

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	22
Program Memory Size	16KB (8K x 16)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	A/D 5x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lc242t-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@mail.microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)
- The Microchip Corporate Literature Center; U.S. FAX: (480) 792-7277

When contacting a sales office or the literature center, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com/cn to receive the most current information on all of our products.

TABLE 1-3:	PIC18C4	X2 PIN	OUT I/	O DES	SCRIPTIC	DNS (CONTINUED)		
Pin Name	Pi	Pin Number		Pin	Buffer	Description		
Fin Name	DIP	PLCC	TQFP	Туре	Туре	Description		
						PORTB is a bi-directional I/O port. PORTB can be software programmed for internal weak pull-ups on all inputs.		
RB0/INT0	33	36	8					
RB0				I/O	TTL	Digital I/O.		
INT0				I	ST	External Interrupt 0.		
RB1/INT1	34	37	9					
RB1				I/O	TTL			
INT1				I	ST	External Interrupt 1.		
RB2/INT2	35	38	10					
RB2				I/O	TTL	Digital I/O.		
INT2				I	ST	External Interrupt 2.		
RB3/CCP2	36	39	11					
RB3				I/O	TTL	Digital I/O.		
CCP2				I/O	ST	Capture2 input, Compare2 output, PWM2 output.		
RB4	37	41	14	I/O	TTL	Digital I/O. Interrupt-on-change pin.		
RB5	38	42	15	I/O	TTL	Digital I/O. Interrupt-on-change pin.		
RB6	39	43	16	I/O	TTL	Digital I/O. Interrupt-on-change pin.		
				I	ST	ICSP programming clock.		
RB7	40	44	17	I/O	TTL	Digital I/O. Interrupt-on-change pin.		
				I/O	ST	ICSP programming data.		
Legend: TTL = T	TL compa	atible inp	out		CM	OS = CMOS compatible input or output		

PIC18C4X2 PINOLIT I/O DESCRIPTIONS (CONTINUED) TARIE 1-3.

ST = Schmitt Trigger input with CMOS levels I = Input

O = Output

P = Power

OD = Open Drain (no P diode to VDD)

2.0 OSCILLATOR CONFIGURATIONS

2.1 Oscillator Types

The PIC18CXX2 can be operated in eight different oscillator modes. The user can program three configuration bits (FOSC2, FOSC1, and FOSC0) to select one of these eight modes:

- 1. LP Low Power Crystal
- 2. XT Crystal/Resonator
- 3. HS High Speed Crystal/Resonator
- 4. HS + PLL High Speed Crystal/Resonator with x 4 PLL enabled
- 5. RC External Resistor/Capacitor
- 6. RCIO External Resistor/Capacitor with RA6 I/O pin enabled
- 7. EC External Clock
- 8. ECIO External Clock with RA6 I/O pin enabled

2.2 Crystal Oscillator/Ceramic Resonators

In XT, LP, HS or HS-PLL oscillator modes, a crystal or ceramic resonator is connected to the OSC1 and OSC2 pins to establish oscillation. Figure 2-1 shows the pin connections.

The PIC18CXX2 oscillator design requires the use of a parallel cut crystal.

Note:	Use of a series cut crystal may give a fre-
	quency out of the crystal manufacturers
	specifications.

FIGURE 2-1: CRYSTAL/CERAMIC RESONATOR OPERATION (HS, XT OR LP OSC CONFIGURATION)

TABLE 2-1:CAPACITOR SELECTION FOR
CERAMIC RESONATORS

Ranges Tested:								
Mode	Mode Freq C1 C2							
XT	455 kHz	68 - 100 pF	68 - 100 pF					
	2.0 MHz	15 - 68 pF	15 - 68 pF					
	4.0 MHz	15 - 68 pF	15 - 68 pF					
HS	8.0 MHz	10 - 68 pF	10 - 68 pF					
	16.0 MHz	10 - 22 pF	10 - 22 pF					

These values are for design guidance only. See notes following this table.

