

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

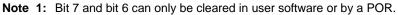
Detuils	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I²C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	22
Program Memory Size	32KB (16K x 16)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	A/D 5x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lc252-i-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

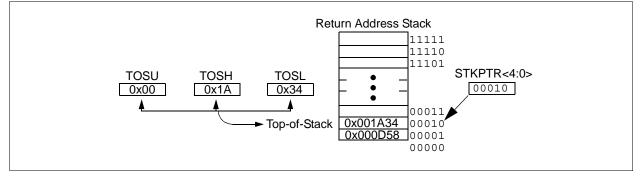
Pin Name	Pin Number		Pin	Buffer	Description
Pin Name	DIP	SOIC	Туре	Туре	Description
					PORTB is a bi-directional I/O port. PORTB can be software
					programmed for internal weak pull-ups on all inputs.
RB0/INT0	21	21			
RB0			I/O	TTL	Digital I/O.
INT0			Ι	ST	External Interrupt 0.
RB1/INT1	22	22			
RB1			I/O	TTL	
INT1			Ι	ST	External Interrupt 1.
RB2/INT2	23	23			
RB2			I/O	TTL	Digital I/O.
INT2			I	ST	External Interrupt 2.
RB3/CCP2	24	24			
RB3			I/O	TTL	Digital I/O.
CCP2			I/O	ST	Capture2 input, Compare2 output, PWM2 output.
RB4	25	25	I/O	TTL	Digital I/O.
					Interrupt-on-change pin.
RB5	26	26	I/O	TTL	Digital I/O.
					Interrupt-on-change pin.
RB6	27	27	I/O	TTL	Digital I/O.
					Interrupt-on-change pin.
			Ι	ST	ICSP programming clock.
RB7	28	28	I/O	TTL	Digital I/O.
					Interrupt-on-change pin.
			I/O	ST	ICSP programming data.
Legend: TTL = TTL	compa	tible inp	ut		CMOS = CMOS compatible input or output

PIC18C2X2 PINOUT I/O DESCRIPTIONS (CONTINUED) **TABLE 1-2:**


ST = Schmitt Trigger input with CMOS levels I = Input O = Output

OD = Open Drain (no P diode to VDD)

P = Power


REGISTER 4-1: STKPTR REGISTER

	R/C-0	R/C-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
	STKFUL	STKUNF	—	SP4	SP3	SP2	SP1	SP0		
	bit 7 bit 0									
bit 7 ⁽¹⁾	STKFUL: S	Stack Full Fla	ag bit							
	1 = Stack became full or overflowed									
	0 = Stack has not become full or overflowed									
bit 6 ⁽¹⁾	STKUNF: S	Stack Underf	low Flag bit							
	1 = Stack u	inderflow oc	curred							
	0 = Stack u	inderflow did	l not occur							
bit 5	Unimplemented: Read as '0'									
bit 4-0	SP4:SP0: S	Stack Pointe	r Location b	its						

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

FIGURE 4-3: RETURN ADDRESS STACK AND ASSOCIATED REGISTERS

4.2.3 PUSH AND POP INSTRUCTIONS

Since the Top-of-Stack (TOS) is readable and writable, the ability to push values onto the stack and pull values off the stack, without disturbing normal program execution, is a desirable option. To push the current PC value onto the stack, a PUSH instruction can be executed. This will increment the stack pointer and load the current PC value onto the stack. TOSU, TOSH and TOSL can then be modified to place a return address on the stack.

The ability to pull the TOS value off of the stack and replace it with the value that was previously pushed onto the stack, without disturbing normal execution, is achieved by using the POP instruction. The POP instruction discards the current TOS by decrementing the stack pointer. The previous value pushed onto the stack then becomes the TOS value.

4.2.4 STACK FULL/UNDERFLOW RESETS

These resets are enabled by programming the STVREN configuration bit. When the STVREN bit is disabled, a full or underflow condition will set the appropriate STKFUL or STKUNF bit, but not cause a device RESET. When the STVREN bit is enabled, a full or underflow will set the appropriate STKFUL or STKUNF bit and then cause a device RESET. The STKFUL or STKUNF bits are only cleared by the user software or a POR Reset.

4.9 Data Memory Organization

The data memory is implemented as static RAM. Each register in the data memory has a 12-bit address, allowing up to 4096 bytes of data memory. Figure 4-6 and Figure 4-7 show the data memory organization for the PIC18CXX2 devices.

The data memory map is divided into as many as 16 banks that contain 256 bytes each. The lower 4 bits of the Bank Select Register (BSR<3:0>) select which bank will be accessed. The upper 4 bits for the BSR are not implemented.

The data memory contains Special Function Registers (SFR) and General Purpose Registers (GPR). The SFRs are used for control and status of the controller and peripheral functions, while GPRs are used for data storage and scratch pad operations in the user's application. The SFRs start at the last location of Bank 15 (0xFFF) and extend downwards. Any remaining space beyond the SFRs in the Bank may be implemented as GPRs. GPRs start at the first location of Bank 0 and grow upwards. Any read of an unimplemented location will read as '0's.

