86-571-2819-3189

China - Hong Kong SAR Tel: 852-2943-5100 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460

Fax: 86-25-8473-2470 China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7828 Fax: 886-7-330-9305

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828

Fax: 45-4485-2829 France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820