

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	33
Program Memory Size	16KB (8K x 16)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lc442t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.6 Oscillator Switching Feature

The PIC18CXX2 devices include a feature that allows the system clock source to be switched from the main oscillator to an alternate low frequency clock source. For the PIC18CXX2 devices, this alternate clock source is the Timer1 oscillator. If a low frequency crystal (32 kHz, for example) has been attached to the Timer1 oscillator pins and the Timer1 oscillator has

FIGURE 2-7: DEVICE CLOCK SOURCES

PIC18CXXX Main Oscillator OSC2 Tosc/4 4 x PLL SLEEP Tosc TSCLK OSC1 MUX Timer1 Oscillator TT1P T1OSO T1OSCEN Clock Enable T1OSI Source Oscillator Clock Source option for other modules

2.6.1 SYSTEM CLOCK SWITCH BIT

The system clock source switching is performed under software control. The system clock switch bit, SCS (OSCCON<0>) controls the clock switching. When the SCS bit is'0', the system clock source comes from the main oscillator that is selected by the FOSC configuration bits in Configuration Register1H. When the SCS bit is set, the system clock source will come from the Timer1 oscillator. The SCS bit is cleared on all forms of RESET. Note: The Timer1 oscillator must be enabled and operating to switch the system clock source. The Timer1 oscillator is enabled by setting the T1OSCEN bit in the Timer1 control register (T1CON). If the Timer1 oscillator is not enabled, then any write to the SCS bit will be ignored (SCS bit forced cleared) and the main oscillator will continue to be the system clock source.

been enabled, the device can switch to a low power execution mode. Figure 2-7 shows a block diagram of

the system clock sources. The clock switching feature

is enabled by programming the Oscillator Switching

Enable (OSCSEN) bit in Configuration Register1H to a

'0'. Clock switching is disabled in an erased device.

See Section 9.0 for further details of the Timer1 oscilla-

tor. See Section 18.0 for Configuration Register details.

REGISTER 2-1: OSCCON REGISTER

- bit 7-1 Unimplemented: Read as '0'
- bit 0
 SCS: System Clock Switch bit
 When OSCSEN configuration bit = '0' and T1OSCEN bit is set:
 1 = Switch to Timer1 oscillator/clock pin
 0 = Use primary oscillator/clock input pin
 When OSCSEN and T1OSCEN are in other states:
 bit is forced clear
 Legend:
 R = Readable bit
 W = Writable bit
 U = Unimplemented bit, read as '0'

- n = Value at POR res	set '1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

2.6.2 OSCILLATOR TRANSITIONS

The PIC18CXX2 devices contain circuitry to prevent "glitches" when switching between oscillator sources. Essentially, the circuitry waits for eight rising edges of the clock source that the processor is switching to. This ensures that the new clock source is stable and that it's pulse width will not be less than the shortest pulse width of the two clock sources.

A timing diagram indicating the transition from the main oscillator to the Timer1 oscillator is shown in Figure 2-8. The Timer1 oscillator is assumed to be running all the time. After the SCS bit is set, the processor is frozen at the next occurring Q1 cycle. After eight synchronization cycles are counted from the Timer1 oscillator, operation resumes. No additional delays are required after the synchronization cycles.

Q1 Q2 Q3 Q4 Q1 Q2 Q3 T1OSI	ATOR
T1OSITT1P OSC1TOSC InternalTOSC Vstem Clock SCS (OSCCON<0> Program PCPC + 2PC + 4	
T10SI 1 2 3 4 5 6 7 8 OSC1	Q4 Q1
OSC1TOSC InternalTOLY System Clock SCS (OSCCON<0>) Program PC PC + 2 PC + 4	$ \ \ \ \ \ \ \ \ \ \ \ \ \ $
Internal	· · ·
System Clock SCS (OSCCON<0>) Program PC X PC+2 X PC+4	
(OSCCON<0>) Program PC X PC + 2 Y PC + 4	/ _/ \ !
Program PC X PC+2 V PC+4	
Counter	
Note 1: Delay on internal system clock is eight oscillator cycles for synchronization.	• •

The sequence of events that takes place when switching from the Timer1 oscillator to the main oscillator will depend on the mode of the main oscillator. In addition to eight clock cycles of the main oscillator, additional delays may take place. If the main oscillator is configured for an external crystal (HS, XT, LP), then the transition will take place after an oscillator start-up time (Tost) has occurred. A timing diagram indicating the transition from the Timer1 oscillator to the main oscillator for HS, XT and LP modes is shown in Figure 2-9.

Register	Applicable Devices		Power-on Reset, Brown-out Reset	MCLR Resets WDT Reset RESET Instruction Stack Resets	Wake-up via WDT or Interrupt			
TRISE	242	442	252	452	0000 -111	0000 -111	uuuu -uuu	
TRISD	242	442	252	452	1111 1111	1111 1111	uuuu uuuu	
TRISC	242	442	252	452	1111 1111	1111 1111	uuuu uuuu	
TRISB	242	442	252	452	1111 1111	1111 1111	uuuu uuuu	
TRISA ^(5, 7)	242	442	252	452	-111 1111 (5)	-111 1111 (5)	-uuu uuuu (5)	
LATE	242	442	252	452	xxx	uuu	uuu	
LATD	242	442	252	452	xxxx xxxx	սսսս սսսս	uuuu uuuu	
LATC	242	442	252	452	xxxx xxxx	uuuu uuuu	uuuu uuuu	
LATB	242	442	252	452	xxxx xxxx	uuuu uuuu	uuuu uuuu	
LATA ^(5, 7)	242	442	252	452	-xxx xxxx(5)	-uuu uuuu (5)	-uuu uuuu (5)	
PORTE	242	442	252	452	000	000	uuu	
PORTD	242	442	252	452	xxxx xxxx	uuuu uuuu	uuuu uuuu	
PORTC	242	442	252	452	XXXX XXXX	սսսս սսսս	uuuu uuuu	
PORTB	242	442	252	452	xxxx xxxx	uuuu uuuu	uuuu uuuu	
PORTA ^(5, 7)	242	442	252	452	-x0x 0000 (5)	-u0u 0000 (5)	-uuu uuuu ⁽⁵⁾	

TABLE 3-3: INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition

Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).