The entire data memory may be accessed directly, or indirectly. Direct addressing may require the use of the BSR register. Indirect addressing requires the use of a File Select Register (FSRn) and corresponding Indirect File Operand (INDFn). Each FSR holds a 12-bit address value that can be used to access any location in the Data Memory map without banking.

The instruction set and architecture allow operations across all banks. This may be accomplished by indirect addressing or by the use of the MOVFF instruction. The MOVFF instruction is a two-word/two-cycle instruction that moves a value from one register to another.

To ensure that commonly used registers (SFRs and select GPRs) can be accessed in a single cycle, regardless of the current BSR values, an Access Bank is implemented. A segment of Bank 0 and a segment of Bank 15 comprise the Access RAM. Section 4.10 provides a detailed description of the Access RAM.

4.9.1 GENERAL PURPOSE REGISTER FILE

The register file can be accessed either directly, or indirectly. Indirect addressing operates using the File Select Registers (FSRn) and corresponding Indirect File Operand (INDFn). The operation of indirect addressing is shown in Section 4.12.

Enhanced MCU devices may have banked memory in the GPR area. GPRs are not initialized by a Power-on Reset and are unchanged on all other RESETS.

Data RAM is available for use as GPR registers by all instructions. The top half of bank 15 (0xF80 to 0xFFF) contains SFRs. All other banks of data memory contain GPR registers, starting with bank 0.

4.9.2 SPECIAL FUNCTION REGISTERS

The Special Function Registers (SFRs) are registers used by the CPU and Peripheral Modules for controlling the desired operation of the device. These registers are implemented as static RAM. A list of these registers is given in Table 4-1 and Table 4-2.

The SFRs can be classified into two sets; those associated with the "core" function and those related to the peripheral functions. Those registers related to the "core" are described in this section, while those related to the operation of the peripheral features are described in the section of that peripheral feature.

The SFRs are typically distributed among the peripherals whose functions they control.

The unused SFR locations will be unimplemented and read as '0's. See Table 4-1 for addresses for the SFRs.

TABLE 4-2: REGISTER FILE SUMMARY

File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Details on page:
TOSU	_	_	_	Top-of-Stack	Upper Byte (T	OS<20:16>)			0 0000	37
TOSH	Top-of-Stacl	Top-of-Stack High Byte (TOS<15:8>)							0000 0000	37
TOSL	Top-of-Stac	op-of-Stack Low Byte (TOS<7:0>)							0000 0000	37
STKPTR	STKFUL	STKUNF	_	Return Stack	Pointer				00-0 0000	38
PCLATU	_	_	_	Holding Regi	ster for PC<20):16>			0 0000	39
PCLATH	Holding Reg	olding Register for PC<15:8> 0000 0						0000 0000	39	
PCL	PC Low Byt	C Low Byte (PC<7:0>) 0000 0000						0000 0000	39	
TBLPTRU	_	_	bit21 ⁽²⁾	Program Mer	nory Table Po	inter Upper By	te (TBLPTR<	20:16>)	0 0000	57
TBLPTRH	Program Me	emory Table Po	pinter High By	te (TBLPTR<1	5:8>)				0000 0000	57
TBLPTRL	Program Me	emory Table Po	pinter Low Byt	te (TBLPTR<7:	0>)				0000 0000	57
TABLAT	Program Me	emory Table La	atch						0000 0000	57
PRODH	Product Reg	gister High Byt	е						XXXX XXXX	61
PRODL	Product Reg	gister Low Byte	9						XXXX XXXX	61
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INTOIE	RBIE	TMR0IF	INT0IF	RBIF	0000 000x	65
INTCON2	RBPU	INTEDG0	INTEDG1	INTEDG2	_	TMR0IP	_	RBIP	1111 -1-1	66
INTCON3	INT2IP	INT1IP	_	INT2IE	INT1IE	_	INT2IF	INT1IF	11-0 0-00	67
INDF0	Uses conter	nts of FSR0 to	address data	memory - valu	e of FSR0 not	changed (not	a physical rec	gister)	N/A	50
POSTINC0	Uses conter	nts of FSR0 to	address data	memory - valu	e of FSR0 pos	t-incremented	(not a physic	al register)	N/A	50
POSTDEC0	Uses conter	Uses contents of FSR0 to address data memory - value of FSR0 post-incremented (not a physical register) N/A Uses contents of FSR0 to address data memory - value of FSR0 post-decremented (not a physical register) N/A						N/A	50	
PREINC0	Uses contents of FSR0 to address data memory - value of FSR0 pre-incremented (not a physical register)					I register)	N/A	50		
PLUSW0	Uses contents of FSR0 to address data memory - value of FSR0 pre-incremented (not a physical register) - value of FSR0 offset by value in WREG					N/A	50			
FSR0H	Indirect Data Memory Address Pointer 0 High Byt) High Byte	0000	50		
FSR0L	Indirect Dat	Indirect Data Memory Address Pointer 0 Low Byte							XXXX XXXX	50
WREG	Working Register xxxx xxxx									
INDF1	Uses conter	nts of FSR1 to	address data	memory - valu	e of FSR1 not	changed (not	a physical reg	gister)	N/A	50
POSTINC1	Uses conter	nts of FSR1 to	address data	memory - valu	e of FSR1 pos	t-incremented	(not a physic	al register)	N/A	50
POSTDEC1	Uses conter	nts of FSR1 to	address data	memory - valu	e of FSR1 pos	t-decremented	d (not a physic	cal register)	N/A	50
PREINC1	Uses conter	nts of FSR1 to	address data	memory - valu	e of FSR1 pre-	-incremented	not a physica	I register)	N/A	50
PLUSW1		nts of FSR1 to R1 offset by va		memory - valu	e of FSR1 pre	-incremented	not a physica	l register) -	N/A	50
FSR1H	_	_	_	—	Indirect Data	a Memory Add	ress Pointer 1	High Byte	0000	50
FSR1L	Indirect Dat	a Memory Add	ress Pointer 1	Low Byte					xxxx xxxx	50
BSR	_	_	_	—	Bank Select	Register			0000	49
INDF2	Uses conter	nts of FSR2 to	address data	memory - valu	e of FSR2 not	changed (not	a physical reg	gister)	N/A	50
POSTINC2	Uses conter	nts of FSR2 to	address data	memory - valu	e of FSR2 pos	t-incremented	(not a physic	al register)	N/A	50
POSTDEC2	Uses conter	nts of FSR2 to	address data	memory - valu	e of FSR2 pos	t-decremented	d (not a physic	cal register)	N/A	50
PREINC2	Uses conter	nts of FSR2 to	address data	memory - valu	e of FSR2 pre-	-incremented	not a physica	l register)	N/A	50
PLUSW2		nts of FSR2 to R2 offset by va		memory - valu	e of FSR2 pre	-incremented	not a physica	l register) -	N/A	50
FSR2H	_	_	_	_	Indirect Data	Memory Add	ress Pointer 2	2 High Byte	0000	50
FSR2L	Indirect Dat	a Memory Add	ress Pointer 2	2 Low Byte					xxxx xxxx	50
STATUS	_	—	_	Ν	OV	Z	DC	С	x xxxx	52
TMR0H	Timer0 Reg	ister High Byte							0000 0000	95
TMR0L	Timer0 Reg	ister Low Byte							xxxx xxxx	95
T0CON	TMR0ON	T08BIT	TOCS	TOSE	PSA	T0PS2	T0PS1	T0PS0	1111 1111	93
OSCCON	—	—	—	—	—	—	—	SCS	0	20
LVDCON	_	_	IRVST	LVDEN	LVDL3	LVDL2	LVDL1	LVDL0	00 0101	175