Resonators Used:					
455 kHz	Panasonic EFO-A455K04B	$\pm 0.3\%$			
2.0 MHz	Murata Erie CSA2.00MG	$\pm 0.5\%$			
4.0 MHz Murata Erie CSA4.00MG ± 0.5%					
8.0 MHz	Murata Erie CSA8.00MT	$\pm 0.5\%$			
16.0 MHz	Murata Erie CSA16.00MX	$\pm 0.5\%$			
All resonat	ors used did not have built-in	capacitors.			

Note 1: Higher capacitance increases the stability of the oscillator, but also increases the start-up time.

- 2: When operating below 3V VDD, it may be necessary to use high gain HS mode on lower frequency ceramic resonators.
- 3: Since each resonator/crystal has its own characteristics, the user should consult the resonator/crystal manufacturer for appropriate values of external components or verify oscillator performance.

TABLE 2-2:CAPACITOR SELECTION FOR
CRYSTAL OSCILLATORS

	Ranges Tested:						
Mode	Freq	C1	C2				
LP	32.0 kHz	33 pF	33 pF				
	200 kHz	15 pF	15 pF				
XT	200 kHz	47-68 pF	47-68 pF				
	1.0 MHz	15 pF	15 pF				
	4.0 MHz	15 pF	15 pF				
HS	4.0 MHz	15 pF	15 pF				
	8.0 MHz	15-33 pF	15-33 pF				
	20.0 MHz	15-33 pF	15-33 pF				
These value	25.0 MHz	15-33 pF	15-33 pF				

These values are for design guidance only. See notes following this table.

	Crystals Used	
32.0 kHz	Epson C-001R32.768K-A	± 20 PPM
200 kHz	STD XTL 200.000kHz	± 20 PPM
1.0 MHz	ECS ECS-10-13-1	± 50 PPM
4.0 MHz	ECS ECS-40-20-1	± 50 PPM
8.0 MHz	Epson CA-301 8.000M-C	± 30 PPM
20.0 MHz	Epson CA-301 20.000M-C	± 30 PPM

- **Note 1:** Higher capacitance increases the stability of the oscillator, but also increases the start-up time.
 - 2: Rs may be required in HS mode, as well as XT mode, to avoid overdriving crystals with low drive level specification.
 - 3: Since each resonator/crystal has its own characteristics, the user should consult the resonator/crystal manufacturer for appropriate values of external components or verify oscillator performance.

An external clock source may also be connected to the OSC1 pin in these modes, as shown in Figure 2-2.

FIGURE 2-2: EXTERNAL CLOCK INPUT OPERATION (HS, XT OR LP CONFIGURATION)

2.3 RC Oscillator

For timing insensitive applications, the "RC" and "RCIO" device options offer additional cost savings. The RC oscillator frequency is a function of the supply voltage, the resistor (REXT) and capacitor (CEXT) values and the operating temperature. In addition to this, the oscillator frequency will vary from unit to unit due to normal process parameter variation. Furthermore, the difference in lead frame capacitance between package types will also affect the oscillation frequency, especially for low CEXT values. The user also needs to take into account variation due to tolerance of external R and C components used. Figure 2-3 shows how the R/C combination is connected.

In the RC oscillator mode, the oscillator frequency divided by 4 is available on the OSC2 pin. This signal may be used for test purposes or to synchronize other logic.

FIGURE 2-3: RC OSCILLATOR MODE

The RCIO oscillator mode functions like the RC mode, except that the OSC2 pin becomes an additional general purpose I/O pin. The I/O pin becomes bit 6 of PORTA (RA6).

2.4 External Clock Input

The EC and ECIO oscillator modes require an external clock source to be connected to the OSC1 pin. The feedback device between OSC1 and OSC2 is turned off in these modes to save current. There is no oscillator start-up time required after a Power-on Reset or after a recovery from SLEEP mode.