3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.

4: See Table 3-2 for RESET value for specific condition.

5: Bit 6 of PORTA, LATA, and TRISA are enabled in ECIO and RCIO oscillator modes only. In all other oscillator modes, they are disabled and read '0'.

6: The long write enable is only reset on a POR or \overline{MCLR} Reset.

7: Bit 6 of PORTA, LATA and TRISA are not available on all devices. When unimplemented, they are read as '0'.

5.2.3 INTERRUPTS

The long write must be terminated by a RESET or any interrupt.

The interrupt source must have its interrupt enable bit set. When the source sets its interrupt flag, programming will terminate. This will occur, regardless of the settings of interrupt priority bits, the GIE/GIEH bit, or the PIE/GIEL bit. Depending on the states of interrupt priority bits, the GIE/GIEH bit or the PIE/GIEL bit, program execution can either be vectored to the high or low priority Interrupt Service Routine (ISR), or continue execution from where programming commenced.

In either case, the interrupt flag will not be cleared when programming is terminated and will need to be cleared by the software.

TABLE 5-2: LONG WRITE EXECUTION, INTERRUPT ENABLE BITS AND INTERRUPT RESULTS

GIE/ GIEH	PIE/ GIEL	Priority	Interrupt Enable	Interrupt Flag	Action		
Х	Х	х	0 (default)	Х	Long write continues even if interrupt flag becomes set.		
х	х	х	1 0		Long write continues, will resume operations when the interrupt flag is set.		
0 (default)	0 (default)	х	1	1	Terminates long write, executes next instruction. Interrupt flag not cleared.		
0 (default)	1	1 high priority (default)	1	1	Terminates long write, executes next instruction. Interrupt flag not cleared.		
1	0 (default)	0 Iow	1	1	Terminates long write, executes next instruction. Interrupt flag not cleared.		
0 (default)	1	0 Iow	1	1	Terminates long write, branches to low priority interrupt vector. Interrupt flag can be cleared by ISR.		
1	0 1 (default) (default) 1		1	Terminates long write, branches to high priority interrupt vector. Interrupt flag can be cleared by ISR.			

5.2.4 UNEXPECTED TERMINATION OF WRITE OPERATIONS

If a write is terminated by an unplanned event such as loss of power, an unexpected RESET, or an interrupt that was not disabled, the memory location just programmed should be verified and reprogrammed if needed.

EXAMPLE 6-3: 16 x 16 UNSIGNED MULTIPLY ROUTINE

	MOVF	ARG1L,	W		
	MULWF	ARG2L		;	ARG1L * ARG2L ->
				;	PRODH: PRODL
	MOVFF	PRODH,	RES1	;	
	MOVFF	PRODL,	RES0	;	
;					
	MOVF	ARG1H,	W		
	MULWF	ARG2H		;	ARG1H * ARG2H ->
				;	PRODH: PRODL
	MOVFF	PRODH,	RES3	;	
	MOVFF	PRODL,	RES2	;	
;					
	MOVF	ARG1L,	W		
	MULWF	ARG2H		;	ARG1L * ARG2H ->
				;	PRODH: PRODL
	MOVF	PRODL,	W	;	
	ADDWF	RES1,	F	;	Add cross
	MOVF	PRODH,	W	;	products
	ADDWFC	RES2,	F	;	
	CLRF	WREG,	F	;	
	ADDWFC	RES3,	F	;	
;					
	MOVF	ARG1H,	W	;	
	MULWF	ARG2L		;	ARG1H * ARG2L ->
				;	PRODH: PRODL
	MOVF	PRODL,	W	;	
	ADDWF	RES1,		;	Add cross
	MOVF	PRODH,	W	;	products
	ADDWFC	RES2,	F	;	
	CLRF	WREG,	F	;	
	ADDWFC	RES3,	F	;	

Example 6-4 shows the sequence to do a 16 x 16 signed multiply. Equation 6-2 shows the algorithm used. The 32-bit result is stored in four registers, RES3:RES0. To account for the sign bits of the arguments, each argument pairs' Most Significant bit (MSb) is tested and the appropriate subtractions are done.