Legend: x = unknown, u = unchanged, - = unimplemented, g = value depends on condition
Note 1: RA6 and associated bits are configured as port pins in RCIO and ECIO oscillator mode only, and read '0' in all other oscillator modes.
2: Bit 21 of the TBLPTRU allows access to the device configuration bits.

7.3 PIE Registers

The PIE registers contain the individual enable bits for the peripheral interrupts. Due to the number of peripheral interrupt sources, there are two Peripheral Interrupt Enable Registers (PIE1, PIE2). When IPEN = 0, the PEIE bit must be set to enable any of these peripheral interrupts.

REGISTER 7-6: PERIPHERAL INTERRUPT ENABLE REGISTER 1 (PIE1)

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	PSPIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	
	bit 7							bit 0	
bit 7	PSPIE: Parallel Slave Port Read/Write Interrupt Enable bit								
		s the PSP re s the PSP r							
bit 6		Converter Ir							
		s the A/D in	•						
	0 = Disable	es the A/D ir	nterrupt						
bit 5	RCIE: USA	RT Receive	e Interrupt E	nable bit					
		s the USAR							
h:+ 4		es the USAF		•					
bit 4		RT Transmi s the USAR							
		s the USAR							
bit 3	SSPIE: Ma	ster Synchr	onous Seria	I Port Interr	upt Enable bit				
		s the MSSP							
		es the MSSF							
bit 2		CP1 Interru		it					
		s the CCP1 is the CCP1	-						
bit 1		MR2 to PR2	•	rrunt Enable	- hit				
bit i		s the TMR2		•					
		es the TMR2							
bit 0	TMR1IE: T	MR1 Overflo	ow Interrupt	Enable bit					
		s the TMR1							
	0 = Disables the TMR1 overflow interrupt								
	Legend:]	
	R = Reada	hla hit	\\/ \\	/ritable bit	U = Unimple	omontad hi	it read as "	ר י	
	- n = Value			Bit is set	0 = 0 minipi		x = Bit is ur		
	- n = value	al FUR	I = D	IL IS SEL	U = DILISC	lealeu	x = Dit is uf	INTOWN	

REGISTER 14-1: SSPSTAT: MSSP STATUS REGISTER (CONTINUED)

