

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	33
Program Memory Size	16KB (8K x 16)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LCC (J-Lead)
Supplier Device Package	44-PLCC (16.59x16.59)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lc442-i-l

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.7.1 TWO-WORD INSTRUCTIONS

The PIC18CXX2 devices have four two-word instructions:MOVFF, CALL, GOTO and LFSR The second word of these instructions has the 4 MSBs set to 1 s and is a special kind **MOP**instruction. The lower 12bits of the second word contain data to be used by the instruction. If the first word of the instruction is executed, the data in the second word is accessed. If the

second word of the instruction is executed by itself (first word was skipped), it will execute **ACP** This action is necessary when the two-word instruction is preceded by a conditional instruction that changes the PC. A program example that demonstrates this concept is shown in Example 4-3. Refer to Section 19.0 for further details of the instruction set.

EXAMPLE 4-3: TWO-WORD INSTRUCTIONS

CASE 1:			
Object Code	Source Code	Э	
0110 0110 0000 0000	TSTFSZ	REG1	; is RAM location 0?
1100 0001 0010 0011	MOVFF	REG1, REG2	; No, execute 2-word instruction
1111 0100 0101 0110			; 2nd operand holds address of REG2
0010 0100 0000 0000	ADDWF	REG3	; continue code
CASE 2:			
Object Code	Source Code	э	
0110 0110 0000 0000	TSTFSZ	REG1	; is RAM location 0?
1100 0001 0010 0011	MOVFF	REG1, REG2	; Yes
1111 0100 0101 0110			; 2nd operand become
0010 0100 0000 0000	ADDWF	REG3	; continue code

4.8 Lookup Tables

Lookup tables are implemented two ways. These are:

ComputedGOTO Table Reads

4.8.1 COMPUTED GOTO

A computed **GOTO** is accomplished by adding an offset to the program count **ADD** WF PC).

A lookup table can be formed with AdDDWF PCL prinstruction and a group RETLW 0xnn instructions. A WREG is loaded with an offset into the table, before is executing a call to that table. The first instruction of the called routine is the DDWF PCL instruction. The next instruction executed will be one of REFELW 0xnn instructions that returns the value to the calling function.

The offset value (value in WREG) specifies the number of bytes that the program counter should advance.

In this method, only one data byte may be stored in each instruction location and room on the return address stack is required.

4.8.2 TABLE READS/TABLE WRITES

A better method of storing data in program memory allows 2 bytes of data to be stored in each instruction location.

Lookup table data may be stored 2 bytes per program word by using table reads and writes. The table pointer (TBLPTR) specifies the byte address and the table latch (TABLAT) contains the data that is read from, or written to program memory. Data is transferred to/from program memory one byte at a time.

A description of the Table Read/Table Write operation is shown in Section 5.0.

4.13.1 RCON REGISTER

The Reset Control (RCON) register contains flag bits that allow differentiation between the sources of a device RESET. These flags include the TO, PD, POR, BOR and RI bits. This register is readable and writable.

Note 1: If the BOREN configuration bit is set (Brown-out Reset enabled), the BOR bit is '1' on a Power-on Reset. Aft<u>er a Brown-out</u> Reset has occurred, the BOR bit will be clear and must be set by firmware to indicate the occurrence of the next Brownout Reset.

If the BOREN configuration bit is clear (Brown-out Reset disabled), BOR is unknown after Power-on Reset and

REGISTER 4-3: RCON REGISTER

7.1 INTCON Registers

The INTCON Registers are readable and writable registers, which contains various enable, priority, and flag bits.