In the EC oscillator mode, the oscillator frequency divided by 4 is available on the OSC2 pin. This signal may be used for test purposes or to synchronize other logic. Figure 2-4 shows the pin connections for the EC oscillator mode.

Fosc/4 -

The ECIO oscillator mode functions like the EC mode, except that the OSC2 pin becomes an additional general purpose I/O pin. The I/O pin becomes bit 6 of PORTA (RA6). Figure 2-5 shows the pin connections for the ECIO oscillator mode.

OSC2

FIGURE 2-6: PLL BLOCK DIAGRAM

FIGURE 2-5:

EXTERNAL CLOCK INPUT OPERATION (ECIO CONFIGURATION)

2.5 HS/PLL

A Phase Locked Loop circuit is provided as a programmable option for users that want to multiply the frequency of the incoming crystal oscillator signal by 4. For an input clock frequency of 10 MHz, the internal clock frequency will be multiplied to 40 MHz. This is useful for customers who are concerned with EMI due to high frequency crystals.

The PLL can only be enabled when the oscillator configuration bits are programmed for HS mode. If they are programmed for any other mode, the PLL is not enabled and the system clock will come directly from OSC1.

The PLL is one of the modes of the FOSC<2:0> configuration bits. The oscillator mode is specified during device programming.

A PLL lock timer is used to ensure that the PLL has locked before device execution starts. The PLL lock timer has a time-out that is called TPLL.

FIGURE 4-1: PROGRAM MEMORY MAP AND STACK FOR PIC18C442/242

FIGURE 4-2: **PROGRAM MEMORY MAP** AND STACK FOR PIC18C452/252 PC<20:0> 21 CALL, RCALL, RETURN RETFIE, RETLW Stack Level 1 Stack Level 31 0000h **RESET** Vector High Priority Interrupt Vector 0008h Low Priority Interrupt Vector 0018h On-chip Program Memory Memory Space ⇐ User 7FFFh 8000h Read '0' 1FFFFFh 200000h

4.13 STATUS Register

The STATUS register, shown in Register 4-2, contains the arithmetic status of the ALU. The STATUS register can be the destination for any instruction, as with any other register. If the STATUS register is the destination for an instruction that affects the Z, DC, C, OV or N bits, then the write to these five bits is disabled. These bits are set or cleared according to the device logic. Therefore, the result of an instruction with the STATUS register as destination may be different than intended. For example, CLRF STATUS will clear the upper three bits and set the Z bit. This leaves the STATUS register as 000u uluu (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF, MOVFF and MOVWF instructions are used to alter the STATUS register, because these instructions do not affect the Z, C, DC, OV or N bits from the STATUS register. For other instructions not affecting any status bits, see Table 19-2.

Note:	The C and DC bits operate as a borrow and
	digit borrow bit respectively, in subtraction.

REGISTER 4-2: STATUS REGISTER

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	—	N	OV	Z	DC	С
bit 7							bit 0

bit 7-5 Unimplemented: Read as '0'

bit 4 N: Negative bit

This bit is used for signed arithmetic (2's complement). It indicates whether the result was negative, (ALU MSB = 1).

- 1 = Result was negative
- 0 = Result was positive

bit 3 OV: Overflow bit

This bit is used for signed arithmetic (2's complement). It indicates an overflow of the 7-bit magnitude, which causes the sign bit (bit7) to change state.

- 1 = Overflow occurred for signed arithmetic (in this arithmetic operation)
- 0 = No overflow occurred

bit 2 Z: Zero bit

1 = The result of an arithmetic or logic operation is zero

0 = The result of an arithmetic or logic operation is not zero

bit 1 DC: Digit carry/borrow bit

For ADDWF, ADDLW, SUBLW, and SUBWF instructions

1 = A carry-out from the 4th low order bit of the result occurred

- 0 = No carry-out from the 4th low order bit of the result
- **Note:** For borrow, the polarity is reversed. A subtraction is executed by adding the two's complement of the second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the bit 4 or bit 3 of the source register.

bit 0 **C:** Carry/borrow bit

For ADDWF, ADDLW, SUBLW, and SUBWF instructions

- 1 = A carry-out from the Most Significant bit of the result occurred
- 0 = No carry-out from the Most Significant bit of the result occurred
- **Note:** For borrow, the polarity is reversed. A subtraction is executed by adding the two's complement of the second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high or low order bit of the source register.