	R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0	
	SMP	CKE	D/Ā	Р	S	R/W	UA	BF	
	bit 7							bit 0	
bit 3	S: START I						000511		
					SSP module			cleared.)	
	 1 = Indicates that a START bit has been detected last (this bit is '0' on RESET) 0 = START bit was not detected last 								
bit 2	R/W: Read	/Write bit inf	formation (I ²	C mode onl	y)				
				•	he last addre		his bit is onl	y valid from	
			ne next STA	RT bit, STO	P bit, or not	ACK bit.			
	In I ² C Slav	<u>e mode:</u>							
	0 = Write								
	In I ² C Mast								
		it is in progr							
		nit is not in p this bit with	•	I. PEN. RCI	EN, or ACKE	N will indica	ate if the MS	SP is in	
	IDLE m		•=, •••=-	.,,					
bit 1	UA: Update	e Address b	it (10-bit I ² C	mode only)					
					address in t	the SSPADE	O register		
			need to be u	pdated					
bit 0		Full Status k							
		<u>PI and I²C r</u>	<u>nodes):</u> SSPBUF is	full					
			ete, SSPBU						
		² C mode on							
					th <u>e AC</u> K ar				
	0 = Data tra	ansmit comp	olete (does r	not include t	he ACK and	STOP bits),	SSPBUF is	empty	
	Legend:								
	R = Reada	ble bit	W = Writab	le bit	U = Unimpl	emented bit	, read as '0'		
	- n = Value	at POR	'1' = Bit is s	set	'0' = Bit is c	leared	x = Bit is ur	nknown	

REGISTER 14-2: SSPCON1: MSSP CONTROL REGISTER1

	R/W-0							
ſ	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0
	bit 7							bit 0

bit 7 WCOL: Write Collision Detect bit

Master mode:

- 1 = A write to the SSPBUF register was attempted while the I²C conditions were not valid for a transmission to be started
- $0 = No \ collision$

Slave mode:

- 1 = The SSPBUF register is written while it is still transmitting the previous word (must be cleared in software)
- 0 = No collision

bit 6 **SSPOV:** Receive Overflow Indicator bit

In SPI mode:

- 1 = A new byte is received while the SSPBUF register is still holding the previous data. In case of overflow, the data in SSPSR is lost. Overflow can only occur in Slave mode. In Slave mode, the user must read the SSPBUF, even if only transmitting data to avoid
 - In Slave mode, the user must read the SSPBUF, even if only transmitting data to avoid setting overflow.

In Master mode, the overflow bit is not set, since each new reception (and transmission) is initiated by writing to the SSPBUF register (must be cleared in software).

0 = No overflow

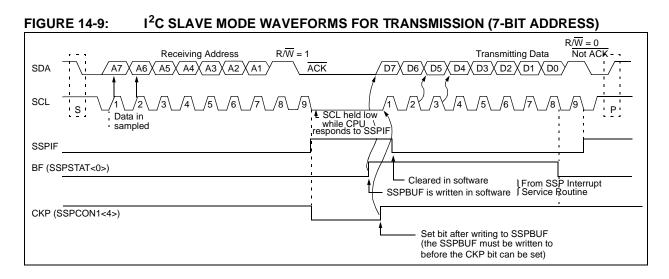
In I²C mode:

- 1 = A byte is received while the SSPBUF register is still holding the previous byte. SSPOV is a "don't care" in Transmit mode (must be cleared in software).
- 0 = No overflow

bit 5

SSPEN: Synchronous Serial Port Enable bit


In both modes when enabled, these pins must be properly configured as input or output. In SPI mode:


- 1 = Enables serial port and configures SCK, SDO, SDI, and SS as the source of the serial port pins
- 0 = Disables serial port and configures these pins as I/O port pins

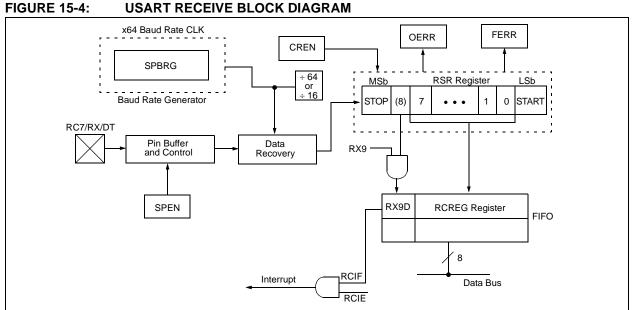
In I²C mode:

- 1 = Enables the serial port and configures the SDA and SCL pins as the source of the serial port pins
- 0 = Disables serial port and configures these pins as I/O port pins

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented I	oit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

USART ASYNCHRONOUS 15.2.2 RECEIVER

The receiver block diagram is shown in Figure 15-4. The data is received on the RC7/RX/DT pin and drives the data recovery block. The data recovery block is actually a high speed shifter operating at x16 times the baud rate, whereas the main receive serial shifter operates at the bit rate, or at Fosc. This mode would typically be used in RS-232 systems.