	bit 7 bit 0
bit 7	GIE/GIEH: Global Interrupt Enable bit <u>When IPEN = 0</u> : 1 = Enables all unmasked interrupts 0 = Disables all interrupts When IPEN = 1
	 1 = Enables all high priority interrupts 0 = Disables all high priority interrupts
bit 6	 PEIE/GIEL: Peripheral Interrupt Enable bit <u>When IPEN = 0</u>: 1 = Enables all unmasked peripheral interrupts 0 = Disables all peripheral interrupts <u>When IPEN = 1</u>: 1 = Enables all low priority peripheral interrupts
bit 5	0 = Disables all low priority peripheral interrupts TMR0IE: TMR0 Overflow Interrupt Enable bit
	 1 = Enables the TMRO overflow interrupt 0 = Disables the TMRO overflow interrupt
bit 4	INTOIE: INTO External Interrupt Enable bit 1 = Enables the INTO external interrupt 0 = Disables the INTO external interrupt
bit 3	RBIE: RB Port Change Interrupt Enable bit 1 = Enables the RB port change interrupt 0 = Disables the RB port change interrupt
bit 2	TMR0IF: TMR0 Overflow Interrupt Flag bit 1 = TMR0 register has overflowed (must be cleared in software) 0 = TMR0 register did not overflow
bit 1	INTOIF: INTO External Interrupt Flag bit 1 = The INTO external interrupt occurred (must be cleared in software) 0 = The INTO external interrupt did not occur
bit O	 RBIF: RB Port Change Interrupt Flag bit 1 = At least one of the RB7:RB4 pins changed state (must be cleared in software) 0 = None of the RB7:RB4 pins have changed state
	Legend:
	R = Readable bit W = Writable bit U = Unimplemented bit, read as O - n = Value at POR reset 1 = Bit is set O = Bit is cleared x = Bit is unknow.

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit, or the global enable bit. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt. This feature allows for software polling.

TABLE 0-3. FURIC FUNCTIONS

Name	Bit#	Buffer Type	Function
RCO/T1OSO/T1CKI	bitO	ST	Input/output port pin or Timer1 oscillator output/Timer1 clock in
RC1/T10SI/CCP2	bit1	ST	Input/output port pin, Timer1 oscillator input, or Capture2 input Compare2 output/PWM output when CCP2MX configuration bit i disabled.
RC2/CCP1	bit2	ST	Input/output port pin or Capture1 input/Compare1 output/ PWM1 output.
RC3/SCK/SCL	bit3	ST	RC3 can also be the synchronous serial clock for both SPI and $\rm I^2\!C$ modes.
RC4/SDI/SDA	bit4	ST	RC4 can also be the SPI Data In (SPI mode) or Data f(COn(bde).
RC5/SDO	bit5	ST	Input/output port pin or Synchronous Serial Port Data output.
RC6/TX/CK	bit6	ST	Input/output port pin, Addressable USART Asynchronous Transmit Addressable USART Synchronous Clock.
RC7/RX/DT	bit7	ST	Input/output port pin, Addressable USART Asynchronous Receive, Addressable USART Synchronous Data.

Legend: ST = Schmitt Trigger input

TABLE 8-6: SUMMARY OF REGISTERS ASSOCIATED WITH PORTC

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O	Value on POR, BOR	Value on all other RESETS
PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RCO	xxxx xxxx u	սսս սսսս
LATC	LATC Data Output Register								xxxx xxxx u	սսս սսսս
TRISC	PORTC Data Direction Register								1111 1111	1111 1111

Legend: x = unknownu = unchanged

8.6 Parallel Slave Port

The Parallel Slave Port is implemented on the 40-pin devices only (PIC18C4X2).

PORTD operates as an 8-bit wide, parallel slave port, or microprocessor port, when control bit PSPMODE (TRISE<4>) is set. It is asynchronously readable and writable by the external world throughc@Dtrol input pin REO/RD and WR control input pin RE1/WR

It can directly interface to an 8-bit microprocessor data bus. The external microprocessor can read or write the PORTD latch as an 8-bit latch. Setting bit PSPMODE enables port pin REO/RDo be the RDnput, RE1/WR to be the WRnput and RE2/CSto be the CS(chip select) input. For this functionality, the corresponding data direction bits of the TRISE register (TRISE<2:0>) must be configured as inputs (set). The A/D port configuration bits PCFG2:PCFGO (ADCON1<2:0>) must be set, which will configure pins RE2:REO as digital I/O.