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR reset	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

7.1 INTCON Registers

The INTCON Registers are readable and writable registers, which contains various enable, priority, and flag bits.

REGISTER 7-1: INTCON REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W->
GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INTOIF	RBIF
bit 7							bit
GIE/GIEH: O When IPEN	Global Interrup = 0:	t Enable bit					
1 = Enables	all unmasked all interrupts	interrupts					
1 = Enables	all high priorit						
	Peripheral Inte		e bit				
	all unmasked all peripheral <u>= 1:</u>		terrupts				
	all low priority all low priority						
TMROIE: TM	IR0 Overflow I	nterrupt Ena	ble bit				
	the TMR0 ove the TMR0 ove		•				
INTOIE: INTO	DExternal Inte	rrupt Enable	bit				
	the INT0 extents the INT0 extent						
RBIE: RB P	ort Change Int	errupt Enabl	e bit				
	the RB port cl the RB port c						
TMR0IF: TM	IR0 Overflow I	nterrupt Flag	g bit				
	gister has ove gister did not	•	st be cleare	ed in softwa	re)		
INTOIF: INTO	External Inte	rrupt Flag bi	t				
	0 external inte 0 external inte	•	•	cleared in	software)		
RBIF: RB Po	ort Change Int	errupt Flag b	oit				
	one of the RB7 the RB7:RB4		0	·	cleared in	software)	
Legend:							
R = Readabl		W = Writal		•		t, read as '(
- n = Value a	t POR reset	'1' = Bit is	set	'0' = Bit is o	cleared	x = Bit is ur	known

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit, or the global enable bit. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt. This feature allows for software polling.

13.3 Capture Mode

In Capture mode, CCPR1H:CCPR1L captures the 16-bit value of the TMR1 or TMR3 registers when an event occurs on pin RC2/CCP1. An event is defined as:

- · every falling edge
- every rising edge
- every 4th rising edge
- every 16th rising edge

An event is selected by control bits CCP1M3:CCP1M0 (CCP1CON<3:0>). When a capture is made, the interrupt request flag bit CCP1IF (PIR1<2>) is set. It must be cleared in software. If another capture occurs before the value in register CCPR1 is read, the old captured value will be lost.

13.3.1 CCP PIN CONFIGURATION

In Capture mode, the RC2/CCP1 pin should be configured as an input by setting the TRISC<2> bit.

Note:	If the RC2/CCP1 is configured as an out-
	put, a write to the port can cause a capture condition.
	oonalion.

13.3.2 TIMER1/TIMER3 MODE SELECTION

The timers that are to be used with the capture feature (either Timer1 and/or Timer3) must be running in Timer mode or Synchronized Counter mode. In Asynchronous Counter mode, the capture operation may not work. The timer to be used with each CCP module is selected in the T3CON register.

13.3.3 SOFTWARE INTERRUPT

When the Capture mode is changed, a false capture interrupt may be generated. The user should keep bit CCP1IE (PIE1<2>) clear to avoid false interrupts and should clear the flag bit, CCP1IF, following any such change in operating mode.

13.3.4 CCP PRESCALER

There are four prescaler settings, specified by bits CCP1M3:CCP1M0. Whenever the CCP module is turned off, or the CCP module is not in Capture mode, the prescaler counter is cleared. This means that any RESET will clear the prescaler counter.

Switching from one capture prescaler to another may generate an interrupt. Also, the prescaler counter will not be cleared, therefore, the first capture may be from a non-zero prescaler. Example 13-1 shows the recommended method for switching between capture prescalers. This example also clears the prescaler counter and will not generate the "false" interrupt.