To set up an Asynchronous Reception:

- Initialize the SPBRG register for the appropriate 1. baud rate. If a high speed baud rate is desired, set bit BRGH (Section 15.1).
- 2. Enable the asynchronous serial port by clearing bit SYNC and setting bit SPEN.
- 3. If interrupts are desired, set enable bit RCIE.
- 4. If 9-bit reception is desired, set bit RX9.
- Enable the reception by setting bit CREN. 5.
- 6. Flag bit RCIF will be set when reception is complete and an interrupt will be generated if enable bit RCIE was set.
- 7. Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- Read the 8-bit received data by reading the 8. RCREG register.
- 9. If any error occurred, clear the error by clearing enable bit CREN.

SETTING UP 9-BIT MODE WITH 15.2.3 ADDRESS DETECT

This mode would typically be used in RS-485 systems. To set up an Asynchronous Reception with Address **Detect Enable:**

- 1. Initialize the SPBRG register for the appropriate baud rate. If a high speed baud rate is required, set the BRGH bit.
- 2. Enable the asynchronous serial port by clearing the SYNC bit and setting the SPEN bit.
- If interrupts are required, set the RCEN bit and 3. select the desired priority level with the RCIP bit.
- 4. Set the RX9 bit to enable 9-bit reception.
- Set the ADDEN bit to enable address detect. 5.
- Enable reception by setting the CREN bit.
- The RCIF bit will be set when reception is com-7. plete. The interrupt will be acknowledged if the RCIE and GIE bits are set.
- 8. Read the RCSTA register to determine if any error occurred during reception, as well as read bit 9 of data (if applicable).
- 9. Read RCREG to determine if the device is being addressed.
- 10. If any error occurred, clear the CREN bit.
- 11. If the device has been addressed, clear the ADDEN bit to allow all received data into the receive buffer and interrupt the CPU.

15.4 USART Synchronous Slave Mode

Synchronous Slave mode differs from the Master mode in the fact that the shift clock is supplied externally at the RC6/TX/CK pin (instead of being supplied internally in Master mode). This allows the device to transfer or receive data while in SLEEP mode. Slave mode is entered by clearing bit CSRC (TXSTA<7>).

15.4.1 USART SYNCHRONOUS SLAVE TRANSMIT

The operation of the Synchronous Master and Slave modes are identical, except in the case of the SLEEP mode.

If two words are written to the TXREG and then the SLEEP instruction is executed, the following will occur:

- a) The first word will immediately transfer to the TSR register and transmit.
- b) The second word will remain in TXREG register.
- c) Flag bit TXIF will not be set.
- When the first word has been shifted out of TSR, the TXREG register will transfer the second word to the TSR and flag bit TXIF will now be set.
- e) If enable bit TXIE is set, the interrupt will wake the chip from SLEEP. If the global interrupt is enabled, the program will branch to the interrupt vector.

To set up a Synchronous Slave Transmission:

- 1. Enable the synchronous slave serial port by setting bits SYNC and SPEN and clearing bit CSRC.
- 2. Clear bits CREN and SREN.
- 3. If interrupts are desired, set enable bit TXIE.
- 4. If 9-bit transmission is desired, set bit TX9.
- 5. Enable the transmission by setting enable bit TXEN.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit TX9D.
- 7. Start transmission by loading data to the TXREG register.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other RESETS
INTCON	GIE/ GIEH	PEIE/ GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INTOIF	RBIF	0000 000x	0000 000u
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
IPR1	PSPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	0000 0000	0000 0000
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 -00x	0000 -00x
TXREG USART Transmit Register							0000 0000	0000 0000		
TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
SPBRG	SPBRG Baud Rate Generator Register								0000 0000	0000 0000

TABLE 15-10: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION

Legend: x = unknown, - = unimplemented, read as '0'.

Shaded cells are not used for Synchronous Slave Transmission.

Note 1: The PSPIF, PSPIE and PSPIP bits are reserved on the PIC18C2X2 devices. Always maintain these bits clear.

18.2 Watchdog Timer (WDT)

The Watchdog Timer is a free running, on-chip RC oscillator, which does not require any external components. This RC oscillator is separate from the RC oscillator of the OSC1/CLKI pin. That means that the WDT will run, even if the clock on the OSC1/CLKI and OSC2/CLKO/RA6 pins of the device has been stopped, for example, by execution of a SLEEP instruction.

During normal operation, a WDT time-out generates a device RESET (Watchdog Timer Reset). If the device is in SLEEP mode, a WDT time-out causes the device to wake-up and continue with normal operation (Watchdog Timer Wake-up). The TO bit in the RCON register will be cleared upon a WDT time-out.

The Watchdog Timer is enabled/disabled by a device configuration bit. If the WDT is enabled, software execution may not disable this function. When the WDTEN configuration bit is cleared, the SWDTEN bit enables/ disables the operation of the WDT. The WDT time-out period values may be found in the Electrical Specifications section under parameter #31. Values for the WDT postscaler may be assigned using the configuration bits.

Note: The CLRWDT and SLEEP instructions clear the WDT and the postscaler, if assigned to the WDT, and prevent it from timing out and generating a device RESET condition.

