

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I²C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	33
Program Memory Size	32KB (16K x 16)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.600", 15.24mm)
Supplier Device Package	40-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lc452-i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams

2.4 External Clock Input

The EC and ECIO oscillator modes require an external clock source to be connected to the OSC1 pin. The feedback device between OSC1 and OSC2 is turned off in these modes to save current. There is no oscillator start-up time required after a Power-on Reset or after a recovery from SLEEP mode.

In the EC oscillator mode, the oscillator frequency divided by 4 is available on the OSC2 pin. This signal may be used for test purposes or to synchronize other logic. Figure 2-4 shows the pin connections for the EC oscillator mode.

Fosc/4 -

The ECIO oscillator mode functions like the EC mode, except that the OSC2 pin becomes an additional general purpose I/O pin. The I/O pin becomes bit 6 of PORTA (RA6). Figure 2-5 shows the pin connections for the ECIO oscillator mode.

OSC2

FIGURE 2-6: PLL BLOCK DIAGRAM

FIGURE 2-5:

EXTERNAL CLOCK INPUT OPERATION (ECIO CONFIGURATION)

2.5 HS/PLL

A Phase Locked Loop circuit is provided as a programmable option for users that want to multiply the frequency of the incoming crystal oscillator signal by 4. For an input clock frequency of 10 MHz, the internal clock frequency will be multiplied to 40 MHz. This is useful for customers who are concerned with EMI due to high frequency crystals.

The PLL can only be enabled when the oscillator configuration bits are programmed for HS mode. If they are programmed for any other mode, the PLL is not enabled and the system clock will come directly from OSC1.

The PLL is one of the modes of the FOSC<2:0> configuration bits. The oscillator mode is specified during device programming.

A PLL lock timer is used to ensure that the PLL has locked before device execution starts. The PLL lock timer has a time-out that is called TPLL.

REGISTER 4-1: STKPTR REGISTER

	R/C-0	R/C-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	STKFUL	STKUNF	—	SP4	SP3	SP2	SP1	SP0
	bit 7							bit 0
bit 7 ⁽¹⁾	STKFUL: S	Stack Full Fla	ag bit					
	1 = Stack b	ecame full c	or overflowed	d				
	0 = Stack h	as not beco	me full or ov	verflowed				
bit 6 ⁽¹⁾	STKUNF: S	Stack Underf	low Flag bit					
	1 = Stack u	inderflow oc	curred					
	0 = Stack u	inderflow did	l not occur					
bit 5	Unimplemented: Read as '0'							
bit 4-0	SP4:SP0: S	Stack Pointe	r Location b	its				

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

FIGURE 4-3: RETURN ADDRESS STACK AND ASSOCIATED REGISTERS

4.2.3 PUSH AND POP INSTRUCTIONS

Since the Top-of-Stack (TOS) is readable and writable, the ability to push values onto the stack and pull values off the stack, without disturbing normal program execution, is a desirable option. To push the current PC value onto the stack, a PUSH instruction can be executed. This will increment the stack pointer and load the current PC value onto the stack. TOSU, TOSH and TOSL can then be modified to place a return address on the stack.

The ability to pull the TOS value off of the stack and replace it with the value that was previously pushed onto the stack, without disturbing normal execution, is achieved by using the POP instruction. The POP instruction discards the current TOS by decrementing the stack pointer. The previous value pushed onto the stack then becomes the TOS value.

4.2.4 STACK FULL/UNDERFLOW RESETS

These resets are enabled by programming the STVREN configuration bit. When the STVREN bit is disabled, a full or underflow condition will set the appropriate STKFUL or STKUNF bit, but not cause a device RESET. When the STVREN bit is enabled, a full or underflow will set the appropriate STKFUL or STKUNF bit and then cause a device RESET. The STKFUL or STKUNF bits are only cleared by the user software or a POR Reset.