EXAMPLE 13-1: CHANGING BETWEEN CAPTURE PRESCALERS

CLRF	CCP1CON, F	;	Turn CCP module off
MOVLW	NEW_CAPT_PS	;	Load WREG with the
		;	new prescaler mode
		;	value and CCP ON
MOVWF	CCP1CON	;	Load CCP1CON with
		;	this value

FIGURE 13-1: CAPTURE MODE OPERATION BLOCK DIAGRAM

14.3 SPI Mode

The SPI mode allows 8-bits of data to be synchronously transmitted and received simultaneously. All four modes of SPI are supported. To accomplish communication, typically three pins are used:

- Serial Data Out (SDO) RC5/SDO
- Serial Data In (SDI) RC4/SDI/SDA
- Serial Clock (SCK) RC3/SCK/SCL/LVOIN

Additionally, a fourth pin may be used when in a Slave mode of operation:

Slave Select (SS) - RA5/SS/AN4

14.3.1 OPERATION

When initializing the SPI, several options need to be specified. This is done by programming the appropriate control bits (SSPCON1<5:0>) and SSPSTAT<7:6>. These control bits allow the following to be specified:

- Master mode (SCK is the clock output)
- Slave mode (SCK is the clock input)
- Clock Polarity (Idle state of SCK)
- Data input sample phase (middle or end of data output time)
- Clock edge (output data on rising/falling edge of SCK)
- Clock Rate (Master mode only)
- Slave Select mode (Slave mode only)

Figure 14-1 shows the block diagram of the MSSP module, when in SPI mode.

FIGURE 14-1:

MSSP BLOCK DIAGRAM (SPI MODE)

The MSSP consists of a transmit/receive shift register (SSPSR) and a buffer register (SSPBUF). The SSPSR shifts the data in and out of the device, MSb first. The SSPBUF holds the data that was written to the SSPSR. until the received data is ready. Once the 8-bits of data have been received, that byte is moved to the SSPBUF register. Then the buffer full detect bit, BF (SSPSTAT<0>), and the interrupt flag bit, SSPIF, are set. This double buffering of the received data (SSPBUF) allows the next byte to start reception before reading the data that was just received. Any write to the SSPBUF register during transmission/reception of data will be ignored, and the write collision detect bit, WCOL (SSPCON1<7>), will be set. User software must clear the WCOL bit so that it can be determined if the following write(s) to the SSPBUF register completed successfully.

Note 1: XT, HS or LP oscillator mode assumed.

2: GIE = '1' assumed. In this case, after wake- up, the processor jumps to the interrupt routine. If GIE = '0', execution will continue in-line.

3: TOST = 1024TOSC (drawing not to scale) This delay will not occur for RC and EC osc modes.

4: CLKOUT is not available in these osc modes, but shown here for timing reference.

18.4 Program Verification/Code Protection

If the code protection bit(s) have not been programmed, the on-chip program memory can be read out for verification purposes.

Note: Microchip Technology does not recommend code protecting windowed devices.

18.5 ID Locations

Five memory locations (200000h - 200004h) are designated as ID locations, where the user can store checksum or other code identification numbers. These locations are accessible during normal execution through the TBLRD instruction or during program/verify. The ID locations can be read when the device is code protected.