Note: When a CLRWDT instruction is executed and the postscaler is assigned to the WDT, the postscaler count will be cleared, but the postscaler assignment is not changed.

18.2.1 CONTROL REGISTER

Register 18-7 shows the WDTCON register. This is a readable and writable register, which contains a control bit that allows software to override the WDT enable configuration bit, only when the configuration bit has disabled the WDT.

REGISTER 18-7: WDTCON REGISTER

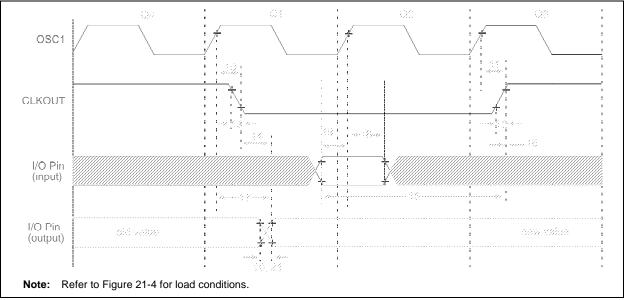
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
	—	—	—	—	—	_	SWDTEN
bit 7							bit 0

bit 7-1 Unimplemented: Read as '0'

- bit 0 SWDTEN: Software Controlled Watchdog Timer Enable bit
 - 1 = Watchdog Timer is on
 - Watchdog Timer is turned off if the WDTEN configuration bit in the configuration register = '0'

Legend:	
R = Readable bit	W = Writable bit
U = Unimplemented bit, read as '0'	- n = Value at POR Reset

CPFSGT	Compare skip if f >	f with WRE0 WREG	З,	CPFSLT	
Syntax:	[label] C	PFSGT f[,a]	Syntax:	
Operands:	0 ≤ f ≤ 255 a ∈ [0,1]	5		Operand	
Operation:	(f) – (WRE skip if (f) > (unsigned			Operatio	
Status Affected:	None			Status A	
Encoding:	0110	010a fff	f ffff	Encodin	
Description:	memory lo of the WR unsigned s If the content fetched ins a NOP is e this a two- 0, the Acco selected, o	Compares the contents of data memory location 'f' to the contents of the WREG by performing an unsigned subtraction. If the contents of 'f' are greater than the contents of WREG, then the fetched instruction is discarded and a NOP is executed instead, making this a two-cycle instruction. If 'a' is 0, the Access Bank will be selected, overriding the BSR value. If 'a' = 1, then the bank will be			
	(default).			Cycles:	
Words:	1			-	
Cycles: Q Cycle Activity:	by	cycles if skip a 2-word ins		Q Cycle	
Q1	Q2	Q3	Q4		
Decode	Read register 'f'	Process Data	No operation	lf skip:	
If skip:					
Q1	Q2	Q3	Q4		
No operation	No operation	No operation	No operation	lf skip a	
If skip and follow			oporation	, 	
Q1	Q2	Q3	Q4	ор	
No	No	No	No		
operation	operation	operation	operation	ор	
No operation	No operation	No operation	No operation	Evenne	
Example:	HERE NGREATER GREATER	CPFSGT RE :		I <u>Example</u> Befo	
Before Instru	iction				
PC		dress (HERN	Ξ)	Afte	
WREG	= ?				
After Instruct		FC.			
If REG PC If REG PC	= Ad ≤ WR	EG; dress (GRE EG; dress (NGRI			

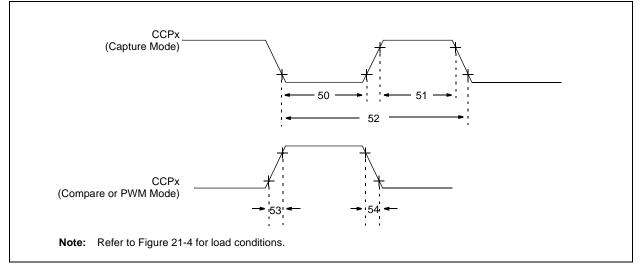

PF	SLT	Compare skip if f <	f with WRE WREG	G,
ynt	ax:	[label] C	PFSLT f[,	,a]
pei	rands:	0 ≤ f ≤ 255 a ∈ [0,1]	5	-
pei	ration:	(f) – (WRE skip if (f) <	(WREG)	
- 4.			comparison))
	is Affected:	None		
	oding:	0110	000a ff:	
esc	pription:	memory lc of WREG unsigned s If the content the content fetched ins a NOP is e this a two- 0, the Acco selected. I	xecuted inste cycle instruc ess Bank wil	he contents ig an e less than , then the iscarded and ead, making ction. If 'a' is I be BSR will not
	Ja .		uen (uerauit)	
oro'.		1		
ycl Q C	ycle Activity: Q1	by	ycles if skip a a 2-word ins [:] Q3	and followed truction. Q4
	Decode	Read	Process	No
		register 'f'	Data	operation
sk	· .	•		
1	Q1	Q2	Q3	Q4
	No operation	No operation	No operation	No operation
[:] sk		red by 2-word		· · ·
2.1	Q1	Q2	Q3	Q4
	No	No	No	No
	operation	operation	operation	operation
	No	No	No	No
xar	operation nple:	NLESS	operation	operation
	Before Instru	iction = Ad	dress (HER:	E)
	W After Instruct	= ?		
	After Instruct		Da	
	If REG PC	< WR = Ad	EG; dress (LES:	S)
	If REG	\geq WR	EG;	
	PC	= Ad	dress (NLE	SS)