TABLE 4-2:	REGISTER FILE SUMMARY (CONTINUED)
------------	-----------------------------------

File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Details on page:
WDTCON	-	—	—	—	—	-	_	SWDTE	0	183
RCON	IPEN	LWRT	—	RI	TO	PD	POR	BOR	0q-1 11qq	53, 56, 74
TMR1H	Timer1 Reg	ister High Byte	9	•			•		xxxx xxxx	97
TMR1L	Timer1 Reg	ister Low Byte							xxxx xxxx	97
T1CON	RD16	_	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	0-00 0000	97
TMR2	Timer2 Reg	ister							0000 0000	101
PR2	Timer2 Peri	od Register							1111 1111	102
T2CON		TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	101
SSPBUF	SSP Receiv	/e Buffer/Trans	smit Register						xxxx xxxx	121
SSPADD	SSP Addres	ss Register in I	I ² C Slave Mod	le. SSP Baud F	Rate Reload R	egister in I ² C I	Master Mode.		0000 0000	128
SSPSTAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	0000 0000	116
SSPCON1	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	118
SSPCON2	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	0000 0000	120
ADRESH	A/D Result	Register High	Byte						xxxx xxxx	171,172
ADRESL	A/D Result	Register Low E	Byte						xxxx xxxx	171,172
ADCON0	ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE	_	ADON	0000 00-0	165
ADCON1	ADFM	ADCS2	_	_	PCFG3	PCFG2	PCFG1	PCFG0	00 0000	166
CCPR1H	Capture/Co	mpare/PWM R	Register1 High	Byte					xxxx xxxx	111, 113
CCPR1L	Capture/Co	mpare/PWM R	Register1 Low	Byte					xxxx xxxx	111, 113
CCP1CON	_	_	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	107
CCPR2H	Capture/Co	mpare/PWM R	Register2 High	Byte					xxxx xxxx	111, 113
CCPR2L	Capture/Co	mpare/PWM R	Register2 Low	Byte					xxxx xxxx	111, 113
CCP2CON	_	_	DC2B1	DC2B0	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00 0000	107
TMR3H	Timer3 Reg	ister High Byte	9						xxxx xxxx	103
TMR3L	Timer3 Reg	ister Low Byte							xxxx xxxx	103
T3CON	RD16	T3CCP2	T3CKPS1	T3CKPS0	T3CCP1	T3SYNC	TMR3CS	TMR3ON	0000 0000	103
SPBRG	USART1 Ba	aud Rate Gene	erator						0000 0000	151
RCREG	USART1 Re	eceive Registe	r						0000 0000	158, 161, 163
TXREG	USART1 Tr	ansmit Registe	er						0000 0000	156, 159, 162
TXSTA	CSRC	TX9	TXEN	SYNC	—	BRGH	TRMT	TX9D	0000 -010	149
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	150

Legend: x = unknown, u = unchanged, - = unimplemented, g = value depends on condition
Note 1: RA6 and associated bits are configured as port pins in RCIO and ECIO oscillator mode only, and read '0' in all other oscillator modes.
2: Bit 21 of the TBLPTRU allows access to the device configuration bits.

EXAMPLE 6-3: 16 x 16 UNSIGNED MULTIPLY ROUTINE

	MOVF	ARG1L,	W		
	MULWF	ARG2L		;	ARG1L * ARG2L ->
				;	PRODH: PRODL
	MOVFF	PRODH,	RES1	;	
	MOVFF	PRODL,	RES0	;	
;					
	MOVF	ARG1H,	W		
	MULWF	ARG2H		;	ARG1H * ARG2H ->
				;	PRODH: PRODL
	MOVFF	PRODH,	RES3	;	
	MOVFF	PRODL,	RES2	;	
;					
	MOVF	ARG1L,	W		
	MULWF	ARG2H		;	ARG1L * ARG2H ->
				;	PRODH: PRODL
	MOVF	PRODL,	W	;	
	ADDWF	RES1,	F	;	Add cross
	MOVF	PRODH,	W	;	products
	ADDWFC	RES2,	F	;	
	CLRF	WREG,	F	;	
	ADDWFC	RES3,	F	;	
;					
	MOVF	ARG1H,	W	;	
	MULWF	ARG2L		;	ARG1H * ARG2L ->
				;	PRODH: PRODL
	MOVF	PRODL,	W	;	
	ADDWF	RES1,		;	Add cross
	MOVF	PRODH,	W	;	products
	ADDWFC	RES2,	F	;	
	CLRF	WREG,	F	;	
	ADDWFC	RES3,	F	;	

Example 6-4 shows the sequence to do a 16 x 16 signed multiply. Equation 6-2 shows the algorithm used. The 32-bit result is stored in four registers, RES3:RES0. To account for the sign bits of the arguments, each argument pairs' Most Significant bit (MSb) is tested and the appropriate subtractions are done.