A write to the PSP occurs when both the not WR lines are first detected low. A read from the PSP occurs when both the Cand RD lines are first detected low.

The PORTE I/O pins become control inputs for the microprocessor port when bit PSPMODE (TRISE<4>) is set. In this mode, the user must make sure that the TRISE<2:O> bits are set (pins are configured as digital inputs), and the ADCON1 is configured for digital I/O. In this mode, the input buffers are TTL.

FIGURE 8-11: PARALLEL SLAVE PORT WRITE WAVEFORMS

	Fo	sc = 40 N	/IHz	Fo	DSC = 20 N	1Hz	Fosc	: = 16 MHz	:	F	Fosc = 1	0 MHz	
BAUD RATE (K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actua I Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K) E	% SI v rror (de	PBRG alue cimal)	Actual Rate (K)	% Error	SPBRG value (decimal	;)
0.3	NA			NA		NA			NA				
1.2	NA			NA		NA			NA				
2.4	NA			NA		NA			NA				
9.6	NA			NA		NA			9.766	+1.7	3 2	255	
19.2	NA			19.53 +	+1.73	255	19.23 +	0.16	207	19.2	3 +0	.16 12	9
76.8	76.92	0	129	76.92	2 +0.16	64	76.92	+0.16	5	1 7	75.76	-1.36	32
96	96.15	0	103	96.15	+0.16	51	95.24	-0.79	4	1 9	96.15	+0.16	25
300	303.03	-0.0	1 32	294.	.1 -1.9	6 16	307.6	9 +2.50	5	12	312.5	+4.17	7
500	500.00	0	19	500	0	9	500	0	7	' !	500	0	4
HIGH	39.06		255	5000		0	4000		0	2500		0	
LOW	10000.00)	0	19.53		255	15.625		255	9.766	5	255	
BALID	Fosc	= 7.1590	9 MHz	Fosc	= 5.0688	MHz	Foso	c = 4 MHz		Fost	c = 3.57	9545 MHz	
BAUD RATE (K)	Fosc Actual Rate (K)	= 7.1590 % Error	9 MHz SPBRG value (decimal)	Fosc Actual Rate (K)	= 5.0688 % Error	MHz SPBRG value decimal)	Fosc Actual Rate (K) E	C = 4 MHz % SF rror v (de	PBRG alue cimal)	Foso Actual Rate (K)	C = 3.579 % Error	9545 MHz SPBRG value (decimal)
BAUD RATE (K)	Fosc Actual Rate (K) NA	= 7.1590 % Error	9 MHz SPBRG value (decimal)	Fosc Actual Rate (K) NA	= 5.0688 % Error (MHz SPBRG value decimal)	Fosc Actual Rate (K) E	c = 4 MHz % SF rror (de	PBRG alue cimal) NA	Foso Actual Rate (K)	C = 3.579 % Error	9545 MHz SPBRG value (decimal	
BAUD RATE (K) 0.3 1.2	Fosc Actual Rate (K) NA NA	= 7.1590 % Error	9 MHz SPBRG value (decimal)	Fosc Actual Rate (K) NA NA	= 5.0688 % Error (MHz SPBRG value (decimal) NA NA	Fosc Actual Rate (K) E	c = 4 MHz % SF rror (de	PBRG alue cimal) NA NA	Foso Actual Rate (K)	© = 3.579 % Error	9545 MHz SPBRG value (decimal)
BAUD RATE (K) 0.3 1.2 2.4	Fosc Actual Rate (K) NA NA NA	= 7.1590 % Error	9 MHz SPBRG value (decimal)	Fosc Actual Rate (K) NA NA NA	= 5.0688 % Error (MHz SPBRG value decimal) NA NA	Fosc Actual Rate (K) E	S = 4 MHz % SF rror (de	PBRG alue cimal) NA NA NA	Foso Actual Rate (K)	C = 3.579 % Error	9545 MHz SPBRG value (decimal)
BAUD RATE (K) 0.3 1.2 2.4 9.6	Fosc Actual Rate (K) NA NA NA 9.622	= 7.1590 % Error +0.23	9 MHz SPBRG value (decimal) 185	Fosc Actual Rate (K) NA NA NA NA 9.6	= 5.0688 % Error (MHz SPBRG value (decimal) NA NA NA 131	Fosc Actual Rate (K) E 9.615	C = 4 MHz % SF rror (de +0.16	PBRG alue cimal) NA NA NA NA	Foso Actual Rate (K)	c = 3.57 % Error	9545 MHz SPBRG value (decimal,	92
BAUD RATE (K) 0.3 1.2 2.4 9.6 19.2	Fosc Actual Rate (K) NA NA NA 9.622 19.24	= 7.1590 % Error +0.23 +0.23	9 MHz SPBRG value (decimal) 185 92	Fosc Actual Rate (K) NA NA NA 9.6 19.2	= 5.0688 <u>%</u> Error (0 0	MHz SPBRG value decimal) NA NA NA 131 65	Fosc Actual Rate (K) E 9.615 19.231	c = 4 MHz % SF v. (de +0.16 +0.16	PBRG alue cimal) NA NA NA 10 5	Foso Actual Rate (K)	C = 3.57 % Error 2.622 9.04	9545 MHz SPBRG value (decimal +0.23 -0.83	92