18.6 In-Circuit Serial Programming

PIC18CXXX microcontrollers can be serially programmed while in the end application circuit. This is simply done with two lines for clock and data, and three other lines for power, ground and the programming voltage. This allows customers to manufacture boards with unprogrammed devices, and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

MUL	_LW	Multiply Literal with WREG					
Synt	ax:	[label]	MULLW	k			
Ope	rands:	$0 \le k \le 25$	5				
Ope	ration:	(WREG) >	$k \to PR$	ODH:PF	RODL		
Statu	us Affected:	None					
Enco	oding:	0000	1101	kkkk	kkkk		
Des	cription:	ried out b WREG ar The 16-bi PRODH:F PRODH c WREG is None of th affected. Note that carry is po	An unsigned multiplication is car- ried out between the contents of WREG and the 8-bit literal 'k'. The 16-bit result is placed in PRODH:PRODL register pair. PRODH contains the high byte. WREG is unchanged. None of the status flags are affected. Note that neither overflow, nor carry is possible in this opera- tion. A zero result is possible but				
Wor	ds:	1					
Cycl		1					
•	cycle Activity:						
	Q1	Q2	Q3		Q4		
	Decode	Read literal 'k'	Proces Data	re PF	Write gisters RODH: RODL		
Exar	mple:	MULLW	0xC4				
	Before Instru	iction					
	WREG	= 0x	E2				
	PRODH PRODL	= ? = ?					
	After Instruct	ion					
	WREG PRODH PRODL	= 0x	E2 AD 08				

MULWF	Multiply WREG with f						
Syntax:	[label]	MULWF	f [,a]				
Operands:	0 ≤ f ≤ 25 a ∈ [0,1]	0 ≤ f ≤ 255 a ∈ [0,1]					
Operation:	(WREG) >	(WREG) x (f) \rightarrow PRODH:PRODL					
Status Affected:	None						
Encoding:	0000	0000 001a ffff ffff					
Description:	An unsigned multiplication is car- ried out between the contents of WREG and the register file loca- tion 'f'. The 16-bit result is stored in the PRODH:PRODL register pair. PRODH contains the high byte. Both WREG and 'f' are unchanged. None of the status flags are affected. Note that neither overflow, nor carry is possible in this opera- tion. A zero result is possible but not detected. If 'a' is 0, the Access Bank will be selected, overriding the BSR value. If 'a'= 1, then the bank will be selected						
Words:	1						
Cycles:	1						
Q Cycle Activity:							
Q1	Q2	Q3	Q4				
Decode	Read register 'f'	Process Data	Write registers PRODH: PRODL				
Example:	MULWF	REG, 1					
Before Instru	ction						
WREG REG PRODH PRODL		xC4 xB5					
After Instruct							
WREG		C4					

itter instruction		
WREG	=	0xC4
REG	=	0xB5
PRODH	=	0x8A
PRODL	=	0x94

RCA	LL	Relative C	Call					
Synt	ax:	[<i>label</i>] R	[<i>label</i>] RCALL n					
Ope	rands:	-1024 ≤ n	$-1024 \le n \le 1023$					
Ope	ration:	()	$(PC) + 2 \rightarrow TOS,$ (PC) + 2 + 2n \rightarrow PC					
Statu	us Affected:	None						
Enco	oding:	1101	1nnn	nnnn	nnnn			
	cription:	1K from the return add onto the st compleme Since the I to fetch the new addre This instru	Subroutine call with a jump up to 1K from the current location. First, return address (PC+2) is pushed onto the stack. Then, add the 2's complement number '2n' to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC+2+2n. This instruction is a two-cycle instruction.					
Wor	ds:	1						
Cycl	es:	2						
QC	Cycle Activity	:						
	Q1	Q2	Q3		Q4			
	Decode	Read literal 'n'	Process Data	s Wr	ite to PC			
		Push PC to stack						
	No operation	No operation	No operatio	n op	No peration			

Before Instruction

PC = Address(HERE)

After Instruction

PC = Address(Jump) TOS = Address(HERE+2)

RES	ET	Reset				
Synt	ax:	[label]	RESET			
Ope	rands:	None				
Ope	ration: Reset all registers and flags that are affected by a MCLR reset.					
State	us Affected:	All				
Enco	oding:	0000	0000 1	111	1111	
Des	cription:		UCTION PROVID		2	
Wor	ds:	1				
Cycl	es:	1				
QC	cycle Activity:					
	Q1	Q2	Q3		Q4	
	Decode	Start	No		No	
		reset	operation	ор	eration	