EQUATION 6-2: 16 x 16 SIGNED MULTIPLICATION ALGORITHM

RES3:RES0

= ARG1H:ARG1L • ARG2H:ARG2L = (ARG1H • ARG2H • 2¹⁶)+ (ARG1H • ARG2L • 2⁸)+ (ARG1L • ARG2L • 2⁸)+ (ARG1L • ARG2L)+ (-1 • ARG2L

```
(-1 \bullet ARG1H < 7 > \bullet ARG2H: ARG2L \bullet 2^{16})
```

EXAMPLE 6-4: 16 x 16 SIGNED MULTIPLY ROUTINE

	MOVF	ARG1L, V	W		
	MULWF	ARG2L		;	ARG1L * ARG2L ->
				;	PRODH: PRODL
	MOVFF	PRODH, H	RES1	;	
	MOVFF	PRODL, H	RESO	;	
;					
	MOVF	ARG1H, V	W		
	MULWF	ARG2H		;	ARG1H * ARG2H ->
					PRODH: PRODL
	MOVFF	PRODH, H	RES3	;	
	MOVFF	PRODL, H			
;		111022, 1		'	
'	MOVF	ARG1L, V	TAT		
	MULWF	ARG11, ARG2H			ARG1L * ARG2H ->
	HOLWI	AICOZII			PRODH: PRODL
	MOVF	ז זמספת	TAT		PRODITIPRODE
	ADDWF	PRODL, N RES1, N		;	Add cross
	MOVF	PRODH, V			products
	ADDWFC	RES2, I		;	
	CLRF	WREG, I		;	
	ADDWFC	RES3, I	F.	;	
;	MOTE	100111			
	MOVF	ARG1H, V	W	;	
	MULWF	ARG2L			ARG1H * ARG2L ->
					PRODH: PRODL
	MOVF	PRODL, V		;	
	ADDWF	RES1, I			Add cross
	MOVF	PRODH, V		;	products
	ADDWFC	RES2, F		;	
	CLRF	WREG, F		;	
	ADDWFC	RES3, F		;	
;					
	BTFSS			;	ARG2H:ARG2L neg?
	BRA	SIGN_ARG		;	no, check ARG1
	MOVF	ARG1L, V	W	;	
	SUBWF	RES2		;	
	MOVF	ARG1H, V	W	;	
	SUBWFB	RES3			
;					
SI	GN_ARG1				
	BTFSS	ARG1H,			ARG1H:ARG1L neg?
	BRA	CONT_COI	DE	;	no, done
	MOVF	ARG2L, V	W	;	
	SUBWF	RES2		;	
	MOVF	ARG2H, V	W	;	
	SUBWFB	RES3			
;					
CO	NT_CODE				
	:				

REGISTER 7-3: INTCON3 REGISTER

bit

bit

bit bit

bit

bit bit

bit

R/W-1	R/W-1	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
INT2IP	INT1IP	—	INT2IE	INT1IE	—	INT2IF	INT1IF
bit 7							bit
INT2IP: IN	T2 External Ir	nterrupt Prio	rity bit				
1 = High pr 0 = Low pri	•						
INT1IP: IN	T1 External Ir	nterrupt Prio	rity bit				
1 = High pr 0 = Low pri	iority	·					
Unimplem	ented: Read	as '0'					
INT2IE: IN	T2 External Ir	nterrupt Ena	ble bit				
	s the INT2 ex s the INT2 ex						
INT1IE: IN	T1 External Ir	nterrupt Ena	ble bit				
	s the INT1 ex s the INT1 ex						
Unimplem	ented: Read	as '0'					
INT2IF: IN	T2 External Ir	nterrupt Flag	bit				
(must b	Γ2 external in e cleared in s Γ2 external in	software)					
INT1IF: IN	T1 External Ir	terrupt Flag	bit				
1 = The IN (must b	Γ1 external in e cleared in s Γ1 external in	terrupt occu software)	rred				
Legend:							
R = Reada	ble bit	W = Wr	itable bit	U = Unimp	lemented	bit, read as	'0'
	at POR reset	t '1' = Bit	is set	'0' = Bit is	cleared	x = Bit is ι	Inknown

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit, or the global enable bit. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt. This feature allows for software polling.