BAUD RATE (K) 0.3 1.2 2.4 9.6 19.2 76.8	Fosc Actual Rate (K) NA NA 9.622 19.24 77.82	= 7.1590 % Error +0.23 +0.23 +1.32	9 MHz SPBRG value (decimal) 185 92 22	Fosc Actual Rate (K) NA NA NA 9.6 19.2 79.2	= 5.0688 <u>%</u> Error (0 0 + 3.13	MHz SPBRG value (decimal) NA NA NA 131 65 5 15	Fosc Actual Rate EI (K) EI 9.615 19.231 76.923	c = 4 MHz % SF v. (de +0.16 +0.16 3 +0.16	PBRG alue cimal) NA NA NA 1C 5	Foso Actual Rate (K)	2.622 9.04 74.57	9545 MHz SPBRG value (decimal +0.23 -0.83 -2.90	92 46 11
BAUD RATE (K) 0.3 1.2 2.4 9.6 19.2 76.8 96	Fosc Actual Rate (K) NA NA 9.622 19.24 77.82 94.20	= 7.1590 % Error +0.23 +0.23 +1.32 -1.88	9 MHz SPBRG value (decimal) 185 92 22 18	Fosc Actual Rate (K) NA NA NA 9.6 19.2 79.2 97.48	= 5.0688 % Error (0 0 +3.13 +1.54	MHz SPBRG value decimal) NA NA 131 65 3 15 4 12	Fosc Actual Rate (K) E 9.615 19.231 76.923 1000	C = 4 MHz SF vror (de +0.16 +0.16 +0.16 +0.16 +4.17	PBRG alue cimal) NA NA NA 10 5	Foso Actual Rate (K) 03 9 1 1 2 5	2 = 3.57 % Error 9.622 9.04 74.57 29.43	9545 MHz SPBRG value (decimal +0.23 -0.83 -2.90 +3.57	92 46 11 8
BAUD RATE (K) 0.3 1.2 2.4 9.6 19.2 76.8 96 300	Fosc Actual Rate (K) NA NA 9.622 19.24 77.82 94.20 298.3	= 7.1590 % Error +0.23 +0.23 +1.32 -1.88 -0.57	9 MHz SPBRG value (decimal) 185 92 22 18 5	Fosc Actual Rate (K) NA NA 9.6 19.2 79.2 97.48 316.8	= 5.0688 % Error (0 0 +3.13 +1.54 +5.60	MHz SPBRG value decimal) NA NA 131 65 5 15 4 12 0 3	Fosc Actual Rate (K) E 9.615 19.231 76.923 1000 NA	c = 4 MHz % SF (de +0.16 +0.16 +0.16 +0.16 +4.17	PBRG alue cimal) NA NA NA 10 5 1	Fos(Actual Rate (K) 03 9 1 1 2 7 2 9 298.	2 = 3.57 % Error 9.622 9.04 74.57 99.43 3 -0	9545 MHz SPBRG value (decimal +0.23 -0.83 -2.90 +3.57 .57 2	92 46 11 8
BAUD RATE (K) 0.3 1.2 2.4 9.6 19.2 76.8 96 300 500	Fosc Actual Rate (K) NA NA 9.622 19.24 77.82 94.20 298.3 NA	= 7.1590 % Error +0.23 +0.23 +1.32 -1.88 -0.57	9 MHz SPBRG value (decimal) 185 92 22 18 5	Fosc Actual Rate (K) NA NA 9.6 19.2 79.2 97.48 316.8 NA	= 5.0688 % Error (0 0 +3.13 +1.54 +5.60	MHz SPBRG value decimal) NA NA NA 131 65 5 15 5 12 0 3 NA	Fosc Actual Rate (K) E 9.615 19.231 76.923 1000 NA	c = 4 MHz % SF v. (de +0.16 +0.16 3 +0.16 +4.17	PBRG alue cimal) NA NA NA 10 5 1 0 8 NA	Fos(Actual Rate (K) 03 9 1 1 2 5 298.	2.622 9.04 74.57 3 -0	9545 MHz SPBRG value (decimal -0.23 -0.83 -2.90 +3.57 .57 2	92 46 11 8
BAUD RATE (K) 0.3 1.2 2.4 9.6 19.2 76.8 96 300 500 HIGH	Fosc Actual Rate (K) NA NA 9.622 19.24 77.82 94.20 298.3 NA 1789.8	= 7.1590 % Error +0.23 +0.23 +1.32 -1.88 -0.57	9 MHz SPBRG value (decimal) 185 92 22 18 5 5	Fosc Actual Rate (K) NA NA 9.6 19.2 79.2 97.48 316.8 NA 1267	e = 5.0688 % Error (0 0 +3.13 +1.54 +5.60	MHz SPBRG value (decimal) NA NA NA 131 65 5 15 5 12 0 3 NA 0	Fosc Actual Rate E (K) E 9.615 19.231 76.923 1000 NA	c = 4 MHz % SF rror (de +0.16 +0.16 +0.16 +4.17	PBRG alue cimal) NA NA NA 10 5 1 0 NA	Fos Actual Rate (K) 3 9 1 1 2 7 298. 894.9	2.622 9.04 74.57 9.43 3 -0	9545 MHz SPBRG value (decimal -0.83 -2.90 +3.57 .57 2 0	92 46 11 8