Example: RESET

After Instruction			
Registers	=	Reset	Value
Flags*	=	Reset	Value

RET	URN	Return fro	Return from Subroutine					
Synt	ax:	[label]	RETURN [s]				
Ope	rands:	s ∈ [0,1]						
Ope	ration:	$(TOS) \rightarrow PC,$ if s = 1 $(WS) \rightarrow WREG,$ $(STATUSS) \rightarrow STATUS,$ $(BSRS) \rightarrow BSR,$ PCLATU, PCLATH are unchanged						
Statu	us Affected:	None						
Enco	oding:	0000	0000 00	01 001s				
Des	cription:	Return from subroutine. The stack is popped and the top of the stack (TOS) is loaded into the program counter. If 's'= 1, the contents of the shadow registers WS, STATUSS and BSRS are loaded into their cor- responding registers, WREG, STATUS and BSR. If 's' = 0, no update of these registers occurs (default).						
Wor	ds:	1						
Cycl	es:	2						
QC	ycle Activity:							
	Q1	Q2	Q3	Q4				
	Decode	No	Process	pop PC from				
		operation	Data	stack				
	No	No	No	No				
	operation	operation	operation	operation				

Example: RETURN

After Interrupt

PC = TOS

RLCF	Rotate L	Rotate Left f through Carry					
Syntax:	[label]	RLCF	f [,d	l [,a]			
Operands:	0 ≤ f ≤ 25 d ∈ [0,1] a ∈ [0,1]	5					
Operation:	$(f < n >) \rightarrow dest < n+1>,$ $(f < 7>) \rightarrow C,$ $(C) \rightarrow dest < 0>$						
Status Affected:	C,N,Z						
Encoding:	0011	01da	ff	ff	ffff		
	the Carry	Flag If	'd' is	0 th	rough		
	the Carry is placed result is s (default). Bank will the BSR bank will BSR valu	in WRE stored ba If 'a' is 0 be select value. If be select te (defau	G. If ' ick in , the ted, o 'a' =	d' is regi Acco over 1, th as pe	e resu 1, the ister 'f' ess rriding nen the		
Words:	is placed result is s (default). Bank will the BSR bank will BSR valu	in WRE stored ba If 'a' is 0 be select value. If be select te (defau	G. If ' ick in the ted, o 'a' = ted a It).	d' is regi Acco over 1, th as pe	e resu 1, the ister 'f' ess rriding nen the		
Words: Cycles:	is placed result is s (default). Bank will the BSR bank will BSR valu	in WRE stored ba If 'a' is 0 be select value. If be select te (defau	G. If ' ick in the ted, o 'a' = ted a It).	d' is regi Acco over 1, th as pe	e resu 1, the ister 'f' ess rriding nen the		
	is placed result is s (default). Bank will the BSR bank will BSR valu	in WRE stored ba If 'a' is 0 be select value. If be select te (defau	G. If ' ick in the ted, o 'a' = ted a It).	d' is regi Acco over 1, th as pe	e resu 1, the ister 'f' ess rriding nen the		
Cycles:	is placed result is s (default). Bank will the BSR bank will BSR valu	in WRE stored ba If 'a' is 0 be select value. If be select te (defau	G. If ' ick in the ted, o 'a' = ted a It).	d' is regi Acco over 1, th as pe	e resu 1, the ister 'f' ess rriding nen the		
Cycles: Q Cycle Activity:	is placed result is s (default). Bank will the BSR bank will BSR valu	in WRE stored ba If 'a' is 0 be select value. If be select ie (defau	G. If ' ick in), the ted, ic 'a' = ited a lt).	d' is regi Accover 1, th as pe	e resu 1, the ister 'f' ess riding hen the er the		

Before Instruction

REG C	=	1110 0	0110
After Instru	ction		
REG	=	1110	0110
WREG	=	1100	1100
С	=	1	

 \odot 1999-2013 Microchip Technology Inc.