EQUATION 6-2: 16 x 16 SIGNED MULTIPLICATION ALGORITHM

RES3:RES0

= ARG1H:ARG1L • ARG2H:ARG2L = (ARG1H • ARG2H • 2¹⁶)+ (ARG1H • ARG2L • 2⁸)+ (ARG1L • ARG2L • 2⁸)+ (ARG1L • ARG2L)+ (-1 • ARG2L

```
(-1 \bullet ARG1H < 7 > \bullet ARG2H: ARG2L \bullet 2^{16})
```

EXAMPLE 6-4: 16 x 16 SIGNED MULTIPLY ROUTINE

	MOVF	ARG1L, V	W		
	MULWF	ARG2L		;	ARG1L * ARG2L ->
				;	PRODH: PRODL
	MOVFF	PRODH, H	RES1	;	
	MOVFF	PRODL, H	RESO	;	
;					
	MOVF	ARG1H, V	W		
	MULWF	ARG2H		;	ARG1H * ARG2H ->
					PRODH: PRODL
	MOVFF	PRODH, H	RES3	;	
	MOVFF	PRODL, H			
;		111022, 1		'	
'	MOVF	ARG1L, V	TAT		
	MULWF	ARG11, ARG2H			ARG1L * ARG2H ->
	HOLWI	AICOZII			PRODH: PRODL
	MOVF	ז זמספת	T		PRODITIPRODE
	ADDWF	PRODL, N RES1, N		;	Add cross
	MOVF	PRODH, V			products
	ADDWFC	RES2, I		;	
	CLRF	WREG, I		;	
	ADDWFC	RES3, I	F.	;	
;	MOTE	100111			
	MOVF	ARG1H, V	W	;	
	MULWF	ARG2L			ARG1H * ARG2L ->
					PRODH: PRODL
	MOVF	PRODL, V		;	
	ADDWF	RES1, I			Add cross
	MOVF	PRODH, V		;	products
	ADDWFC	RES2, F		;	
	CLRF	WREG, F		;	
	ADDWFC	RES3, F		;	
;					
	BTFSS			;	ARG2H:ARG2L neg?
	BRA	SIGN_ARG		;	no, check ARG1
	MOVF	ARG1L, V	W	;	
	SUBWF	RES2		;	
	MOVF	ARG1H, V	W	;	
	SUBWFB	RES3			
;					
SI	GN_ARG1				
	BTFSS	ARG1H,			ARG1H:ARG1L neg?
	BRA	CONT_COI	DE	;	no, done
	MOVF	ARG2L, V	W	;	
	SUBWF	RES2		;	
	MOVF	ARG2H, V	W	;	
	SUBWFB	RES3			
;					
CO	NT_CODE				
	:				

7.5 RCON Register

The RCON register contains the bit which is used to enable prioritized interrupts (IPEN).

- n = Value at POR reset

REGISTER 7-10: RCON REGISTER

	R/W-0	R/W-0	U-0	R/W-1	R-1	R-1	R/W-0	R/W-0		
	IPEN	LWRT		RI	TO	PD	POR	BOR		
	bit 7							bit 0		
bit 7	IPEN: Interrupt Priority Enable bit									
	 1 = Enable priority levels on interrupts 0 = Disable priority levels on interrupts (16CXXX compatibility mode) 									
bit 6	LWRT: Long Write Enable bit									
	For details of bit operation, see Register 4-3									
bit 5	Unimplemented: Read as '0'									
bit 4	RI: RESET Instruction Flag bit									
	For details of bit operation, see Register 4-3									
bit 3	TO: Watchdog Time-out Flag bit									
	For details of bit operation, see Register 4-3									
bit 2	PD: Power-down Detection Flag bit									
	For details of bit operation, see Register 4-3									
bit 1	POR: Power-on Reset Status bit									
	For details of bit operation, see Register 4-3									
bit 0	BOR: Brown-out Reset Status bit									
	For details of bit operation, see Register 4-3									
	Logondi]		
	Legend:							01		
	R = Reada	adie dit	vv = vvr	itable bit	U = Unimp	plemented	bit, read as '	U		

'0' = Bit is cleared

'1' = Bit is set

x = Bit is unknown

8.3 PORTC, TRISC and LATC Registers

PORTC is an 8-bit wide, bi-directional port. The corresponding Data Direction Register is TRISC. Setting a TRISC bit (= 1) will make the corresponding PORTC pin an input (i.e., put the corresponding output driver in a Hi-Impedance mode). Clearing a TRISC bit (= 0) will make the corresponding PORTC pin an output (i.e., put the contents of the output latch on the selected pin).

Note:	On a Power-on Reset, these pins are con-
	figured as digital inputs.

The Data Latch register (LATC) is also memory mapped. Read-modify-write operations on the LATC register reads and writes the latched output value for PORTC.

PORTC is multiplexed with several peripheral functions (Table 8-5). PORTC pins have Schmitt Trigger input buffers.

When enabling peripheral functions, care should be taken in defining TRIS bits for each PORTC pin. Some peripherals override the TRIS bit to make a pin an output, while other peripherals override the TRIS bit to make a pin an input. The user should refer to the corresponding peripheral section for the correct TRIS bit settings. The pin override value is not loaded into the TRIS register. This allows read-modify-write of the TRIS register, without concern due to peripheral overrides.

RC1 is normally configured by the configuration bit CCP2MX as the default peripheral pin for the CCP2 module (default/erased state, CCP2MX = '1').

EXAMPLE 0-3: INITIALIZING PURIC	XAMPLE 8-3:	INITIALIZING PORTC
---------------------------------	-------------	--------------------

CLRF	PORTC	; Initialize PORTC by
		; clearing output
		; data latches
CLRF	LATC	; Alternate method
		; to clear output
		; data latches
MOVLW	0xCF	; Value used to
		; initialize data
		; direction
MOVWF	TRISC	; Set RC<3:0> as inputs
		; RC<5:4> as outputs
		; RC<7:6> as inputs

FIGURE 8-7: PORTC BLOCK DIAGRAM (PERIPHERAL OUTPUT OVERRIDE)

3: Peripheral Output Enable is only active if peripheral select is active.