TABLE 15-3: BAUD RATES FOR SYNCHRONOUS MODE

	F	osc = 1 N	/Hz	Fosc = 32.768 kHz				
RATE (K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)		
0.3	NA		(0.303	+1.14	26		
1.2	1.202	+0.16	207	1.170	-2.4	8 6		
2.4	2.404	+0.16	103	NA				
9.6	9.615	+0.16	25	NA				
19.2	19.24	+0.16	12	NA				
76.8	83.34	+8.51	2	NA				
96	NA			NA				
300	NA			NA				
500	NA			NA				
HIGH	250		0	8.192		0		
LOW	0.9766		255	0.032		255		

TABLE 15-7: REGISTERS ASSOCIATED WI TH ASYNCHRONOUS RECEPTION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other RESETS
INTCON	GIE/GIEH	PEIE/ GIEL	TMROIE	INTOIE	RBIE	TMROIF	INTOIF	RBIF	0000 000x	0000 000u
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
IPR1	PSPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	0000 0000	0000 0000
RCSTA	SPEN	RX9	SREN (CREN A	DDEN F	err of	RR RX	9D	0000 -00x	0000 -00x
RCREG	JSART Receive Register								0000 0000	0000 0000
TXSTA	CSRC	TX9	TXEN	SYNC		BRGH	TRMT	TX9D	0000 -010	0000 -010
SPBRG	Baud Rate	Generat	or Regist	er					0000 0000	0000 0000

Legend: x = unknown, - = unimplemented locations read as 'O'.