21.1 DC Characteristics

PIC18LCXX2 (Industrial)				Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial								
PIC18CXX2 (Industrial, Extended)			Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended									
Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions					
	Vdd	Supply Voltage										
D001		PIC18LCXX2	2.5	_	5.5	V	HS, XT, RC and LP osc mode					
D001		PIC18CXX2	4.2	—	5.5	V						
D002	Vdr	RAM Data Retention Voltage ⁽¹⁾	1.5	—	-	V						
D003	VPOR	VDD Start Voltage to ensure internal Power-on Reset signal		—	0.7	V	See section on Power-on Reset for details					
D004	Svdd	VDD Rise Rate to ensure internal Power-on Reset signal	0.05	—		V/ms	See section on Power-on Reset for details					
	VBOR	Brown-out Reset Voltage										
D005		PIC18LCXX2										
		BORV1:BORV0 = 11	2.5	_	2.66	V						
		BORV1:BORV0 = 10	2.7		2.86	V						
		BORV1:BORV0 = 01	4.2	—	4.46	V						
		BORV1:BORV0 = 00	4.5	—	4.78	V						
D005		PIC18CXX2										
		BORV1:BORV0 = 1x	N.A.	—	N.A.	V	Not in operating voltage range of device					
		BORV1:BORV0 = 01	4.2	—	4.46	V						
		BORV1:BORV0 = 00	4.5	—	4.78	V						

Legend: Shading of rows is to assist in readability of the table.

Note 1: This is the limit to which VDD can be lowered in SLEEP mode, or during a device RESET, without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

- OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD MCLR = VDD; WDT enabled/disabled as specified.
- 3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or Vss, and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR,...).
- **4:** For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kOhm.

FIGURE 22-5: TYPICAL IDD vs. Fosc OVER VDD (XT MODE)

© 1999-2013 Microchip Technology Inc.

NOTES:

40-Lead Ceramic Dual In-line with Window (JW) - 600 mil (CERDIP)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

		INCHES*		MILLIMETERS			
Dimension	MIN	NOM	MAX	MIN	NOM	MAX	
Number of Pins	n		40			40	
Pitch	р		.100			2.54	
Top to Seating Plane	Α	.185	.205	.225	4.70	5.21	5.72
Ceramic Package Height	A2	.155	.160	.165	3.94	4.06	4.19
Standoff	A1	.030	.045	.060	0.76	1.14	1.52
Shoulder to Shoulder Width	E	.595	.600	.625	15.11	15.24	15.88
Ceramic Pkg. Width	E1	.514	.520	.526	13.06	13.21	13.36
Overall Length	D	2.040	2.050	2.060	51.82	52.07	52.32
Tip to Seating Plane	L	.135	.140	.145	3.43	3.56	3.68
Lead Thickness	С	.008	.011	.014	0.20	0.28	0.36
Upper Lead Width	B1	.050	.053	.055	1.27	1.33	1.40
Lower Lead Width	В	.016	.020	.023	0.41	0.51	0.58
Overall Row Spacing §	eB	.610	.660	.710	15.49	16.76	18.03
Window Diameter	W	.340	.350	.360	8.64	8.89	9.14

Significant Characteristic JEDEC Equivalent: MO-103 Drawing No. C04-014

APPENDIX C: CONVERSION CONSIDERATIONS

This appendix discusses the considerations for converting from previous versions of a device to the ones listed in this data sheet. Typically, these changes are due to the differences in the process technology used. An example of this type of conversion is from a PIC16C74A to a PIC16C74B.

Not Applicable

APPENDIX D: MIGRATION FROM BASELINE TO ENHANCED DEVICES

This section discusses how to migrate from a Baseline device (i.e., PIC16C5X) to an Enhanced MCU device (i.e., PIC18CXXX).

The following are the list of modifications over the PIC16C5X microcontroller family:

Not Currently Available