REGISTER 7-7: PERIPHERAL INTERRUPT ENABLE REGISTER 2 (PIE2)

					•	•		
	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
	—	—	—	—	BCLIE	LVDIE	TMR3IE	CCP2IE
	bit 7							bit 0
bit 7-4	Unimplemente	d: Read a	as '0'					
bit 3	BCLIE: Bus Co	llision Inte	errupt Ena	ble bit				
	1 = Enabled							
	0 = Disabled							
bit 2	LVDIE: Low Vo	Itage Dete	ect Interrup	ot Enable bit				
	1 = Enabled							
	0 = Disabled							
bit 1	TMR3IE: TMR3	Overflow	v Interrupt	Enable bit				
	1 = Enables the			•				
	0 = Disables the	e TMR3 c	overflow in	terrupt				
bit 0	CCP2IE: CCP2			t				
	1 = Enables the							
	0 = Disables the	e CCP2 ir	nterrupt					
	-							
	Legend:							
	R = Readable b	bit	W = W	ritable bit	U = Unim	plemented	bit, read as	0'
	- n = Value at P	OR	'1' = B	t is set	'0' = Bit is	scleared	x = Bit is u	nknown

NOTES:

15.0 ADDRESSABLE UNIVERSAL SYNCHRONOUS ASYNCHRONOUS RECEIVER TRANSMITTER (USART)

The Universal Synchronous Asynchronous Receiver Transmitter (USART) module is one of the two serial I/O modules. (USART is also known as a Serial Communications Interface or SCI.) The USART can be configured as a full duplex asynchronous system that can communicate with peripheral devices, such as CRT terminals and personal computers, or it can be configured as a half-duplex synchronous system that can communicate with peripheral devices, such as A/D or D/A integrated circuits, serial EEPROMs, etc. The USART can be configured in the following modes:

- Asynchronous (full duplex)
- Synchronous Master (half duplex)
- Synchronous Slave (half duplex)

In order to configure pins RC6/TX/CK and RC7/RX/DT as the Universal Synchronous Asynchronous Receiver Transmitter:

- bit SPEN (RCSTA<7>) must be set (= 1), and
- bits TRISC<7:6> must be cleared (= 0).

Register 15-1 shows the Transmit Status and Control Register (TXSTA) and Register 15-2 shows the Receive Status and Control Register (RCSTA).

REGISTER 15-1: TXSTA: TRANSMIT STATUS AND CONTROL REGISTER

	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R-1	R/W-0	
	CSRC	TX9	TXEN	SYNC		BRGH	TRMT	TX9D	
	bit 7							bit 0	
bit 7	Asynchron Don't care Synchrono 1 = Master		generated in	•	BRG)				
bit 6	1 = Selects	Transmit Enal s 9-bit transmi s 8-bit transmi	ission						
bit 5	1 = Transm	nsmit Enable nit enabled nit disabled	bit						
	Note:	SREN/CREN	l overrides T	XEN in SYN	C mode.				
bit 4	1 = Synchr	ART Mode Se onous mode nronous mode							
bit 3	Unimplem	ented: Read	as '0'						
bit 2	Asynchron 1 = High sp 0 = Low sp Synchrono	Unimplemented: Read as '0' BRGH: High Baud Rate Select bit Asynchronous mode: 1 = High speed 0 = Low speed Synchronous mode: Unused in this mode							
bit 1	TRMT : Trai 1 = TSR er 0 = TSR fu		egister Status	s bit					
bit 0	TX9D: 9th	bit of transmit	t data. Can b	e Address/D	ata bit or a	parity bit.			
	Legend:								
	R = Reada	ble bit	W = Wri	table bit	U = Unimp	lemented b	oit, read as '	0'	

- 3			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR reset	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

15.1 USART Baud Rate Generator (BRG)

The BRG supports both the Asynchronous and Synchronous modes of the USART. It is a dedicated 8-bit baud rate generator. The SPBRG register controls the period of a free running 8-bit timer. In Asynchronous mode, bit BRGH (TXSTA<2>) also controls the baud rate. In Synchronous mode, bit BRGH is ignored. Table 15-1 shows the formula for computation of the baud rate for different USART modes, which only apply in Master mode (internal clock).

Given the desired baud rate and FOSC, the nearest integer value for the SPBRG register can be calculated using the formula in Table 15-1. From this, the error in baud rate can be determined. Example 15-1 shows the calculation of the baud rate error for the following conditions:

- Fosc = 16 MHz
- Desired Baud Rate = 9600
- BRGH = 0
- SYNC = 0

It may be advantageous to use the high baud rate (BRGH = 1), even for slower baud clocks. This is because the FOSC/(16(X + 1)) equation can reduce the baud rate error in some cases.

Writing a new value to the SPBRG register causes the BRG timer to be reset (or cleared). This ensures the BRG does not wait for a timer overflow before outputting the new baud rate.

15.1.1 SAMPLING

The data on the RC7/RX/DT pin is sampled three times by a majority detect circuit to determine if a high or a low level is present at the RX pin.