12.0 TIMER3 MODULE

The Timer3 module timer/counter has the following features:

- 16-bit timer/counter (two 8-bit registers: TMR3H and TMR3L)
- Readable and writable (both registers)
- Internal or external clock select
- Interrupt-on-overflow from FFFFh to 0000h
- Reset from CCP module trigger

Figure 12-1 is a simplified block diagram of the Timer3 module.

Register 12-1 shows the Timer3 control register. This register controls the operating mode of the Timer3 module and sets the CCP clock source.

Register 10-1 shows the Timer1 control register. This register controls the operating mode of the Timer1 module, as well as contains the Timer1 oscillator enable bit (T1OSCEN), which can be a clock source for Timer3.

REGISTER 12-1: T3CON: TIMER3 CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
RD16	T3CCP2	T3CKPS1	T3CKPS0	T3CCP1	T3SYNC	TMR3CS	TMR3ON
bit 7							bit 0

bit 7	RD16: 16-bit Read/Write M 1 = Enables register Read/		e 16-bit operation	
	0 = Enables register Read/	Write of Timer3 in two	8-bit operations	
bit 6-3	T3CCP2:T3CCP1: Timer3	and Timer1 to CCPx B	Enable bits	
	1x = Timer3 is the clock so 01 = Timer3 is the clock so Timer1 is the clock so 00 = Timer1 is the clock so	urce for compare/cap ource for compare/cap	ture of CCP2, ture of CCP1	
bit 5-4	T3CKPS1:T3CKPS0: Time	r3 Input Clock Presca	le Select bits	
	11 = 1:8 Prescale value 10 = 1:4 Prescale value 01 = 1:2 Prescale value 00 = 1:1 Prescale value			
bit 2	T3SYNC: Timer3 External ((Not usable if the system clWhen TMR3CS = 1:1 = Do not synchronize external cl0 = Synchronize external cl	ock comes from Time ernal clock input		
	When TMR3CS = 0:			
	This bit is ignored. Timer3 u	uses the internal clock	when TMR3CS = 0.	
bit 1	TMR3CS: Timer3 Clock So	urce Select bit		
	 1 = External clock input from (on the rising edge after 0 = Internal clock (Fosc/4) 			
bit 0	TMR3ON: Timer3 On bit			
	1 = Enables Timer3 0 = Stops Timer3			
	Legend:			
	R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
	- n = Value at POR reset	'1' = Bit is set	'0' = Bit is cleared x = Bit is unkr	nown

14.3.4 MASTER MODE

The master can initiate the data transfer at any time because it controls the SCK. The master determines when the slave (Processor 2, Figure 14-2) is to broad-cast data by the software protocol.

In Master mode, the data is transmitted/received as soon as the SSPBUF register is written to. If the SPI is only going to receive, the SDO output could be disabled (programmed as an input). The SSPSR register will continue to shift in the signal present on the SDI pin at the programmed clock rate. As each byte is received, it will be loaded into the SSPBUF register as if a normal received byte (interrupts and status bits appropriately set). This could be useful in receiver applications as a "Line Activity Monitor" mode.

The clock polarity is selected by appropriately programming the CKP bit (SSPCON1<4>). This then, would give waveforms for SPI communication as shown in Figure 14-3, Figure 14-5, and Figure 14-6, where the MSB is transmitted first. In Master mode, the SPI clock rate (bit rate) is user programmable to be one of the following:

- Fosc/4 (or Tcy)
- Fosc/16 (or 4 Tcy)
- Fosc/64 (or 16 Tcy)
- Timer2 output/2

This allows a maximum data rate (at 40 MHz) of 10.00 Mbps.

Figure 14-3 shows the waveforms for Master mode. When the CKE bit is set, the SDO data is valid before there is a clock edge on SCK. The change of the input sample is shown based on the state of the SMP bit. The time when the SSPBUF is loaded with the received data is shown.

The analog reference voltage is software selectable to either the device's positive and negative supply voltage (VDD and VSS) or the voltage level on the RA3/AN3/ VREF+ pin and RA2/AN2/VREF-.

The A/D converter has a unique feature of being able to operate while the device is in SLEEP mode. To operate in SLEEP, the A/D conversion clock must be derived from the A/D's internal RC oscillator.

The output of the sample and hold is the input into the converter, which generates the result via successive approximation.

A device RESET forces all registers to their RESET state. This forces the A/D module to be turned off and any conversion is aborted.

Each port pin associated with the A/D converter can be configured as an analog input (RA3 can also be a voltage reference) or as a digital I/O.

The ADRESH and ADRESL registers contain the result of the A/D conversion. When the A/D conversion is complete, the result is loaded into the ADRESH/ ADRESL registers, the GO/DONE bit (ADCON0<2>) is cleared, and A/D interrupt flag bit ADIF is set. The block diagram of the A/D module is shown in Figure 16-1.

FIGURE 16-1: A/D BLOCK DIAGRAM

16.4 A/D Conversions

Figure 16-3 shows the operation of the A/D converter after the GO bit has been set. Clearing the GO/DONE bit during a conversion will abort the current conversion. The A/D result register pair will NOT be updated with the partially completed A/D conversion sample. That is, the ADRESH:ADRESL registers will continue to contain the value of the last completed conversion (or the last value written to the ADRESH:ADRESL registers). After the A/D conversion is aborted, a 2TAD wait is required before the next acquisition is started. After this 2TAD wait, acquisition on the selected channel is automatically started.

Note: The GO/DONE bit should NOT be set in the same instruction that turns on the A/D.