Shaded cells are not used for Asynchronous Reception.

Note 1: The PSPIF, PSPIE and PSPIP bits are reserved on the PIC18C2X2 devices. Always maintain these bits clear.

19.1 Instruction Set

ADDLW	ADD literal to WREG	ADDWF	ADD WREG to f
Syntax:	[label] ADDLW k	Syntax:	[label] ADDWF f [,d [,a] f [,d [,a]
Operands:	0 dk d255	Operands:	0 df d255
Operation:	(WREG) + k o WREG		d [0,1]
Status Affected: Encoding: Description: Words: Cycles: Q Cycle Activity	N,OV, C, DC, Z 0000 1111 kkkk kkk The contents of WREG are added to the 8-bit literal 'k' and the result is placed in WREG. 1 1 1	Operation: Status Affected: Encoding: Description:	a [0,1] (WREG) + (f)o dest N,OV, C, DC, Z 0010 01da ffff fff Add WREG to register 'f'. If 'd' is 0, the result is stored in WREG. If 'd' is 1, the result is stored back in reg- ister 'f' (default). If a is 0, the Access Bank will be selected. If a
Q1	Q2 Q3 Q4		is 1, the BSR is used.
Decode	ReadProcessWrite toliteral 'k'DataWREG	Words: Cycles:	1
<u>Example</u> : Before Instr WREG = After Instru	ADDLW 0x15 uction 0x10 ction	Q Cycle Activity Q1 Decode	/: <u>Q2</u> Q3 Q4 Read Process Write to register 'f' Data destination
WREG =	0x25	Example:	ADDWF REG, 0,0
		Before Instru WREG REG After Instruc WREG REG	uction = 0x17 = 0xC2 ction = 0xD9 = 0xC2

RLNCF	Rotate Left f (no carry)	RRCF	Rotate Right f through Carry
Syntax:	[label] RLNCF f [,d [,a]	Syntax:	[label] RRCF f [,d [,a]
Operands:	O df d255 d [O,1] a [O,1]	Operands:	O df d255 d [O,1] a [O,1]
Operation:	(f <n>)o dest<n+1>, (f<7>) o dest<0></n+1></n>	Operation:	(f <n>)o dest<n-1>, (f<0>) o C,</n-1></n>
Status Affected:	N,Z		(C) o dest<7>
Encoding:	0100 01da ffff ffff	Status Affected:	C,N,Z
Description:	The contents of register 'f' are	Encoding:	0011 00da ffff fff
Words:	rotated one bit to the left. If 'd' is 0, the result is placed in WREG. If 'd' is 1, the result is stored back in reg- ister 'f' (default). If a is 0, the Access Bank will be selected, over- riding the BSR value. If a is 1, then the bank will be selected as per the BSR value (default).	Description:	The contents of register 'f' are rotated one bit to the right through the Carry Flag. If 'd' is 0, the result is placed in WREG. If 'd' is 1, the result is placed back in register 'f' (default). If a is 0, the Access Bank will be selected, overriding the BSR value. If a is 1, then the bank will be selected as per the BSR value (default).
Cycles:	1	Words:	1
Q Cycle Activity:	02 02 04	Cycles:	1
Decode	020304ReadProcessWrite toregister 'f'Datadestination	Q Cycle Activity Q1	2 Q3 Q4 Read Process Write to
Example:	RLNCF REG, 1, 0	200000	register 'f' Data destination
Before Instru REG After Instruc REG	action = 1010 1011 tion = 0101 0111	Example: Before Instru REG C	RRCF REG, 0, 0 uction = 1110 0110 = 0