EXAMPLE 15-1: CALCULATING BAUD RATE ERROR

Desired Baud Rate	= Fosc / $(64 (X + 1))$
Solving for X:	
X X X	= ((Fosc / Desired Baud rate) / 64) - 1 = ((16000000 / 9600) / 64) - 1 = [25.042] = 25
Calculated Baud Rate	= 1600000 / (64 (25 + 1)) = 9615
Error	 <u>(Calculated Baud Rate - Desired Baud Rate)</u> Desired Baud Rate (9615 - 9600) / 9600 0.16%

TABLE 15-1: BAUD RATE FORMULA

SYNC	BRGH = 0 (Low Speed)	BRGH = 1 (High Speed)
0	(Asynchronous) Baud Rate = Fosc/(64(X+1))	Baud Rate = Fosc/(16(X+1))
1	(Synchronous) Baud Rate = Fosc/(4(X+1))	NA

Legend: X = value in SPBRG (0 to 255)

TABLE 15-2: REGISTERS ASSOCIATED WITH BAUD RATE GENERATOR

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other RESETS
TXSTA	CSRC	TX9	TXEN	SYNC	—	BRGH	TRMT	TX9D	0000 -010	0000 -010
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 -00x	0000 -00x
SPBRG Baud Rate Generator Register							0000 0000	0000 0000		

Legend: x = unknown, - = unimplemented, read as '0'. Shaded cells are not used by the BRG.

The analog reference voltage is software selectable to either the device's positive and negative supply voltage (VDD and VSS) or the voltage level on the RA3/AN3/ VREF+ pin and RA2/AN2/VREF-.

The A/D converter has a unique feature of being able to operate while the device is in SLEEP mode. To operate in SLEEP, the A/D conversion clock must be derived from the A/D's internal RC oscillator.

The output of the sample and hold is the input into the converter, which generates the result via successive approximation.

A device RESET forces all registers to their RESET state. This forces the A/D module to be turned off and any conversion is aborted.

Each port pin associated with the A/D converter can be configured as an analog input (RA3 can also be a voltage reference) or as a digital I/O.

The ADRESH and ADRESL registers contain the result of the A/D conversion. When the A/D conversion is complete, the result is loaded into the ADRESH/ ADRESL registers, the GO/DONE bit (ADCON0<2>) is cleared, and A/D interrupt flag bit ADIF is set. The block diagram of the A/D module is shown in Figure 16-1.