16.5 Use of the CCP2 Trigger

An A/D conversion can be started by the "special event trigger" of the CCP2 module. This requires that the CCP2M3:CCP2M0 bits (CCP2CON<3:0>) be programmed as 1011 and that the A/D module is enabled (ADON bit is set). When the trigger occurs, the GO/ DONE bit will be set, starting the A/D conversion and the Timer1 (or Timer3) counter will be reset to zero. Timer1 (or Timer3) is reset to automatically repeat the A/D acquisition period with minimal software overhead (moving ADRESH/ADRESL to the desired location). The appropriate analog input channel must be selected and the minimum acquisition done before the "special event trigger" sets the GO/DONE bit (starts a conversion).

If the A/D module is not enabled (ADON is cleared), the "special event trigger" will be ignored by the A/D module, but will still reset the Timer1 (or Timer3) counter.

	TAD TAD1	l				TAD6						
TT	b 9	b8	b7	b6	b5	b4	b3	b2	b1	b0	b0	
	Conver	sion St	arts									
Hole	ding capa	citor is	discon	nected	trom a	inalog i	nput (t	ypically	[,] 100 n	s)		
Set C	GO bit			Ţ								

FIGURE 16-3: A/D CONVERSION TAD CYCLES

Byte-oriented file register operations	Example Instruction
15 10 9 8 7 0	
OPCODE d a f (FILE #) d = 0 for result destination to be WREG register d = 1 for result destination to be file register (f) a = 0 to force Access Bank a = 1 for BSR to select bank f = 8-bit file register address	ADDWF MYREG, W, B
-	
Byte to Byte move operations (2-word) 15 12 11 0 OPCODE f (Source FILE #) 15 12 11 0	MOVFF MYREG1, MYREG2
1111f (Destination FILE #)f = 12-bit file register address	
Bit-oriented file register operations	
15 12 11 9 8 7 0 OPCODE b (BIT #) a f (FILE #)	BSF MYREG, bit, B
 b = 3-bit position of bit in file register (f) a = 0 to force Access Bank a = 1 for BSR to select bank f = 8-bit file register address 	
Literal operations	
15 8 7 0	
OPCODE k (literal) k = 8-bit immediate value	MOVLW 0x7F
Control operations	
CALL, GOTO and Branch operations 15 8 7 0	
OPCODE n<7:0> (literal)	GOTO Label
15 12 11 0	
1111 n<19:8> (literal)	
n = 20-bit immediate value	
15 8 7 0	
OPCODE S n<7:0> (literal)	CALL MYFUNC
15 12 11 0	
n<19:8> (literal) S = Fast bit	
15 11 10 0 OPCODE n<10:0> (literal) 0	BRA MYFUNC
15 8 7 0	
OPCODE n<7:0> (literal)	BC MYFUNC

ANDWF	AND WRE	EG with f		BC	Branch if	Carry	
Syntax:	[<i>label</i>] A	NDWF f[,d [,a]	Syntax:	[<i>label</i>] B	C n	
Operands:	$0 \le f \le 255$	5		Operands:	-128 ≤ n ≤	127	
	d ∈ [0,1] a ∈ [0,1]		Operation:	if carry bit (PC) + 2	is '1' $2 + 2n \rightarrow PC$;	
Operation:	(WREG) .	AND. (f) \rightarrow d	est	Status Affected	I: None		
Status Affected:	N,Z		Encoding:	1110	0010 nn	nn nnnn	
Encoding:	0001 01da ffff ffff			Description:	If the Carr	y bit is '1', th	nen the pro-
Description:	The contents of WREG are AND'ed with register 'f'. If 'd' is 0, the result is stored in WREG. If 'd' is 1, the result is stored back in register 'f' (default). If 'a' is 0, the Access Bank will be selected. If 'a' is 1, the BSR will not be overridden (default).		Words:	added to t have incre instructior PC+2+2n	omplement n he PC. Sind emented to f n, the new ac	umber '2n' is ce the PC will etch the next ddress will be ction is then n.	
Words:	1			Cycles:	1(2)		
Cycles:	1			Q Cycle Activi			
Q Cycle Activity:				If Jump:			
Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
Decode	Read register 'f'	Process Data	Write to destination	Decode	Read literal 'n'	Process Data	Write to PC
Example:	ANDWF	REG, 0, 0		No operation	No operation	No operation	No operation
Before Instru				If No Jump:			
WREG	$= 0 \times 17$			Q1	Q2	Q3	Q4
REG	= 0x17 = 0xC2			Decode	Read literal 'n'	Process	No
After Instruct	ion				П	Data	operation
WREG REG	= 0x02 = 0xC2			Example:	HERE	BC 5	
				Before Ins		ldress (HER) ()
				PC	= au	luress (ner	LE)

If Carry PC If Carry PC

= = = l; address (HERE+12) 0; address (HERE+2)