NOTES:

TABLE 21-5:	PLL CLOCK TIMING SPECIFICATION (VDD = 4.2V - 5.5V)

Param No.	Symbol	Characteristic	Min	Мах	Units	Conditions
	TRC	PLL Start-up Time (Lock Time)		2	ms	
	ΔCLK	CLKOUT Stability (Jitter) using PLL	-2	+2	%	

FIGURE 21-6: CLKOUT AND I/O TIMING


TABLE 21-6: CLKOUT AND I/O TIMING REQUIREMENTS

Param. No.	Symbol	Characteris	Min	Тур	Мах	Units	Conditions	
10	TosH2ckL	OSC1↑ to CLKOUT↓			75	200	ns	(1)
11	TosH2ckH	OSC1↑ to CLKOUT↑		—	75	200	ns	(1)
12	TckR	CLKOUT rise time		_	35	100	ns	(1)
13	TckF	CLKOUT fall time		_	35	100	ns	(1)
14	TckL2ioV	CLKOUT ↓ to Port out v	alid	_	_	0.5TCY + 20	ns	(1)
15	TioV2ckH	Port in valid before CLK	OUT ↑	0.25Tcy + 25	_		ns	(1)
16	TckH2iol	Port in hold after CLKOUT 1		0			ns	(1)
17	TosH2ioV	OSC1↑ (Q1 cycle) to Port out valid		_	50	150	ns	
18	TosH2iol	OSC1↑ (Q2 cycle) to	PIC18CXXX	100	_		ns	
18A		Port input invalid (I/O in hold time)	PIC18LCXXX	200	—	_	ns	
19	TioV2osH	Port input valid to OSC1↑ (I/O in setup time)		0	—	—	ns	
20	TioR	Port output rise time	PIC18CXXX	_	12	25	ns	
20A			PIC18LCXXX		_	50	ns	
21	TioF	Port output fall time	PIC18CXXX		12	25	ns	
21A			PIC18LCXXX	_	_	50	ns	
22††	TINP	INT pin high or low time		Тсү	_		ns	
23††	Trbp	RB7:RB4 change INT high or low time		Тсү	_		ns	
24††	TRCP	RC7:RC4 change INT h	igh or low time	20			ns	

these parameters are asynchronous events not related to any internal clock edges.

Note 1: Measurements are taken in RC mode where CLKOUT output is 4 x Tosc.

FIGURE 21-10: CAPTURE/COMPARE/PWM TIMINGS (CCP1 AND CCP2)

TABLE 21-9: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP1 AND CCP2)

Param. No.	Symbol	CI	naracteristi	с	Min	Мах	Units	Conditions
50	TccL	CCPx input low	No Presca	ler	0.5Tcy + 20	—	ns	
		time	time With	PIC18CXXX	10	_	ns	
			Prescaler	PIC18LCXXX	20	—	ns	
51	TccH	CCPx input No Prescale		ler	0.5Tcy + 20	_	ns	
		high time	With	PIC18CXXX	10	—	ns	
			Prescaler	PIC18LCXXX	20	_	ns	
52	TccP	CCPx input period			<u>3Tcy + 40</u> N	—	ns	N = prescale value (1,4 or 16)
53	TccR	CCPx output fall	time	PIC18CXXX	_	25	ns	
		PIC18LC	PIC18LCXXX	_	50	ns		
54	TccF	CCPx output fall	time	PIC18CXXX	_	25	ns	
				PIC18LCXXX		50	ns	

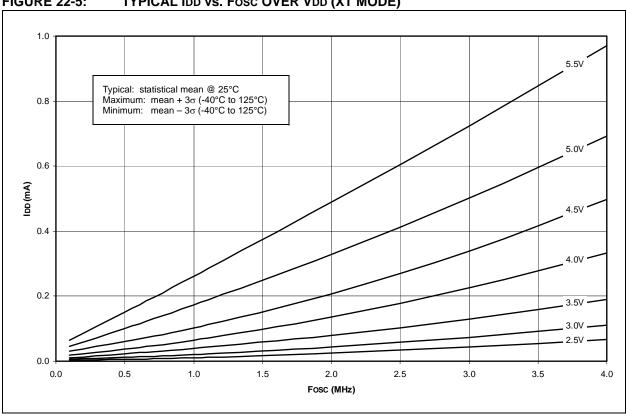
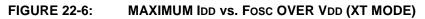
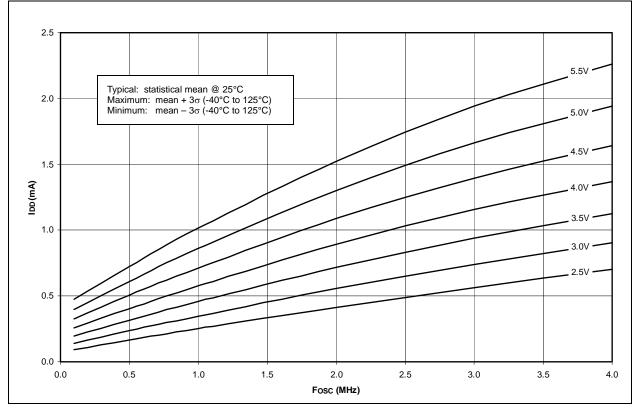