FIGURE 16-1: A/D BLOCK DIAGRAM

TABLE 19-2: PIC18CXXX INSTRUCTION SET

Mnemonic,		Description	Ovelar	16-bit Instruction Word				Status	Nataa
Opera	nds	Description	Cycles	MSb			LSb	Affected	Notes
BYTE-ORI	ENTED F	FILE REGISTER OPERATIONS							
ADDWF	f, d, a	Add WREG and f	1	0010	01da	ffff	ffff	C, DC, Z, OV, N	1, 2
ADDWFC	f, d, a	Add WREG and Carry bit to f	1	0010	00da	ffff	ffff	C, DC, Z, OV, N	1, 2
ANDWF	f, d, a	AND WREG with f	1	0001	01da	ffff	ffff	Z, N	1,2
CLRF	f, a	Clear f	1	0110	101a	ffff	ffff	Z	2
COMF	f, d, a	Complement f	1	0001	11da	ffff	ffff	Z, N	1, 2
CPFSEQ	f, a	Compare f with WREG, skip =	1 (2 or 3)	0110	001a	ffff	ffff	None	4
CPFSGT	f, a	Compare f with WREG, skip >	1 (2 or 3)	0110	010a	ffff	ffff	None	4
CPFSLT	f, a	Compare f with WREG, skip <	1 (2 or 3)	0110	000a	ffff	ffff	None	1, 2
DECF	f, d, a	Decrement f	1	0000	01da	ffff	ffff	C, DC, Z, OV, N	1, 2, 3, 4
DECFSZ	f, d, a	Decrement f, Skip if 0	1 (2 or 3)	0010	11da	ffff	ffff	None	1, 2, 3, 4
DCFSNZ	f, d, a	Decrement f, Skip if Not 0	1 (2 or 3)	0100	11da	ffff	ffff	None	1, 2
INCF	f, d, a	Increment f	1	0010	10da	ffff	ffff	C, DC, Z, OV, N	1, 2, 3, 4
INCFSZ	f, d, a	Increment f, Skip if 0	1 (2 or 3)	0011	11da	ffff	ffff	None	4
INFSNZ	f, d, a	Increment f, Skip if Not 0	1 (2 or 3)	0100	10da	ffff	ffff	None	1, 2
IORWF	f, d, a	Inclusive OR WREG with f	1	0001	00da	ffff	ffff	Z, N	1, 2
MOVF	f, d, a	Move f	1	0101	00da	ffff	ffff	Z, N	1
MOVFF	f _s , f _d	Move f _s (source) to 1st word	2	1100	ffff	ffff	ffff	None	
	0 u	f _d (destination)2nd word		1111	ffff	ffff	ffff		
MOVWF	f, a	Move WREG to f	1	0110	111a	ffff	ffff	None	
MULWF	f, a	Multiply WREG with f	1	0000	001a	ffff	ffff	None	
NEGF	f, a	Negate f	1	0110	110a	ffff	ffff	C, DC, Z, OV, N	1, 2
RLCF	f, d, a	Rotate Left f through Carry	1	0011	01da	ffff	ffff	C, Z, N	
RLNCF	f, d, a	Rotate Left f (No Carry)	1	0100	01da	ffff	ffff	Z, N	1, 2
RRCF	f, d, a	Rotate Right f through Carry	1	0011	00da	ffff	ffff	C, Z, N	
RRNCF	f, d, a	Rotate Right f (No Carry)	1	0100	00da	ffff	ffff	Z, N	
SETF	f, a	Set f	1	0110	100a	ffff	ffff	None	
SUBFWB	f, d, a	Subtract f from WREG with	1	0101	01da	ffff	ffff	C, DC, Z, OV, N	1, 2
	6	borrow							
SUBWF	f, d, a	Subtract WREG from f	1		11da	ffff	ffff	C, DC, Z, OV, N	4 0
SUBWFB	f, d, a	Subtract WREG from f with	1	0101	10da	ffff	tttt	C, DC, Z, OV, N	1, 2
		borrow							
SWAPF	f, d, a	Swap nibbles in f	1		10da	ffff	ffff	None	4
TSTFSZ	f, a	Test f, skip if 0	1 (2 or 3)	0110		ffff		None	1, 2
XORWF	f, d, a	Exclusive OR WREG with f	1	0001	10da	ffff	ffff	Ζ, Ν	
	ITED FIL	E REGISTER OPERATIONS	1	r				I	
BCF	f, b, a	Bit Clear f	1	1001	bbba	ffff	ffff	None	1, 2
BSF	f, b, a	Bit Set f	1	1000	bbba	ffff	ffff	None	1, 2
BTFSC	f, b, a	Bit Test f, Skip if Clear	1 (2 or 3)	1011	bbba	ffff	ffff	None	3, 4
BTFSS	f, b, a	Bit Test f, Skip if Set	1 (2 or 3)	1010	bbba	ffff	ffff	None	3, 4
BTG	f, d, a	Bit Toggle f	1	0111	bbba	ffff	ffff	None	1, 2

Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned.

3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

4: Some instructions are 2 word instructions. The second word of these instructions will be executed as a NOP, unless the first word of the instruction retrieves the information embedded in these 16-bits. This ensures that all program memory locations have a valid instruction.

5: If the table write starts the write cycle to internal memory, the write will continue until terminated.

MOVFF	Move f to f					
Syntax:	[label]	MOVFF	f_s, f_d			
Operands:	$\begin{array}{l} 0 \leq f_s \leq 4095 \\ 0 \leq f_d \leq 4095 \end{array}$					
Operation:	$(f_s) \rightarrow f_d$					
Status Affected:	None					
Encoding: 1st word (source) 2nd word (destin.)	1100 1111	ffff ffff	ffff ffff	ffff _s ffff _d		
Description:	The contents of source register f_s' are moved to destination register f_s' can be anywhere in the 4096 byte data space (000h to FFFh), and location of destination f_d' can also be any-					

where from 000h to FFFh. Either source or destination can be WREG (a useful special situation). MOVFF is particularly useful for transferring a data memory location to a peripheral register (such as the transmit buffer or an I/O port).

The MOVFF instruction cannot use the PCL, TOSU, TOSH or TOSL as the destination register.