CLR	F	Clear f	CLRWDT	Clear Watchdog Timer
Synt	ax:	[<i>label</i>] CLRF f [,a]	Syntax:	[label] CLRWDT
Ope	rands:	$0 \leq f \leq 255$	Operands:	None
		a ∈ [0,1]	Operation:	$000h \rightarrow WDT$,
Ope	ration:	$000h \rightarrow f$		$000h \rightarrow WDT$ postscaler,
•		$1 \rightarrow Z$		$1 \rightarrow \underline{TO},$ $1 \rightarrow \overline{PD}$
	us Affected:	Z	Status Affected:	TO, PD
	oding:	0110 101a ffff ffff	Encoding:	0000 0000 0000 0100
Des	cription:	Clears the contents of the specified	U U	CLRWDT instruction resets the
		register. If 'a' is 0, the Access Bank will be selected, overriding the BSR	Description:	Watchdog Timer. It also resets the
		value. If 'a' = 1, then the bank will		postscaler of the WDT. Status bits
		be selected as per the BSR value		TO and PD are set.
		(default).	Words:	1
Wor		1	Cycles:	1
Cycl	es:	1	Q Cycle Activity:	:
QC	Cycle Activity:		Q1	Q2 Q3 Q4
	Q1	Q2 Q3 Q4 Read Process Write	Decode	No Process No operation Data operation
	Decode	Read Process Write register 'f' Data register 'f'		
	L I		Example:	CLRWDT
<u>Exa</u>	<u>mple</u> :	CLRF FLAG_REG,1	Before Instru	uction
	Before Instru	iction	WDT cou	unter = ?
	FLAG_RE		After Instruct	
	After Instruct		WDT COU WDT Pos	unter = 0×00 stscaler = 0
	LUVQ_KE		TO PD	= 1 = 1
			ЕD	= 1

INC	FSZ	Incremen	Increment f, skip if 0					
Synt	ax:	[label]	INCFSZ	f [,d [,a	a]			
Ope	rands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$						
Ope	ration:	(f) + 1 \rightarrow c skip if resu						
Statu	us Affected:	None						
Enco	oding:	0011	11da	ffff	ffff			
Desc	cription:	The contents of register 'f' are incremented. If 'd' is 0, the result is placed in WREG. If 'd' is 1, the result is placed back in register 'f' (default). If the result is 0, the next instruc- tion, which is already fetched, is discarded and a NOP is executed instead, making it a two-cycle instruction. If 'a' is 0, the Access Bank will be selected, overriding the BSR value. If 'a' = 1, then the bank will be selected as per the BSR value (default).						
Wor	ds:	1						
Cycl Q C	es: Sycle Activity:	-	ycles if ski a 2-word i					
	Q1	Q2	Q3		Q4			
	Decode	Read register 'f'	Process Data		/rite to stination			
lf sk	kip:							
	Q1	Q2	Q3		Q4			
	No operation	No operation	No operatior	ao a	No eration			
lf sk	kip and follow							
	Q1	Q2	Q3		Q4			
	No	No	No		No			
	operation No	operation No	operation No	n op	eration No			
	operation	operation	operation	n op	eration			
<u>Exar</u>	<u>mple</u> :	NZERO	INCFSZ :	CNT,	1, 0			
	Before Instru		s (HERE)					
	After Instruct CNT If CNT PC If CNT PC	= CNT + = 0; = Addres ≠ 0;	1 ss (ZERO) ss (NZERO)					