FIGURE 22-5: TYPICAL IDD vs. Fosc OVER VDD (XT MODE)



© 1999-2013 Microchip Technology Inc.

23.0 PACKAGING INFORMATION

23.1 Package Marking Information

28-Lead PDIP (Skinny DIP)

Example	
	PIC18C242-I/SP

10117017

28-	Lead	SOIC	

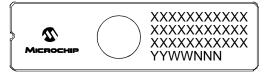

Example

Leger	ld: XXX Y YY WW NNN (@3) *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator (e3) can be found on the outer packaging for this package.
Note:	be carrie	nt the full Microchip part number cannot be marked on one line, it will d over to the next line, thus limiting the number of available s for customer-specific information.

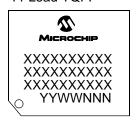
Package Marking Information (Cont'd)

40-Lead PDIP

Example



PIC18C452

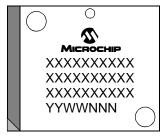

-I/JW

0115017

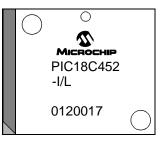
28- and 40-Lead JW (CERDIP)

44-Lead TQFP

Example


Example

 \mathbf{v}


MICROCHIP

44-Lead PLCC

Example

DS39026D-page 278

STOP Condition Receive or Transmit143
Time-out Sequence on Power-up
USART Asynchronous Master Transmission 156
USART Asynchronous Reception
USART Synchronous Reception161
USART Synchronous Transmission
Wake-up from SLEEP via Interrupt 186
Timing Diagrams and Specifications
A/D Conversion262
Brown-out Reset (BOR)248
Capture/Compare/PWM (CCP)
CLKOUT and I/O247
External Clock246
I ² C Bus Data257
I ² C Bus START/STOP Bits256
Oscillator Start-up Timer (OST)248
Parallel Slave Port (PSP)251
Power-up Timer (PWRT)248
RESET248
Timer0 and Timer1249
USART Synchronous Receive
(Master/Slave)260
USART SynchronousTransmission
(Master/Slave)260
Watchdog Timer (WDT)248
TRISE Register
PSPMODE Bit
TSTFSZ
Two-Word Instructions
Example Cases41
TXSTA Register
BRGH Bit151

U

Universal Synchronous Asynchronous Receiver	
Transmitter. See USART.	
USART	149
Asynchronous Mode	155
Associated Registers, Receive	158
Associated Registers, Transmit	156
Master Transmission	156
Receive Block Diagram	157
Receiver	157
Reception	158
Transmit Block Diagram	155
Transmitter	155

Baud Rate Generator (BRG)	. 151
Associated Registers	. 151
Baud Rate Error, Calculating	
Baud Rate Formula	
Baud Rates, Asynchronous Mode	
(BRGH = 0)	. 153
Baud Rates, Asynchronous Mode	
(BRGH = 1)	. 154
Baud Rates, Synchronous Mode	
High Baud Rate Select (BRGH Bit)	
Sampling	
RCSTA Register	
Serial Port Enable (SPEN Bit)	
Synchronous Master Mode	. 159
Associated Registers, Reception	. 161
Associated Registers, Transmit	. 159
Reception	. 161
Timing Diagram, Synchronous Receive	. 260
Timing Diagram, Synchronous	
Transmission	260
Transmission	. 160
Associated Registers	. 159
Synchronous Slave Mode	. 162
Associated Registers, Receive	. 163
Associated Registers, Transmit	. 162
Reception	. 163
Transmission	. 162
TXSTA Register	. 149

W

Wake-up from SLEEP 179, 185
Timing Diagram 186
Using Interrupts 185
Watchdog Timer (WDT) 179, 183
Associated Registers 184
Block Diagram
Postscaler
Programming Considerations
RC Oscillator
Time-out Period183
Timing Diagram 248
Waveform for General Call Address Sequence 133
WCOL 137, 139, 142
WCOL Status Flag 137
WDT
WWW, On-Line Support5

Х

XORLW	 227
XORWF	 228

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 Australia - Sydney

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755 China - Beijing

Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hangzhou Tel: 86-571-2819-3187 Fax: 86-571-2819-3189

China - Hong Kong SAR Tel: 852-2943-5100 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460

Fax: 86-25-8473-2470 China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7828 Fax: 886-7-330-9305

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828

Fax: 45-4485-2829 France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820