Words:

Cycles:

Q Cycle Activity:

Q1

Q1	Q2	Q3	Q4
Decode	Read register 'f' (src)	Process Data	No operation
Decode	No operation No dummy read	No operation	Write register 'f' (dest)

Example:

MOVFF REG1, REG2

Before Instruction

REG1 REG2	= =	0x33 0x11
After Instruction		
REG1	=	0x33,
REG2	=	0x33

2

2 (3)

MO\	/LB	Move lite	Move literal to low nibble in BSR				
Synt	ax:	[label]	MOVLB	k			
Ope	rands:	$0 \le k \le 25$	55				
Ope	ration:	$k \to BSR$					
Statu	us Affected:	None					
Enco	oding:	0000	0001	kkkk	kkkk		
Desc	cription:		The 8-bit literal 'k' is loaded into the Bank Select Register (BSR).				
Wor	ds:	1					
Cycl	es:	1					
QC	ycle Activity						
	Q1	Q2	Q3		Q4		
	Decode	Read literal 'k'	Proce Data		Write eral 'k' to BSR		
<u>Exar</u>	nple:	MOVLB	5				

Before Instruction					
BSR register	=	0x02			
After Instruction					
BSR register	=	0x05			

MUL	_LW	Multiply I	Multiply Literal with WREG					
Synt	ax:	[label]	MULLW	k				
Ope								
Ope	ration:	(WREG) >	$k \to PR$	ODH:PF	RODL			
Statu	us Affected:	None						
Enco	oding:	0000	1101	kkkk	kkkk			
Des	cription:	An unsigned multiplication is car- ried out between the contents of WREG and the 8-bit literal 'k'. The 16-bit result is placed in PRODH:PRODL register pair. PRODH contains the high byte. WREG is unchanged. None of the status flags are affected. Note that neither overflow, nor carry is possible in this opera- tion. A zero result is possible but not detected.						
Wor	ds:	1						
Cycl		1						
•	cycle Activity:							
	Q1	Q2	Q3		Q4			
	Decode	Read literal 'k'	Proces Data	re PF	Write gisters RODH: RODL			
Exar	mple:	MULLW	0xC4					
	Before Instru	iction						
	WREG	= 0x	E2					
	PRODH PRODL	= ? = ?						
	After Instruct	ion						
	WREG PRODH PRODL	= 0x	E2 AD 08					

MULWF	Multiply	WREG with	f			
Syntax:	[label]	MULWF	f [,a]			
Operands:	0 ≤ f ≤ 255 a ∈ [0,1]					
Operation:	(WREG) >	$k(f) \rightarrow PRO$	DH:PRODL			
Status Affected:	None					
Encoding:	0000 001a ffff ffff					
Description: An unsigned muried out between WREG and the tion 'f'. The 16-bi in the PRODH:F pair. PRODH co byte. Both WREG and unchanged. None of the stat affected. Note that neither carry is possible tion. A zero resu not detected. If Access Bank wi overriding the B 1, then the bank as per the BSR			contents of er file loca- ult is stored L register s the high e gs are flow, nor is opera- iossible but 0, the selected, alue. If 'a'= pe selected			
Words:	1					
Cycles:	1					
Q Cycle Activity:						
Q1	Q2	Q3	Q4			
Decode	Read register 'f'	Process Data	Write registers PRODH: PRODL			
Example:	MULWF	REG, 1				
Before Instru	ction					
WREG REG PRODH PRODL	= 0xC4 = 0xB5 = ? = ?					
After Instruct						
WREG		C4				

itter instruction		
WREG	=	0xC4
REG	=	0xB5
PRODH	=	0x8A
PRODL	=	0x94

21.2 DC Characteristics: PIC18CXX2 (Industrial, Extended) PIC18LCXX2 (Industrial)

DC CHARACTERISTICS		Standard O Operating te		hditions (unless otherwise stated) -40°C \leq TA \leq +85°C for industrial -40°C \leq TA \leq +125°C for extended		
Param No.	Symbol	Characteristic	Min	Max	Units	Conditions
	VIL	Input Low Voltage				
		I/O ports:				
D030		with TTL buffer	Vss	0.15Vdd	V	VDD < 4.5V
D030A				0.8	V	$4.5V \leq V\text{DD} \leq 5.5V$
D031		with Schmitt Trigger buffer	Vss	0.2VDD	V V	
Dooo		RC3 and RC4 MCLR	Vss	0.3VDD	V	
D032			Vss	0.2VDD		
D032A		OSC1 (in XT, HS and LP modes) and T1OSI	Vss	0.3Vdd	V	
D033		OSC1 (in RC and EC mode) ⁽¹⁾	Vss	0.2Vdd	V	
	VIH	Input High Voltage				
		I/O ports:				
D040		with TTL buffer	0.25VDD + 0.8V	Vdd	V	VDD < 4.5V
D040A			2.0	Vdd	V	$4.5V \le V \text{DD} \le 5.5V$
D041		with Schmitt Trigger buffer	0.8Vdd	Vdd	V	
		RC3 and RC4	0.7Vdd	Vdd	V	
D042		MCLR, OSC1 (EC mode)	0.8Vdd	Vdd	V	
D042A		OSC1 (in XT, HS and LP modes) and T1OSI	0.7Vdd	Vdd	V	
D043		OSC1 (RC mode) ⁽¹⁾	0.9Vdd	Vdd	V	
	lı∟	Input Leakage Current ^(2,3)				
D060		I/O ports	—	±1	μA	Vss ≤ VPIN ≤ VDD, Pin at hi-impedance
D061		MCLR	_	±5	μA	$Vss \le VPIN \le VDD$
D063		OSC1	_	±5	μΑ	$Vss \le VPIN \le VDD$
	IPU	Weak Pull-up Current			1	
D070	IPURB	PORTB weak pull-up current	50	400	μA	VDD = 5V, VPIN = VSS