INFSNZ	Incremen	t f, skip if no	ot 0			
Syntax:	[<i>label</i>] IN	NFSNZ f[,c	l [,a]			
Operands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$					
Operation:	(f) + 1 \rightarrow c skip if resu					
Status Affected:	None					
Encoding:	0100	10da ffi	ff ffff			
Description:	increments placed in V result is pl (default). If the resu instruction fetched, is executed i cycle instr Access Ba riding the l	nts of registe ed. If 'd' is 0, WREG. If 'd' aced back in It is not 0, the , which is alr e discarded a instead, mak uction. If 'a' i ank will be se BSR value. If vill be selecte e (default).	the result is is 1, the register 'f' e next ready nd a NOP is ing it a two- s 0, the elected, ove f 'a' = 1, the			
Words: Cycles:	1(2) Note: 3 c	cycles if skip				
Cycles:	1(2) Note: 3 c	cycles if skip a 2-word ins				
Cycles: Q Cycle Activity:	1(2) Note: 3 c by	a 2-word ins	struction.			
Cycles: Q Cycle Activity: Q1	1(2) Note: 3 c by	a 2-word ins Q3	etruction.			
Cycles: Q Cycle Activity:	1(2) Note: 3 c by	a 2-word ins	struction.			
Cycles: Q Cycle Activity: Q1	1(2) Note: 3 c by Q2 Read	a 2-word ins Q3 Process	etruction. Q4 Write to			
Cycles: Q Cycle Activity: Q1 Decode	1(2) Note: 3 c by Q2 Read	a 2-word ins Q3 Process Data Q3	etruction. Q4 Write to			
Cycles: Q Cycle Activity: Q1 Decode If skip: Q1 No	1(2) Note: 3 c by Q2 Read register 'f' Q2 No	a 2-word ins Q3 Process Data Q3 No	Q4 Write to destination Q4 No			
Cycles: Q Cycle Activity: Q1 Decode If skip: Q1 No operation	1(2) Note: 3 c by Q2 Read register 'f' Q2 No operation	a 2-word ins Q3 Process Data Q3 No operation	Q4 Write to destination Q4 No operation			
Cycles: Q Cycle Activity: Q1 Decode If skip: Q1 No operation If skip and follow	1(2) Note: 3 c by Q2 Read register 'f' Q2 No operation ed by 2-wore	a 2-word ins Q3 Process Data Q3 No operation d instruction:	Q4 Write to destination Q4 No operation			
Cycles: Q Cycle Activity: Q1 Decode If skip: Q1 No operation If skip and follow Q1	1(2) Note: 3 c by Q2 Read register 'f' Q2 No operation ed by 2-word Q2	a 2-word ins Q3 Process Data Q3 No operation d instruction: Q3	Q4 Write to destination Q4 No operation Q4			
Cycles: Q Cycle Activity: Q1 Decode If skip: Q1 No operation If skip and follow	1(2) Note: 3 c by Q2 Read register 'f' Q2 No operation ed by 2-wore	a 2-word ins Q3 Process Data Q3 No operation d instruction:	Q4 Write to destination Q4 No operation			
Cycles: Q Cycle Activity: Q1 Decode If skip: Q1 No operation If skip and follow Q1 No operation No operation No	1(2) Note: 3 c by Q2 Read register 'f' Q2 No operation ed by 2-word Q2 No operation No	a 2-word ins Q3 Process Data Q3 No operation d instruction: Q3 No operation No	etruction. Q4 Write to destination Q4 No operation No			
Cycles: Q Cycle Activity: Q1 Decode If skip: Q1 No operation If skip and follow Q1 No operation	1(2) Note: 3 c by Q2 Read register 'f' Q2 No operation ed by 2-word Q2 No operation	a 2-word ins Q3 Process Data Q3 No operation d instruction: Q3 No operation	Q4 Write to destination Q4 No operation Q4 No operation			
Cycles: Q Cycle Activity: Q1 Decode If skip: Q1 No operation If skip and follow Q1 No operation No operation No	1(2) Note: 3 c by Q2 Read register 'f' Q2 No operation ed by 2-word Q2 No operation No operation	a 2-word ins Q3 Process Data Q3 No operation d instruction: Q3 No operation No operation	etruction. Q4 Write to destination Q4 No operation No			
Cycles: Q Cycle Activity: Q1 Decode If skip: Q1 No operation If skip and follow Q1 No operation No operation Example: Before Instru	1(2) Note: 3 c by Q2 Read register 'f' Q2 No operation ed by 2-word Q2 No operation No operation No operation HERE ZERO NZERO	a 2-word ins Q3 Process Data Q3 No operation d instruction: Q3 No operation No operation	Atruction. Q4 Write to destination Q4 No operation No operation No operation			
Cycles: Q Cycle Activity: Q1 Decode If skip: Q1 No operation If skip and follow Q1 No operation No operation Example: Before Instru PC	1(2) Note: 3 c by Q2 Read register 'f' Q2 No operation ed by 2-wore Q2 No operation Mo operation No operation HERE ZERO NZERO	a 2-word ins Q3 Process Data Q3 No operation d instruction: Q3 No operation No operation	Atruction. Q4 Write to destination Q4 No operation No operation No operation			
Cycles: Q Cycle Activity: Q1 Decode If skip: Q1 No operation If skip and follow Q1 No operation Example: Before Instru PC After Instruct	1(2) Note: 3 c by Q2 Read register 'f' Q2 No operation ed by 2-word Q2 No operation HERE ZERO NZERO ction = Address ion	a 2-word ins Q3 Process Data Q3 No operation d instruction: Q3 No operation No operation INFSNZ REG	Q4 Write to destination Q4 No operation Q4 No operation No operation			
Cycles: Q Cycle Activity: Q1 Decode If skip: Q1 No operation If skip and follow Q1 No operation No operation Example: Before Instruct PC After Instruct REG If REG	1(2) Note: 3 c by Q2 Read register 'f' Q2 No operation ed by 2-word Q2 No operation No operation HERE ZERO NZERO Ction = Address ion = REG + ≠ 0;	a 2-word ins Q3 Process Data Q3 No operation d instruction: Q3 No operation No operation INFSNZ REG	Q4 Write to destination Q4 No operation Q4 No operation No operation			
Cycles: Q Cycle Activity: Q1 Decode If skip: Q1 No operation If skip and follow Q1 No operation Example: Before Instruct PC After Instruct REG	1(2) Note: 3 c by Q2 Read register 'f' Q2 No operation ed by 2-word Q2 No operation ed by 2-word Q2 No operation HERE ZERO NZERO Ction = Address ion = REG +	a 2-word ins Q3 Process Data Q3 No operation d instruction: Q3 No operation No operation INFSNZ REG	Q4 Write to destination Q4 No operation Q4 No operation No operation			

RETFIE	Return from Interrupt					
Syntax:	[label]	RETFIE	[s]			
Operands:	$s \in [0,1]$					
Operation:	$(TOS) \rightarrow PC,$ $1 \rightarrow GIE/GIEH \text{ or PEIE/GIEL},$ if s = 1 $(WS) \rightarrow WREG,$ $(STATUSS) \rightarrow STATUS,$ $(BSRS) \rightarrow BSR,$ PCLATU, PCLATH are unchanged.					
Status Affected:	GIE/GIEF	H,PEIE/G	IEL.			
Encoding:	0000	0000	0001	000s		
Description:	Return from Interrupt. Stack is popped and Top-of-Stack (TOS) i loaded into the PC. Interrupts are enabled by setting either the high or low priority global interrupt enable bit. If 's' = 1, the contents the shadow registers WS, STATUSS and BSRS are loaded into their corresponding registers WREG, STATUS and BSR. If 's' = 0, no update of these registe occurs (default).					
Words:	1					
Cycles:	2					
Q Cycle Activity:						
Q1	Q2	Q3	}	Q4		