TBL	BLRD Table Read								
Synt	tax:	[label]	TBLRD(*	*; *+; *-;	+*)				
Ope	rands:	None							
Ope	ration:	 n: if TBLRD *, (Prog Mem (TBLPTR)) o TABLAT; TBLPTR - No Change; if TBLRD *+, (Prog Mem (TBLPTR)) o TABLAT; (TBLPTR) +1 o TBLPTR; if TBLRD *-, (Prog Mem (TBLPTR)) o TABLAT; (TBLPTR) -1 o TBLPTR; if TBLRD +*, (TBLPTR) +1 o TBLPTR; if TBLRD +*, (TBLPTR) +1 o TBLPTR; (Prog Mem (TBLPTR)) o TABLAT; 							
Stat	us Affecte	ed: None							
Enco	oding:	0000	0000	0000	10nn nn=0 * =1 *+ =2 *- =3 +*				
Des	cription:	This instr contents of address th pointer ca is used. The TBLPT to each by TBLPTR ha TBLPTR Byte of TBLPT Byte of	This instruction is used to read the contents of Program Memory (P.M.). To address the program memory, a pointer called Table Pointer (TBLPTR) is used. The TBLPTR (a 21-bit pointer) points to each byte in the program memory. TBLPTR has a 2 Mbyte address range. TBLPTR[O] = 0:Least Significant Byte of Program Memory Word TBLPTR[O] = 1:Most Significant Byte of Program Memory Word						
The TBLRD instruction can modify the value of TBLPTR as follows:									
		no chan	ge						
post-increment post-decrement									
Wor	ds:	1							
Cycl	es:	2							
QC	ycle Activ	ity:							
	Q1	Q2	Q3	C	4				
	Decode	No operation	No operation	No opera	o ation				
	No operation	No operation (Read Program Memory)	No operation	No opera (Wr TABL	o ation rite AT)				

TBLRD	Table Read (cont'd)				
<u>Example 1</u> :	TBLRD *+;				
Before Instru TABLAT TBLPTR MEMORY After Instruc	uction (0x00A356) :tion	= = =	0x55 0x00A356 0x34		
TABLAT TBLPTR		= =	0x34 0x00A357		
Example 2	TBLRD +*;				
Before Instru TABLAT TBLPTR MEMORY MEMORY	uction (0x01A357) (0x01A358)	= = =	0xAA 0x01A357 0x12 0x34		
After Instruc TABLAT TBLPTR	tion	= =	0x34 0x01A358		

20.13 PICDEM 3 Low Cost PIC16CXXX Demonstration Board

The PICDEM 3 demonstration board is a simple demonstration board that supports the PIC16C923 and PIC16C924 in the PLCC package. It will also support future 44-pin PLCC microcontrollers with an LCD Module. All the necessary hardware and software is included to run the basic demonstration programs. The user can program the sample microcontrollers provided with the PICDEM 3 demonstration board on a PRO MATE II device programmer, or a PICSTART Plus development programmer with an adapter socket, and easily test firmware. The MPLAB ICE in-circuit emulator may also be used with the PICDEM 3 demonstration board to test firmware. A prototype area has been provided to the user for adding hardware and connecting it to the microcontroller socket(s). Some of the features include a RS-232 interface, push button switches, a potentiometer for simulated analog input, a thermistor and separate headers for connection to an external LCD module and a keypad. Also provided on the PICDEM 3 demonstration board is a LCD panel, with 4 commons and 12 segments, that is capable of displaying time, temperature and day of the week. The PICDEM 3 demonstration board provides an additional RS-232 interface and Windows software for showing the demultiplexed LCD signals on a PC. A simple serial interface allows the user to construct a hardware demultiplexer for the LCD signals.