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC MCU be driven with an external clock while in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

TABLE 21-21: A/D CONVERTER CHARACTERISTICS: PIC18CXX2 (INDUSTRIAL, EXTENDED) PIC18LCXX2 (INDUSTRIAL)

Param No.	Symbol	Charac	teristic	Min	Тур	Max	Units	Conditions
A01	NR	Resolution		_	_	10 10	bit bit	$\label{eq:VREF} \begin{array}{l} VREF = VDD \geq 3.0V \\ VREF = VDD < 3.0V \end{array}$
A03	EIL	Integral linearity error		_	_	<±1 <±2	LSb LSb	$\label{eq:VREF} \begin{array}{l} VREF = VDD \geq 3.0V \\ VREF = VDD < 3.0V \end{array}$
A04	Edl	Differential linearity error		_	_	<±1 <±2	LSb LSb	$\label{eq:VREF} \begin{array}{l} VREF = VDD \geq 3.0V \\ VREF = VDD < 3.0V \end{array}$
A05	Efs	Full scale error		_	_	<±1 <±1	LSb LSb	$\label{eq:VREF} \begin{array}{l} VREF = VDD \geq 3.0V \\ VREF = VDD < 3.0V \end{array}$
A06	EOFF	Offset error		_	_	<±1 <±1	LSb LSb	$\label{eq:VREF} \begin{array}{l} VREF = VDD \geq 3.0V \\ VREF = VDD < 3.0V \end{array}$
A10	_	Monotonicity		guaranteed ⁽³⁾		—	$VSS \leq VAIN \leq VREF$	
A20	Vref	Reference voltage		0V		—	V	
A20A		(VREFH - VREFL)		3V		_	V	For 10-bit resolution
A21	Vrefh	Reference voltage High		AVss	—	AVDD + 0.3V	V	
A22	Vrefl	Reference voltage Low		AVss - 0.3V	—	AVdd	V	
A25	VAIN	Analog input voltage		AVss - 0.3V	—	VREF + 0.3V	V	
A30	ZAIN	Recommended impedance of analog voltage source		—	—	10.0	kΩ	
A40	IAD	A/D conversion	PIC18 C XXX		180	—	μΑ	Average current
		current (VDD)	PIC18LCXXX	—	90	—	μA	consumption when A/D is on (Note 1) .
A50	IREF	VREF input curr	ent (Note 2)	10		1000	μΑ	During VAIN acquisition. Based on differential of VHOLD to VAIN. To charge CHOLD, see Section 16.0.
				—	—	10	μΑ	During A/D conversion cycle.

Note 1: When A/D is off, it will not consume any current other than minor leakage current. The power-down current spec includes any such leakage from the A/D module. VREF current is from RA2/AN2/VREF- and RA3/AN3/VREF+ pins or AVDD and AVss pins, whichever is selected as reference input.

2: VSS \leq VAIN \leq VREF

3: The A/D conversion result never decreases with an increase in the Input Voltage, and has no missing codes.

FIGURE 22-9: TYPICAL AND MAXIMUM IDD vs. VDD (TIMER1 AS MAIN OSCILLATOR, 32.768 kHz, C = 47 pF)

© 1999-2013 Microchip Technology Inc.

FIGURE 22-19: △ILVD vs. VDD OVER TEMPERATURE (LVD ENABLED, VLVD = 4.5V - 4.78V)

23.0 PACKAGING INFORMATION

23.1 Package Marking Information

28-Lead PDIP (Skinny DIP)

Example	
	PIC18C242-I/SP

10117017

28-	Lead	SOIC	

Example

Leger	ld: XXX Y YY WW NNN (e3) *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator (e3) can be found on the outer packaging for this package.	
Note:	In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.		