RET	LW	Return Li	iteral to	WREG	3		
Synt	ax:	[label]	RETLW	k			
Ope	rands:	$0 \le k \le 255$					
Ope	ration:	$(TOS) \rightarrow$	$k \rightarrow WREG$, (TOS) \rightarrow PC, PCLATU, PCLATH are unchanged				
Statu	us Affected:	None					
Enco	oding:	0000	1100	kkkk	kkkk		
Description:		WREG is literal 'k'. loaded fro (the return address la unchange	The prog om the to n addres atch (PC	gram co op of th s). The	ounter is le stack e high		
Wor	ds:	1					
Cycl	es:	2					
QC	ycle Activity:						
	Q1	Q2	Q3	3	Q4		
	Decode	Read literal 'k'	Proce Data	a s	op PC from stack, Write to WREG		
	No operation	No operation	No operat	ion	No operation		

Example:

CALL I	ABLE	; ; ;	WREG contains table offset value WREG now has table value
:			
TABLE			
ADDWF	PCL	;	WREG = offset
RETLW	k0	;	Begin table
RETLW	k1	;	
:			
:			
RETLW	kn	;	End of table

Before Instruction

WREG = UXU/	WREG	=	0x07	
-------------	------	---	------	--

After Instruction

WREG = value of kn

Q1	Q2	Q3	Q4
Decode	No	No	pop PC from stack
	operation	operation	stack
			Set GIEH or
			GIEL
No	No	No	No
operation	operation	operation	operation

Example: RETFIE 1

After Interrupt

PC	=	TOS
W	=	WS
BSR	=	BSRS
STATUS	=	STATUSS
GIE/GIEH,	PEIE/GIEL=	1

21.2 DC Characteristics: PIC18CXX2 (Industrial, Extended) PIC18LCXX2 (Industrial)

DC CHARACTERISTICS			Standard Operating Co Operating temperature		nditions (unless otherwise stated) -40°C \leq TA \leq +85°C for industrial -40°C \leq TA \leq +125°C for extended	
Param No.	Symbol	Characteristic	Min	Max	Units	Conditions
	VIL	Input Low Voltage				
		I/O ports:				
D030		with TTL buffer	Vss	0.15Vdd	V	VDD < 4.5V
D030A				0.8	V	$4.5V \leq V \text{DD} \leq 5.5V$
D031		with Schmitt Trigger buffer	Vss	0.2VDD	V V	
Dooo		RC3 and RC4 MCLR	Vss	0.3VDD	V	
D032			Vss	0.2VDD		
D032A		OSC1 (in XT, HS and LP modes) and T1OSI	Vss	0.3Vdd	V	
D033		OSC1 (in RC and EC mode) ⁽¹⁾	Vss	0.2Vdd	V	
	VIH	Input High Voltage				
		I/O ports:				
D040		with TTL buffer	0.25VDD + 0.8V	Vdd	V	VDD < 4.5V
D040A			2.0	Vdd	V	$4.5V \leq V \text{DD} \leq 5.5V$
D041		with Schmitt Trigger buffer	0.8Vdd	Vdd	V	
		RC3 and RC4	0.7Vdd	Vdd	V	
D042		MCLR, OSC1 (EC mode)	0.8Vdd	Vdd	V	
D042A		OSC1 (in XT, HS and LP modes) and T1OSI	0.7Vdd	Vdd	V	
D043		OSC1 (RC mode) ⁽¹⁾	0.9Vdd	Vdd	V	
	lı∟	Input Leakage Current ^(2,3)				
D060		I/O ports	—	±1	μA	Vss ≤ VPIN ≤ VDD, Pin at hi-impedance
D061		MCLR	_	±5	μA	$Vss \le VPIN \le VDD$
D063		OSC1	_	±5	μΑ	$Vss \le VPIN \le VDD$
	IPU	Weak Pull-up Current			1	
D070	IPURB	PORTB weak pull-up current	50	400	μA	VDD = 5V, VPIN = VSS

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC MCU be driven with an external clock while in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

21.2 DC Characteristics: PIC18CXX2 (Industrial, Extended) PIC18LCXX2 (Industrial) (Continued)

DC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$			
Param No.	Symbol	Characteristic	Min	Max	Units	Conditions
	Vol	Output Low Voltage				
D080		I/O ports	—	0.6	V	IOL = 8.5 mA, VDD = 4.5V, -40°C to +85°C
D080A			—	0.6	V	IOL = 7.0 mA, VDD = 4.5V, -40°C to +125°C
D083		OSC2/CLKOUT (RC mode)	—	0.6	V	IOL = 1.6 mA, VDD = 4.5V, -40°C to +85°C
D083A			—	0.6	V	IOL = 1.2 mA, VDD = 4.5V, -40°C to +125°C
	Vон	Output High Voltage ⁽³⁾				
D090		I/O ports	Vdd - 0.7	—	V	IOH = -3.0 mA, VDD = 4.5V, -40°С to +85°С
D090A			Vdd - 0.7	—	V	IOH = -2.5 mA, VDD = 4.5V, -40°С to +125°С
D092		OSC2/CLKOUT (RC mode)	Vdd - 0.7	—	V	IOH = -1.3 mA, VDD = 4.5V, -40°С to +85°С
D092A			Vdd - 0.7	—	V	IOH = -1.0 mA, VDD = 4.5V, -40°С to +125°С
D150	Vod	Open Drain High Voltage	_	8.5	V	RA4 pin
		Capacitive Loading Specs on Output Pins				
D101	Сю	All I/O pins and OSC2 (in RC mode)	—	50	pF	To meet the AC Timing Specifications
D102	Св	SCL, SDA	—	400	pF	In I ² C mode

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC MCU be driven with an external clock while in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

FIGURE 22-22: TYPICAL AND MAXIMUM Vol vs. lol (VDD = 5V, -40°C TO +125°C)

© 1999-2013 Microchip Technology Inc.