20.14 PICDEM 17 Demonstration Board

The PICDEM 17 demonstration board is an evaluation board that demonstrates the capabilities of several Microchip microcontrollers, including PIC17C752, PIC17C756A, PIC17C762 and PIC17C766. All necessary hardware is included to run basic demo programs, which are supplied on a 3.5-inch disk. A programmed sample is included and the user may erase it and program it with the other sample programs using the PRO MATE II device programmer, or the PICSTART Plus development programmer, and easily debug and test the sample code. In addition, the PICDEM 17 demonstration board supports downloading of programs to and executing out of external FLASH memory on board. The PICDEM 17 demonstration board is also usable with the MPLAB ICE in-circuit emulator, or the PICMASTER emulator and all of the sample programs can be run and modified using either emulator. Additionally, a generous prototype area is available for user hardware.

20.15 KEELOQ Evaluation and Programming Tools

KEE LOQ evaluation and programming tools support Microchip s HCS Secure Data Products. The HCS evaluation kit includes a LCD display to show changing codes, a decoder to decode transmissions and a programming interface to program test transmitters.

NOTES:

TABLE 21-10: PARALLEL SLAVE PORT REQUIREMENTS (PIC18C4X2)

Param. No.	Symbol	Characteristic		Min	Max L	Inits	Conditions	
62	TdtV2wrH	I Data in valid before WMBr CS (setup time)	ŝn	20 25		ns ns	Extended Temp. Range	
63	TwrH2dtl	WRnor CS nto data in invalio	PIC18CXXX	20		ns		
		(hold time)	PIC18LCXXX	35		ns		
64	TrdL2dtV	RDpand CS pto data out valid			80	ns		
					90	ns	Extended Temp. Range	
65	TrdH2dtI	RDnor CS nto data out invalid		10	30) ns		
66	TibfINH	Inhibit of the IBF flag bit being cleared from \overline{WR} nor $\overline{CS}n$		m	ЗТ сү			

FIGURE 22-7: TYPICAL I DD vs. Fosc OVER VDD (LP MODE)

DS39026D-page 266

FIGURE 22-9: TYPICAL AND MAXIMUM I DD vs. VDD (TIMER1 AS MAIN OSCILLATOR, 32.768 kHz, C = 47 pF)

28-Lead Plastic Small Outline (SO) - Wide, 300 mil (SOIC)

Note: For the most current package drawings, please see the Microchip Packaging Specification Ic at http://www.microchip.com/packaging

4

.013

.020

15

15

0.23

0.36

0

0

0.28

0.42

12

12

0.33

0.5

15

15

.011

.017

12

12

ALL THERE

Mold Draft Angle Top Mold Draft Angle Bottom

* Controlling Parameter

§ Significant Characteristic

Notes:

Pitch

Standoff §

Overall Width

Foot Length

Lead Width

Lead Thickness

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010 (0.254mm) per side. JEDEC Equivalent: MS-013

С

.009

.014

0

0

С

В

D

Ε

Drawing No. C04-052

Α2

40-Lead Plastic Dual In-line (P) - 600 mil (PDIP)

	Units	INCHES*			MILLIMETERS		
Dimension	Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		40			40	
Pitch	р		.100			2.54	
Top to Seating Plane	Α	.160	.175	.190	4.06	4.45	4.83
Molded Package Thickness	A2	.140	.150	.160	3.56	3.81	4.06
Base to Seating Plane	A1	.015			0.38		
Shoulder to Shoulder Width	E	.595	.600	.625	15.11	15.24	15.88
Molded Package Width	E1	.530	.545	.560	13.46	13.84	14.22
Overall Length	D	2.045	2.058	2.065	51.94	52.26	52.45
Tip to Seating Plane	L	.120	.130	.135	3.05	3.30	3.43
Lead Thickness	С	.008	.012	.015	0.20	0.29	0.38
Upper Lead Width	B1	.030	.050	.070	0.76	1.27	1.78
Lower Lead Width	В	.014	.018	.022	0.36	0.46	0.56
Overall Row Spacing §	eB	.620	.650	.680	15.75	16.51	17.27
Mold Draft Angle Top	D	5	10	15	5	10	15
Mold Draft Angle Bottom	E	5	10	15	5	10	15

* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010 (0.254mm) per side.

JEDEC Equivalent: MO-011

Drawing No. CO4-016